

Нитрометилиденсодержащие пиперазиноны и морфолинон: синтез и строение

Василий В. Пелипко¹, Руслан И. Байчурин¹, Константин А. Лысенко², Сергей В. Макаренко¹*

Поступило 7.12.2022 Принято 29.12.2022

AlkO₂C Br + HX
$$R^1$$
 R^1 R^1

Показано, что взаимодействие алкил-3-бром-3-нитроакрилатов с 1,2-диаминоэтаном, 1,2-диаминопропаном, 1,2-диаминоциклогексаном и 2-аминоэтанолом является удобным способом синтеза шестичленных гетероциклов — (3Z)-3-(нитрометилиден)-пиперазин-2-онов и (3Z)-3-(нитрометилиден)морфолин-2-она. Строение синтезированных гетероциклов охарактеризовано комплексом спектральных методов и методом рентгеноструктурного анализа.

Ключевые слова: 2-аминоэтанол, 1,2-диаминопропан, 1,2-диаминоциклогексан, 1,2-диаминоэтан, морфолин-2-он, нитроакрилат, пиперазин-2-он.

Шестичленные гетероциклы ряда пиперазин-2-она и морфолин-2-она представляют практический интерес в качестве биологически активных веществ, которые обладают противовоспалительным (соединения \mathbf{I} , \mathbf{II}), спазмолитическим (соединения \mathbf{I}) и анальгетическим действием (соединения \mathbf{I}), проявляют противомикробную (соединения \mathbf{II}) и противогрибковую активность (соединения \mathbf{IV} , рис. 1).

Для синтеза пиперазин-2-онов и морфолин-2-онов, содержащих экзоциклическую кратную связь C=C, наиболее часто используются методы, основанные на взаимодействии этилендиамина или этаноламина с кетокарбоновыми кислотами, 5,6 диоксобутаноатами $^{1-3,7-9}$ и ацетилендикарбоксилатами. $^{4,10-15}$

Вместе с тем известно, что алкил-3-бром-3-нитроакрилаты демонстрируют высокую эффективность в качестве 1,2-биэлектрофилов при синтезе нитрометилиденсодержащих 2*H*-1,4-бензотиазин-3(4*H*)-она, ^{16,17} 3,4-дигидрохиноксалин-2(1*H*)-онов и 3,4-дигидро-2*H*-1,4-бензоксазин-2-онов. ^{17,18} Следует отметить, что трихлорметилсодержащий гем-бромнитроалкен (1-бром-1-нитро-3,3,3-трихлорпропен) в реакции с 1,2-диаминобензолом образует только аза-бисаддукт Михаэля, ¹⁹ в то время как простейшие гем-галогеннитроалкены в реакции с 1,2-бинуклеофилами не вводились. ²⁰

Рисунок 1. Шестичленные гетероциклы ряда пиперазин-2-она и морфолин-2-она, проявляющие биологическую активность.

Учитывая вышесказанное, нами на основе реакций алкил-3-бром-3-нитроакрилатов **1**а,**b** с алифатическими 1,2-бинуклеофилами **2**а-**d** предложены методы синтеза

¹ Российский государственный педагогический университет им. А. И. Герцена, наб. р. Мойки, 48, Санкт-Петербург 191186, Россия; e-mail: kohrgpu@yandex.ru

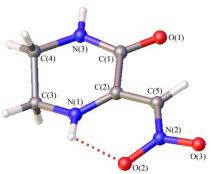
² Московский государственный университет им. М. В. Ломоносова, Ленинские горы, д. 1, стр. 3, Москва 119991, Россия: e-mail: kostva@xrav.ineos.ac.ru

