Посвящается глубокоуважаемому академику Я. Страдыню в связи с его юбилеем

С. Беляков, Н. Ерчак a,6 , С. Жеймоте, М. Флейшер, Э. Лукевиц

СТРУКТУРНОЕ ИССЛЕДОВАНИЕ 1-(N,N-ДИМЕТИЛАМИНИОМЕТИЛ)СПИРОБИ-(2,5-ДИОКСА-3-ОКСО-1-СИЛАЦИКЛОПЕНТАН)АТОВ

1-[(N,N-Диметил)аминиометил]спироби(2,5-диокса-3-оксо-1-силациклопентан)ат и 1-[(N,N-диметил)аминиометил]спироби(2,5-диокса-3-оксо-1-сила-4,4-диметилцикло- пентан)ат — представители класса аминиометилспироби(2,5-диокса-3-оксо-1-сила-циклопентан)атов — электростатически стабилизированных силанатов (ЭС-силана- тов). Методом РСА и квантовохимических расчетов проведено структурное исследование этих соединений. Рассмотрены факторы, влияющие на геометрию исследуемых молекул.

Ключевые слова: электростатически стабилизированные силанаты, метод РМ6, РСА.

В настоящей работе представлены результаты рентгеноструктурного исследования 1-(N,N-диметиламиниометил)спироби(2,5-диокса-3-оксо-1-силациклопентан)ата (1) и 1-(N,N-диметиламиниометил)спироби(4,4-диметил-2,5-диокса-3-оксо-1-силациклопентан)ата (2) и дана интерпретация полученных данных.

Соединения 1 и 2 являются представителями электростатически стабилизированных силанатов (ЭС-силанатов). ЭС-силанаты — уникальный класс химических соединений. При наличии в молекуле одной Si—С и четырех Si—О связей соединения обладают повышенной устойчивостью к гидролизу. Первый представитель этих соединений получен в Институте органического синтеза АН ЛатвССР (ныне Латвийский институт органического синтеза) в 1982 г. [1]. Сокращенное название этих соединений (ЭС-силанаты)* введено в применение в середине 90-х гг. XX века [2, 3]. Класс соединений назван по механизму стабилизации молекул, а именно, электростатической стабилизации [6, 7].

^{*} Употребляется также название цвиттерионные λ^5 Si-силикаты, см. например [4, 5].

Вещества 1 и 2 впервые были синтезированы в Латвийском институте органического синтеза в 80-х годах прошлого столетия [2, 8, 9]. В то же время проводилось исследование структуры данных веществ методом РСА. Однако целью этих работ было лишь подтверждение строения синтезированных соединений. Данная работа посвящена рентгеноструктурному и квантовохимическому исследованию строения структурно простейших представителей ЭС-силанатов. Благодаря высокому качеству выращенных кристаллов синтезированных соединений, удалось зарегистрировать дифракционные данные вплоть до $2\theta_{\text{max}} = 65^{\circ}$; это позволило уточнить все атомы водорода и достигнуть достаточно низких значений R-факторов.

На рис. 1 и 2 представлены молекулярные структуры 1 и 2 с обозначением атомов и эллипсоидами тепловых колебаний. Оба соединения характеризуются тригонально бипирамидальной координацией атома кремния. В табл. 1 даны величины, характеризующие координационный полиэдр атома кремния в молекулах 1 и 2. Атом кремния в обеих молекулах лежит практически в экваториальной плоскости: выходы ΔSi из плоскости O(5), O(9), C(12) составляют 0.018(1) и 0.031(1) Å для соединений 1 и 2 соответственно. По данным Кембриджского банка структурных данных (версия 5.29, ноябрь 2007 г.) в 15 имеющихся спироби(2,5-диокса-1-силациклопентан)атах, устойчивых к гидролизу, координационный полиэдр атома кремния также является тригональной бипирамидой, геометрия которой близка к таковой соединений 1 и 2. Два пятичленных цикла в молекулах 1 и 2 практически плоские; двугранный угол между плоскостями циклов составляет 53.31(5) (молекула 1) и 63.43(4)° (молекула 2).

В молекулах соединений **1** и **2** обнаружена внутримолекулярная водородная связь NH···O типа между группой N–H и атомом O(2). В молекуле соединения **1** параметры этой связи следующие: N(13)···O(2) = 2.804(2), H(13)···O(2) = 2.42(2), N(13)–H(13) = 0.87(2) Å, угол N(13)–H(13)···O(2) = $108(1)^{\circ}$; в молекуле соединения **2** данная связь слабее и ее параметры такие: N(13)···O(2) = 2.875(2), H(13)···O(2) = 2.47(2), N(13)–H(13) = 0.87(2) Å, N(13)–H(13)···O(2) = $109(1)^{\circ}$. Посредством данной связи в молекулах **1** и **2** образуется дополнительный пятичленный цикл O(2)–Si(1)–C(12)–N(13)–H(13), который характеризуется *твисст*конформацией. Атом N(13) в молекуле **1** выходит из плоскости атомов O(2), Si(2), C(12) на 0.317(2) Å, тогда как выход атома водорода H(13) из этой плоскости составляет –0.17(2) Å. В молекуле соединения **2** выходы атомов N(13) и H(13) из плоскости O(2), Si(2), C(12) равны 0.265(2) и –0.18(2) Å соответственно.

На рис. З представлена проекция кристаллической структуры соединения **1** на плоскость yz. В кристаллах имеется межмолекулярная водородная связь между группой N–H одной молекулы (с координатами атомов x, y, z) и атомом O(10) другой молекулы (с координатами атомов -x, -y, -z). Длина этой связи равна 2.842(2) (H(13)···O(10) = 2.10(2) Å, N(13)-H(13)···O(10) = 143(1)°), что несколько меньше среднестатистического значения (2.89) для водородных связей NH···O типа [10].

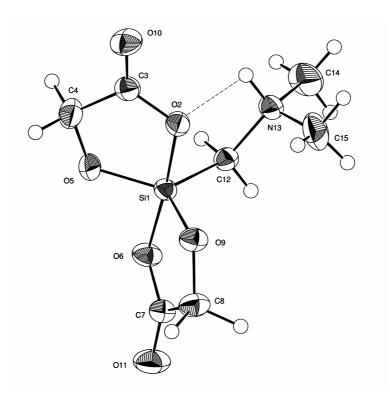


Рис. 1. Молекулярная структура соединения 1 с обозначением атомов

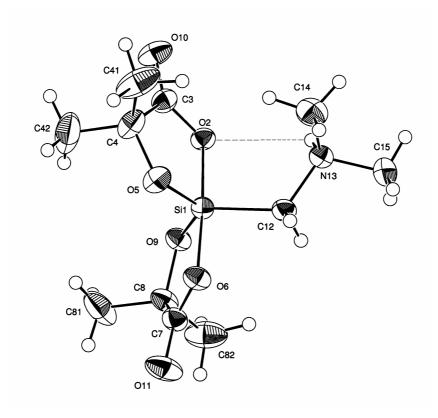
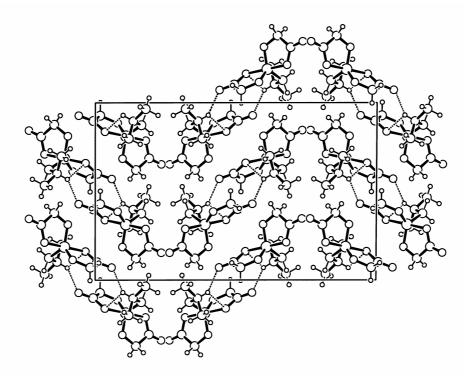
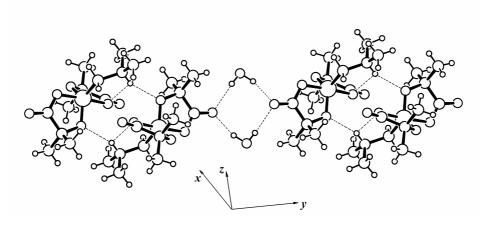


Рис. 2. Молекулярная структура соединения 2 с обозначением атомов


Посредством межмолекулярных водородных связей молекулы соединения 1 в исследуемых кристаллах объединяются в центросимметричные димеры (рис. 3). Таким образом, атом H(13), образуя вилочную водородную связь, участвует как в межмолекулярной, так и во внутримолекулярной водородных связях.

В работе [9] представлены данные PCA совместно закристаллизованных соединения 1 и гликолевой кислоты, где также найдены водородные связи NH···O и OH···O типов; причем само существование кокристалла обеспечивается этими связями.