Схема 1

3-(нитрометилиден)пиперазин-2-онов 3а-с и 3-(нитрометилиден)морфолин-2-она (4) (схема 1). Взаимодействие бромнитроакрилатов 1а, в с 1,2-диаминоэтаном **(2a)**, 1,2-диаминопропаном **(2b)**, 1,2-диаминоциклогексаном (2c) или 2-аминоэтанолом (2d) (мольное соотношение субстрат-бинуклеофил - 1:2) в растворе безводного MeCN при комнатной температуре в течение 2 ч приводит к образованию нитрометилиденсодержащих пиперазинонов 3а-с или морфолинона 4 с выходами 79-87% и 31-44% соответственно. Необходимо отметить, что реакция с 1,2-диаминопропаном (2b) или 1,2-диаминоциклогексаном (2c) завершается образованием смеси двух изомерных пиперазинонов 3b',b" или 3c',c'' (соотношение 3b':3b'' = 10:16, 3c':3c'' = 14:10, по данным спектра ЯМР 1Н), разделить которую на индивидуальные изомеры не удалось. Более низкие выходы морфолинона 4, вероятно, связаны с меньшей нуклеофильностью второго нуклеофильного центра. При этом добавление в реакционную смесь основания (Et₃N) не приводило к увеличению выхода.

Маршрут реакции, вероятно, состоит из первоначального образования аза-аддукта Михаэля **A**, который претерпевает дегидробромирование и превращается в нитроенамин **B**, подвергающийся внутримолекулярной гетероциклизации. Кроме того, нельзя исключать возможность, при которой первоначально образующийся аддукт **A** претерпевает гетероциклизацию, а у образующегося гетероцикла **C** отщепляется HBr (схема 1).

В структуре синтезированных гетероциклов $\bf 3$, $\bf 4$ вызывает несомненный интерес геометрическая конфигурация кратной связи $\bf C=C$. Наблюдаемый в спектрах $\bf 3MP$ $\bf 4$ соединений $\bf 3$, $\bf 4$ сигнал протона группы $\bf 3$ = $\bf 2MNO_2$ в области $\bf 6.89-6.93$ м. д. свидетельствует об одинаковом строении этого фрагмента для всего ряда полученных гетероциклов. Вместе с тем спектры $\bf 3MP$ $\bf 4MP$ пиперазинонов $\bf 3a-c$ и морфолинона $\bf 4$ характеризуются


наличием сигнала протона NH фрагмента нитроенамина в области 9.87-10.23 м. д., что может указывать на его участие в образовании внутримолекулярной водородной связи, а следовательно, на Z-конфигурацию кратной связи C=C (рис. 2). В пользу этого же вывода свидетельствуют результаты спектров NOESY, записанные для пиперазинона $\bf 3a$ с различными временами смешения ($\bf \tau$ 0.5, 1.5, 2.0 с), которые демонстрируют отсутствие $\bf Я$ ЭО между протонами $\bf 4$ -NH и = $\bf C$ H (рис. 3). В спектре $\bf ^1H$ — $\bf ^{15}N$ HMBC соединения $\bf 4$, записанного в $\bf ^1H$ — $\bf ^{15}N$ HMBC соединения $\bf ^4$, записанного в $\bf ^1H$ — $\bf ^{15}N$ HMBC соединения $\bf ^4$, записанного в $\bf ^{15}N$ — $\bf ^{15$

Присутствующий в ИК спектрах набор интенсивных полос поглощения ионизированной нитрогруппы в области 1162–1361 см⁻¹ и системы сопряженных кратных С=С и С=N⁺ связей в области 1607–1616 см⁻¹ характеризует фрагмент нитроенамина в молекулах пиперазинона **3a**, его замещенных аналогов **3b',b''**, **3c',c''** и морфолинона **4** как высокополяризованную

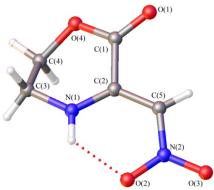

$$\begin{array}{c} H \\ R^1 \\ N \\ \end{array}$$

Рисунок 2. Внутримолекулярная водородная связь в соединениях **3а**–**c**, **4**.

Рисунок 3. ЯЭО между протонами 4-NH и =CH в спектрах NOESY пиперазинона **3a**.