В кристаллической структуре вещества 2 обнаружена молекула кристаллизационной воды. По-видимому, моногидрат соединения 2 является наиболее устойчивой формой данного вещества. В работе [11], где кристаллы вещества 2 были выращены из воды и исследованы при температуре -70 °C, также исследована структура соединения $2 \cdot H_2 O$. В настоящей работе установлено, что расплывающиеся кристаллы моногидрата оказались вполне устойчивыми и для исследования при комнатной температуре, для чего перед съемкой монокристаллы были предварительно погружены в силиконовое масло.

На рис. 4 представлен фрагмент упаковки молекул соединения 2-Н₂О, анализ которой не проводился в работе [11]. Один из атомов водорода кристаллизационной воды в 2·H₂O образует межмолекулярную водородную связь с карбонильным атомом кислорода О(11) (параметры этой связи следующие: $O(11)\cdots O(1w) = 2.876(2)$, $O(11)\cdots H(1w) = 1.94(3)$, O(1w)-H(1w) = 0.96(3) Å, O(11)-H(1w)···O(1w) = 165(2)°). Второй атом водорода также вступает в водородную связь с карбонильным кислородом О(11) от другой молекулы (параметры водородной связи такие: $O(11)\cdots O(1w) = 2.941(2), O(11)\cdots H(1w) = 2.10(3), O(1w)-H(1w) = 0.85(3) \text{ Å},$ O(11)–H(1w)···O(1w) = 168(2)°). В свою очередь, аналогично соединению 1 атом Н(13) образует вилочную водородную связь: кроме внутримолекулярной, в структуре имеется и межмолекулярная водородная связь с атомом кислорода O(9) (параметры – N(13)···O(9) = 2.954(2), H(13)···O(9) = 2.13(2) Å, N(13)-H(13)···O(9) = 156(1)°). Посредством данной связи в кристалле образуются центросимметричные димеры, подобно 1. Однако в кристаллах 2-Н2О система водородных связей более сложная, чем в соединении 1, поскольку в ней участвует также молекула воды. Благодаря этим связям в кристаллической структуре 2·Н₂О образуются цепи (рис. 4), которых нет в 1. Этим объясняется тот факт, что температура плавления соединения 1 составляет 139 °C, тогда как 2·H₂O плавится с разложением при 289 °C.

Молекулы в свободном виде и в разбавленных растворах не связываются межмолекулярными водородными связями, однако внутримолекулярные остаются. Для изолированных молекул соединений 1 и 2 проведены квантовохимические расчеты по недавно разработанному методу РМ6, который адаптирован к системам с водородной связью [12]. По данным расчетов в изолированных молекулах водородная связь $N(13)-H(13)\cdots O(2)$ усиливается. Параметры этой связи следующие: $N(13)\cdots O(2) = 2.596$, $M(13)\cdots O(2) = 1.923$, $M(13)-H(13)\cdots O(2) = 2.576$, $M(13)-H(13)\cdots O(2) = 2.576$,

Рис. 3. Проекция кристаллической структуры 1 вдоль кристаллографической оси x с указанием водородных связей

 $\it Puc.~4$. Фрагмент упаковки молекул в кристалле $\it 2\cdot H_2O$ с указанием водородных связей

 $H(13)\cdots O(2)=1.857,\ N(13)-H(13)=1.080 {\rm \AA},\ N(13)-H(13)\cdots O(2)=120.23^\circ$ (для молекулы **2**). Атомы N(13) и H(13) в изолированных молекулах **1** и **2** лежат в плоскости атомов $O(2),\ Si(2),\ C(12),\ T.$ е. образующийся посредством водородной связи дополнительный пятичленный цикл в изолированных молекулах имеет плоскую конформацию. В кристаллической структуре благодаря образованию вилочных водородных связей конформация этих циклов меняется.