Рисунок 4. Молекулярная структура (3*Z*)-3-(нитрометилиден)пиперазин-2-она (**3a**), по данным РСА. Пунктиром показана внутримолекулярная водородная связь.

Рисунок 5. Молекулярная структура (3*Z*)-3-(нитрометилиден)-морфолин-2-она (4), по данным РСА. Пунктиром показана внутримолекулярная водородная связь.

систему, в электронное строение которой существенный вклад вносит биполярная форма.

Электронные спектры соединений **3**, **4** содержат длинноволновый максимум в области 371-375 нм (ϵ 15600-17000 л·моль $^{-1}$ ·см $^{-1}$), типичный для сопряженной системы нитроенамина.

Результаты рентгеноструктурных исследований кристаллических образцов (3Z)-3-(нитрометилиден)-пиперазин-2-она $(3\mathbf{a})$ (рис. 4) и (3Z)-3-(нитрометилиден)морфолин-2-она (4) (рис. 5) подтверждают Z-конфигурацию их нитроенаминного фрагмента.

Длины связей C(2)–N(1) (1.317(2)–1.325(5) Å) и C(5)–N(2) (1.379(2)–1.390(4) Å) оказались меньше, а связей C(2)=C(5) (1.369(2)–1.386(5) Å) – больше, чем соответствующие изолированные одинарная связь $C(sp^2)$ – $N(sp^2)$ (1.44–1.46 Å²³) и кратная связь C=C (1.28–1.33 Å²⁴). Кроме того, фрагмент нитроенамина дополнительно стабилизируется за счет внутримолекулярной водородной связи N(1)H···O(2) (1.946–2.087 Å) между сближенными атомами водорода аминогруппы и атомом кислорода нитрогруппы, находящихся на расстоянии меньшем, чем сумма их вандерваальсовых радиусов (2.60 Å).²³

Таким образом, на основе реакций алкил-3-бром-3-нитроакрилатов с представителями алифатических N,N- и N,O-бинуклеофилов предложен эффективный метод синтеза шестичленных (3Z)-3-нитрометилиденсодержащих гетероциклов ряда пиперазинона и морфолинона. Наличие в структуре синтезированных молекул нитроенаминного блока открывает хорошие перспективы их дальнейшей модификации, например в реакциях с электрофильными реагентами. ^{25–27}

Экспериментальная часть

ИК спектры записаны на фурье-спектрометре Shimadzu IRPrestige-21 в таблетках КВг в области частот 400-4000 см⁻¹. Электронные спектры поглощения записаны на спектрофотометре Shimadzu UV2401PC в растворе ДМСО в неразборных кварцевых кюветах (длина оптического пути 1.01 мм). Спектры ЯМР ¹H, ³C, COSY, NOESY (время смешения 0.5, 1.5, 2 с), ¹H-¹³C HMQC и ¹H-¹³C HMBC, а также ¹H-¹⁵N HMBC зарегистрированы на спектрометре Jeol ECX400A с рабочими частотами 400, 100 и 40 МГц для ядер ¹H, ¹³C и 15 N соответственно в ДМСО- d_6 . В качестве стандарта использованы остаточные сигналы недейтерированного растворителя (2.47 м. д. для ядер 1 H) или сигналы дейтерированного растворителя (40.0 м. д. для ядер 13 C). Химические сдвиги в спектре ЯМР ¹⁵N определены относительно MeNO₂. Элементный анализ выполнен на анализаторе EuroVector EA3000 (Dual mode). Температуры плавления определены на приборе ПТП-М.

Исходные алкил-3-бром-3-нитроакрилаты ${\bf 1a,b}$ получены по опубликованной ранее методике. ²⁸

(3Z)-3-(Нитрометилиден)пиперазин-2-он (3a). Метод I (из соединения 1a). К раствору 200 мг (0.95 ммоль) бромнитроакрилата 1a в 10 мл безводного MeCN при комнатной температуре добавляют по каплям раствор 0.13 мл (1.9 ммоль, 114 мг) 1,2-диаминоэтана (2a) в 10 мл безводного MeCN и перемешивают в течение 2 ч. Осадок отфильтровывают и промывают H_2O . Выход 120 мг (80%), желтые кристаллы, т. пл. 249–251°С (ЕtOH).

Метод II (из соединения 1b). Получают аналогично методике получения из соединения 1а из 200 мг (0.9 ммоль) бромнитроакрилата **1b** и 0.12 мл (1.8 ммоль, 108 мг) 1,2-диаминоэтана (2а). Выход 110 мг (79%), желтые кристаллы, т. пл. 248-250°С (EtOH). Проба смешения образцов, полученных по методам I и II, не дает депрессии температуры плавления. ИК спектр, v, cм⁻¹: 1164 (c), 1223 (c), 1259 (c), 1322 (c) и 1328 (с, NOO⁻), 1607 (c, C=C, C=N⁺), 1696 (c, C=O), 3230 (cp), 3284 (ср, NH). УФ спектр, λ_{max} , нм (ϵ , л·моль⁻¹·см⁻¹): 371 (17000). Спектр ЯМР 1Н, б, м. д.: 3.30-3.40 (2Н, м, 6-CH₂); 3.42–3.50 (2H, M, 5-CH₂); 6.89 (1H, c, CHNO₂); 8.81 (1H, c, 1-NH); 10.05 (1H, c, 4-NH). Спектр ЯМР ¹³С, δ, м. д.: 38.6 (C-6); 39.8 (C-5); 110.3 (CHNO₂); 146.3 (C-3); 158.2 (C=O). Найдено, %: C 38.16; H 5.04; N 26.87. $C_5H_7N_3O_3$. Вычислено, %: С 38.22; Н 4.49; N 26.74.

(3Z)-5-Метил-3-(нитрометилиден)пиперазин-2-он (3b') и (3Z)-6-метил-3-(нитрометилиден)пиперазин-2-он (3b"), смесь соединений в соотношении 3b'/3b" = 10:16, получают по методике синтеза соединения 3а из 300 мг (1.3 ммоль) бромнитроакрилата 1b и 0.219 мл (2.6 ммоль, 200 мг) 1,2-диаминопропана (2b). Выход 192 мг (86%), светло-желтые кристаллы, т. пл. 185–189°С (ЕtOH–H₂O, 1:1). ИК спектр, v, см⁻¹: 1162 (с), 1236 (с), 1270 (с), 1299 (с) и 1341 (с, NOO⁻), 1612 (с,

С=C, C=N⁺), 1700 (с, C=O), 3199 (с), 3248 (ср, NH). УФ спектр, λ_{max} , нм (ϵ , л·моль⁻¹·см⁻¹): 372 (15600). Найдено, %: С 42.03; Н 5.27; N 24.68. $C_6H_9N_3O_3$. Вычислено, %: С 42.11; Н 5.30; N 24.55.

Изомер 3b'. Спектр ЯМР 1 Н, δ, м. д. (J, Γ ц): 1.10 (3H, д, ^{3}J = 6.5, CH₃); 3.09–3.20 (1H, м, 6-CH₂); 3.43–3.55 (1H, м, 6-CH₂); 3.76–3.85 (1H, м, 5-CH); 6.89 (1H, с, CHNO₂); 8.76 (1H, с, 1-NH); 9.87 (1H, c, 4-NH). Спектр ЯМР 13 С, δ, м. д.: 18.6 (CH₃); 44.0 (C-6); 45.7 (C-5); 110.4 (CHNO₂); 145.5 (C-3); 158.0 (C=O).

Изомер 3b". Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.22 (3H, д, ^{3}J = 6.5, CH₃); 3.09–3.20 (1H, м, 5-CH₂); 3.43–3.55 (1H, м, 5-CH₂); 3.65–3.75 (1H, м, 6-CH); 6.90 (1H, с, CHNO₂); 8.85 (1H, с, 1-NH); 9.99 (1H, с, 4-NH). Спектр ЯМР 13 С, δ , м. д.: 18.3 (CH₃); 45.4 (C-6); 45.7 (C-5); 110.3 (CHNO₂); 145.7 (C-3); 158.21 (C=O).