 $\ \, {\rm T}\, \, {\rm a}\, \, {\rm f}\, \, {\rm n}\, \, {\rm u}\, \, {\rm u}\, \, {\rm a}\, \, \, 1$ Длины связей (d) в координационном полиэдре атома кремния в молекулах 1 и 2*

Связь	d, Å	
	Соединение 1	Соединение 2
Si(1)-O(2)	1.824(1) [1.830]	1.8002(8) [1.831]
Si(1)-O(5)	1.6682(9) [1.710]	1.6588(9) [1.706]
Si(1)-O(6)	1.798(1) [1.778]	1.8031(8) [1.776]
Si(1)-O(9)	1.657(1) [1.717]	1.6753(8) [1.702]
Si(1)-C(12)	1.896(1) [1.921]	1.890(1) [1.921]

^{*} В квадратных скобках даны значения, рассчитаные по РМ6.

 $\label{eq:Tadelta} T\ a\ b\ \pi\ u\ u\ a\ 2$ Валентные углы (ω) в координационном полиэдре атома кремния в молекулах 1 и 2^*

Угол	ω, град.		
	Соединение 1	Соединение 2	
O(2)-Si(1)-O(5)	88.37(5) [87.22]	89.33(4) [86.80]	
O(2)-Si(1)-O(6)	175.40(5) [177.62]	176.05(4) [179.84]	
O(2)-Si(1)-O(9)	89.56(5) [89.40]	88.43(4) [90.73]	
O(5)-Si(1)-O(6)	87.78(5) [91.70]	89.70(4) [93.22]	
O(5)-Si(1)-O(9)	125.46(6) [124.34]	122.24(5) [121.07]	
O(6)-Si(1)-O(9)	90.63(5) [89.44]	88.84(4) [89.38]	
O(2)-Si(1)-C(12)	94.22(5) [88.56]	95.46(4) [89.22]	
O(5)-Si(1)-C(12)	119.57(6) [120.58]	120.66(5) [121.33]	
O(6)-Si(1)-C(12)	89.86(6) [93.80]	88.33(4) [90.63]	
O(9)-Si(1)-C(12)	114.93(6) [114.82]	117.00(5) [117.47]	

^{*} В квадратных скобках даны значения, рассчитаные по РМ6.

Теоретически рассчитанные длины связей и углы даны наряду с результатами РСА в табл. 1, 2. Связи Si(1)–O(2) и Si(1)–O(6), которые можно считать координационными, длиннее двух других связей Si(1)–O, причем связь Si(1)–O(6), где атом кислорода не участвует в водородной связи, несколько короче, чем связь Si(1)–O(2). Это наблюдается также и в кристаллической структуре 1. Таким образом, водородная связь весьма заметно влияет на координационные связи Si(1)–O. Координационный полиэдр атома кремния остается тригональной бипирамидой, как в кристалле, так и в изолированной молекуле. Валентный угол O(2)–Si(1)–O(6) в изолированной молекуле еще больше приближается к развернутому.

В работах [3, 6, 7] показано, что стабилизация молекул ЭС-силанатов обеспечивается их тригонально-бипирамидальной структурой. К такому выводу также можно прийти, на основании теории кристаллического поля 1878

Таблица 3 Кристаллографические данные и параметры уточнения кристаллических структур

Брутто-формула M_r Форма кристаллов Цвет кристаллов	С ₇ H ₁₃ NO ₆ Si 235.27 Призма	$C_{11}H_{21}NO_6Si\cdot H_2O$ 309.39
Форма кристаллов		309 39
· · ·	Призма	207.27
Цвет кристаллов		Призма
	Бесцветный	Бесцветный
Размер кристаллов, мм	0.20×0.22×0.25	$0.21 \times 0.25 \times 0.31$
Кристаллическая сингония	Ромбическая	Моноклинная
Параметры кристаллической решетки		
a, Å	7.81110(10)	9.0821(2)
b, Å	12.8535(3)	12.3219(3)
c, Å	20.5002(5)	13.9886(3)
β, град.	90.0	96.3180(10)
Объем элементарной ячейки, V , $Å^3$	2058.22(7)	1555.94(6)
Пространственная группа	P bca	$P 2_1/c$
\overline{Z}	8	4
<i>F</i> (000)	992	664
Плотность кристаллов		
вычисленная, D_x , г/см ³	1.519	1.321
измеренная, D_m , г/см ³	1.51	1.32
$2\theta_{ m max}$	65.0	65.0
Интервалы изменения индексов Миллера		
	$-11 \le h \le 11$	$-13 \le h \le 13$
	$-19 \le k \le 19$	$-16 \le k \le 18$
	$-30 \le l \le 30$	$-21 \le l \le 21$
Коэффициент поглощения, µ, мм ⁻¹	0.238	0.179
Факторы пропускания:		
$T_{ m max}$	0.9539	0.9633
$T_{ m min}$	0.9428	0.9465
Число рефлексов		
измеренных	6854	9137
независимых	$3720 (R_{\text{int}} = 0.033)$	$5609 (R_{\text{int}} = 0.022)$
используемых ($I > 2\sigma(I)$)	2531	4428
<i>R</i> -Фактор	0.0422	0.0431
Индексы R и $wR(F^2)$ по всем данным	0.0739, 0.1157	0.0596, 0.1230
Число уточняемых параметров	188	273
GooF	1.039	1.008
$(\Delta/\sigma)_{\rm max}$	0.007	0.005
$\Delta ho_{ m max}$	0.251	0.284
Δho_{min}	-0.276	-0.262