(3Z,4aS*,8aS*)-3-(Нитрометилиден)октагидрохиноксалин-2(1H)-он (3c') и (3Z,4aR*,8aS*)-3-(нитрометилиден)октагидрохиноксалин-2(1H)-он (3c"), смесь соединений в соотношении 3c'/3c" = 14:10, получают по методике синтеза соединения 3a из 500 мг (2.2 ммоль) бромнитроакрилата 1b и 0.54 мл (4.4 ммоль, 502 мг) *цис,транс*-1,2-диаминоциклогексана (2c). Выход 404 мг (87%), светло-желтые кристаллы, т. пл. 215–219°C (ЕtOH). ИК спектр, v, см $^{-1}$: 1166 (ср), 1239 (ср), 1247 (ср), 1347 (с) и 1361 (ср, NOO $^{-1}$), 1615 (с, C=C, C=N $^{+1}$), 1693 (с, C=O), 3188 (ср), 3281 (ср, NH). УФ спектр, $\lambda_{\text{тлах}}$, нм (ϵ , π ·моль $^{-1}$ ·см $^{-1}$): 372 (16700). Найдено, %: C 51.04; Н 6.31; N 19.86. С $_9$ H $_{13}$ N $_3$ O $_3$. Вычислено, %: C 51.18; Н 6.20; N 19.89.

Изомер 3c'. Спектр ЯМР ¹H, δ, м. д.: 1.12–1.80 (8H, м, 5,6,7,8-CH₂); 3.20–3.30 (2H, м, 4a,8a-CH); 6.92 (1H, c, CHNO₂); 8.95 (1H, c, 1-NH); 9.42 (1H, c, 4-NH). Спектр ЯМР ¹³С, δ, м. д.: 23.5, 23.9 (C-6,7); 28.8 (C-5); 29.5 (C-8); 54.2, 55.6 (C-4a,8a); 110.8 (CHNO₂); 146.3 (C-3); 158.3 (C=O).

Изомер 3c". Спектр ЯМР ¹H, δ, м. д.: 1.12–1.80 (8H, м, 5,6,7,8-CH₂); 3.56–3.59 (1H, м, 4a(8a)-CH), 3.77–3.78 (1H, м, 8a(4a)-CH); 6.89 (1H, c, CHNO₂); 8.78 (1H, c, 1-NH); 10.12 (1H, c, 4-NH). Спектр ЯМР ¹³С, δ, м. д.: 19.9, 22.9 (C-6,7); 28.3 (C-5); 28.4 (C-8); 48.4, 50.2 (C-4a,8a); 110.4 (CHNO₂); 145.1 (C-3); 158.6 (C=O).

(3Z)-3-(Нитрометилиден)морфолин-2-он (4). Метод I (из соединения 1а). Получают по методике синтеза соединения 3а из 310 мг (1.47 ммоль) бромнитроакрилата 1а и 0.18 мл (2.9 ммоль, 180 мг) 2-аминоэтанола (2d). Выпавший осадок (0.074 г) отфильтровывают. Фильтрат упаривают, осмоленный остаток обрабатывают ЕtOH и выделяют дополнительное количество осадка (0.026 г). Выход 100 мг (44%), желтые кристаллы, т. пл. 173–175°С (EtOH).

Метод II (из соединения **1b**). Получают аналогично из 400 мг (1.8 ммоль) бромнитроакрилата **1b** и 0.22 мл (3.6 ммоль, 220 мг) 2-аминоэтанола (**2d**). Выход 243 мг (31%), желтые кристаллы, т. пл. 173–175°С (ЕtOH). Проба смешения образцов, полученных по методам I и II, не дает депрессии температуры плавления. ИК спектр, v, cm^{-1} : 1213 (c), 1246 (c), 1320 (c), 1340 (c, NOO⁻), 1616 (c, C=C, C=N⁺), 1756 (c, C=O), 3218 (cp), 3247 (c, NH).

УФ спектр, λ_{max} , нм (ϵ , л·моль⁻¹·см⁻¹): 375 (17000). Спектр ЯМР ¹H, δ , м. д.: 3.54–3.62 (2H, м, 5-CH₂); 4.52–4.60 (2H, м, 6-CH₂); 6.93 (1H, с, CHNO₂); 10.23 (1H, уш. с, 4-NH). Спектр ЯМР ¹³С, δ , м. д.: 39.1 (C-5); 67.4 (C-6); 112.1 (CHNO₂); 142.4 (C-3); 159.1 (C=O). Спектр ЯМР ¹⁵N, δ , м. д.: -4.7 (NO₂); 334.7 (N-4). Найдено, %: С 38.38; H 3.54; N 17.47. $C_5H_6N_2O_4$. Вычислено, %: С 37.98; H 3.83; N 17.72.

Рентгеноструктурное исследование монокристаллов соединений За, 4 выполнено на автоматическом дифрактометре Bruker Kappa APEX II ССО (графитовый монохроматор, $\lambda(MoK\alpha)$ 0.71073 Å, температура 293(2)К, ω-сканирование). Кристаллы соединений За, 4, пригодные для РСА, получены кристаллизацией из H₂O и EtOH соответственно. Сбор и индексирование данных, определение и уточнение параметров элементарной ячейки проведены с использованием пакета программ АРЕХ2. 29 Эмпирическая коррекция поглощения на основе формы кристалла, дополнительная сферическая коррекция и учет систематических ошибок проведены по программе SADABS.³⁰ Структуры расшифрованы прямым методом по программе SHELXТ 31 и уточнены полноматричным МНК по F^2 программой SHELXL.³² Положения атомов водорода при атомах углерода рассчитаны в соответствии со стереохимическими критериями и уточнены по модели "наездник". Анализ внутри- и межмолекулярных взаимодействий, а также рисунки выполнены с использованием программ PLATON³³ и Mercury 2020.3.³⁴ Полные рентгеноструктурные данные депонированы в Кембриджском банке структурных данных (депоненты ССDС 2111613 (соединение 3а), ССDС 2111614 (соединение 4).

Файл сопроводительных материалов, содержащий ИК спектры, спектры ЯМР 1 Н и 13 С всех синтезированных соединений, а также спектры COSY, NOESY, 1 H $^{-13}$ C HMQC, 1 H $^{-13}$ C HMBC, 1 H $^{-15}$ N HMBC и кристаллографические данные соединений 3 a, 4 , доступен на сайте журнала http://hgs.osi.lv.

Физико-химические исследования выполнены с использованием оборудования Центра коллективного пользования "Физико-химические методы исследования нитросоединений, координационных, биологически активных веществ и наноструктурированных материалов" Междисциплинарного ресурсного центра коллективного пользования "Современные физико-химические методы формирования и исследования материалов для нужд промышленности, науки и образования" Российского государственного педагогического университета им. А. И. Герцена.

Список литературы

- Andreichikov, Yu. S.; Tokmakova, T. N.; Pidémskii, E. L.; Voronova, L. A.; Vilenchik, Ya. M. *Pharm. Chem. J.* 1977, 11, 668.
- Milyutin, A. V.; Safonova, N. V.; Goleneva, A. F.; Andreichikov, Yu. S.; Tul'bovich, G. A.; Makhmudov, R. R. Pharm. Chem. J. 1994, 28, 915.

- Elzahhar, P. A. S.; Soliman, R.; AM El-Hawash, S. A. M.; Ragab, H. M. A.; Youssef, A. M.; Abdel Wahab, A. E. *Med. Chem.* 2015, 11, 407.
- Mullen, G. B.; Georgiev, V. St.; Acker, C. G. Heterocycles 1986, 24, 1285.
- Saloutin, V. I.; Skryabina, Z. E.; Basyl', I. T.; Kondrat'ev, P. N.; Chupakhin, O. N. J. Fluorine Chem. 1994, 69, 119.
- Zubkov, I. N.; Romanov, A. R.; Ushakov, I. A.; Rulev, A. Yu. Tetrahedron 2020, 76, 130884.
- 7. Bagrov, F. V. Russ. J. Org. Chem. 1994, 30, 1768.
- 8. Biekert, E.; Hoffmann, D.; Enslein, L. Ber. 1961, 94, 2778.
- Saloutin, V. I.; Perevalov, S. G. J. Fluorine Chem. 1999, 96, 87
- Fan, M.-J.; Li, G.-Q.; Liang, Y.-M. Tetrahedron 2006, 62, 6782.
- Fan, M.-J.; Li, G.-Q.; Li, L.-H.; Yang, S.-D.; Liang, Y.-M. Synthesis 2006, 2286.
- Iwanami, Y.; Kenjo, Y.; Nishibe, K.; Kajiura, M.; Isoyama, S. Bull. Chem. Soc. Jpn. 1964, 37, 1740.
- 13. Iwanami, Y. Bull. Chem. Soc. Jpn. 1971, 44, 1311.
- 14. Parr, R. W.; Reiss, J. A. Aust. J. Chem. 1984, 37, 389.
- 15. Harwood, L. M.; Tucker, T. T.; Angell, R.; Finch, H. *Tetrahedron Lett.* **1996**, *37*, 4217.
- Berestovitskaya, V. M.; Tafeenko, V. A.; Makarenko S. V.; Sadikov, K. D.; Chernyshev I. V. Russ. J. Gen. Chem. 2006, 76, 135.
- 17. Palmieri, A. Eur. J. Org. Chem. 2020, 28, 4247.
- Makarenko, S. V.; Sadykov, K. D.; Baichurin, R. I. Chem. Heterocycl. Compd. 2018, 54, 502.

- Stukan', E. V.; Makarenko, S. V.; Berkova, G. A.; Berestovitskaya, V. M. Russ. J. Gen. Chem. 2010, 80, 2460.
- Soengas, R. G.; Acurcio, R. C.; Silva, A. M. Eur. J. Org. Chem. 2014, 29, 6339.
- 21. Rajappa, S. Tetrahedron 1981, 37, 1453.
- 22. Rajappa, S. Tetrahedron 1999, 55, 7065.
- 23. Gordon, A. J.; Ford, R. A. *The Chemist's Companion*; New York: Wiley, 1972.
- Pedireddi, V. R.; Sarma, J. A. R. P.; Desiraju, G. R. *J. Chem. Soc.*, *Perkin Trans.* 2 1992, 311.
- Shmoylova, Y. Yu.; Kovygin, Y. A.; Ledenyova, I. V.; Prezent, M. A.; Daeva, E. D.; Baranin, S. V.; Shikhaliev, K. S. Mendeleev Commun. 2021, 31, 259.
- Medvedeva, S. M.; Shikhlaliev, K. S.; Krysin, M. Y.; Gotsak, I. V. Chem. Heterocycl. Compd. 2016, 52, 309.
- Eften'eva, R. I.; Kushnir, O. V.; Lyavinets, O. S.; Mangalagiu, I. I.;
 Vovk, M. V. Monatsh. Chem. 2016, 147, 2127.
- Kuritsyna, M. A.; Pelipko, V. V.; Kataeva, O. N.; Baichurin, R. I.; Sadikov, K. D.; Smirnov, A. S.; Makarenko, S. V. Russ. Chem. Bull. 2021, 70, 1605.
- 29. APEX2. Version 2.1; Bruker AXS, Inc.: Madison, 2006.
- 30. SADABS; Bruker AXS, Inc.: Madison, 1997.
- 31. Sheldrick, G. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3.
- 32. Sheldrick, G. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
- Spek, A. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, A46, 34.
- 34. Farrugia, L. J. Appl. Crystallogr. 2012, 45, 849.