Расчеты показывают, что свободный энергетический d-уровень атома кремния, именно который и подвергается атаке нуклеофила при гидролизе, при тригонально-бипирамидальной координации на 0.168 выше, чем при квадратно-пирамидальной. Разность энергии приведена здесь в единицах Δ [13]. Речь, конечно, идет о качественном объяснении устойчивости ЭС-силанатов. Для количественной оценки к подобным системам теорию кристаллического поля применять нельзя. Соединения 1 и 2, являясь примерами простейших представитетей ЭС -силанатов, могут оказаться полезными моделями для дальнейшего рассмотрения основных факторов, влияющих на геометрию молекул ЭС -силанатов. Кроме того, молекулы 1 и 2 являются подходящими примерами для вычисления координаты реакции гидролиза и количественного определения энергии активации, а также изучения факторов стабильности ЭС -силанатов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения 1, 2 синтезированы по реакции гликолевой кислоты (для 1) или диметилгликолевой кислоты (для 2) с диметиламинометилтриэтоксисиланом [8, 9]. Хорошего качества кристаллы соединений выращены медленной кристаллизацией из этанольного раствора при 0 °C. Плотность кристаллов измерена методом флотации: использованы системы хлороформ-четыреххлористый углерод (кристаллы соединения хлороформ-этанол (кристаллы соединения **2**·H₂O).

Для РСА кристаллов соединений использовался автоматический дифрактометр Nonius КарраССD (съемка при комнатной температуре, молибденовое излучение с $\lambda=0.71073$ Å, графитовый монохроматор, ϕ - и ω -сканирование). Структуры расшифрованы прямым методом [14] и уточнены полноматричным МНК в анизотропном (для атомов водорода — в изотропном) приближении с помощью комплекса программ SHELXL-97 [15]. Основные кристаллографические характеристики, а также условия съемки и параметры уточнения даны в табл. 3.

Квантовохимические расчеты были выполнены полуэмпирическим методом РМ6 с использованием программного пакета МОРАС2007 [16]. Полная оптимизацим геометрии соединений проводилась с ключевыми словами программы PRECISE и EF. Верификация точек минимума поверхности потенциальной энергии осуществлялась путем анализа частот колебаний молекул.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. П. Ерчак, Э. Я. Лукевиц, В. Ф. Маторыкина, А. А. Кемме, Я. Я. Блейделис, Авт. свид. СССР № 1059872, 1983; Откр., изобрет., № 45, 239 (1983).
- 2. N. Erchak, G. Ancens, in: 16th International Symposium on the Organic Chemistry of Sulfur (ISOCS), Abstr. Book, Merseburg, Germany, 1994, p. 182.
- 3. N. Erchak, G. Ancens, A. Kemme, E. Lukevics, in: *XIth International Symposium on Organosilicon Chemistry*, Université Montpellier II, France, 1996, p. PA60.
- 4. R. Tacke, A. Lopez-Mras, P. G. Jones, Organometallics, 13, 1617 (1994).
- R. Tacke, O. Dannappel, M. Mühleisen, in: *Organosilicon Chemistry II*, N. Auner,
 J. Weis (Eds.), VCH, Weinheim, 1996, p. 427.

- 6. Н. П. Ерчак. Автореф. дис. докт. хим. наук, Иркутск, 1991, 48 с.
- 7. Н. П. Ерчак. Дис. докт. хим. наук, Рига, 1990, 265 с.
- 8. Н. П. Ерчак, Г. А. Анценс, А. А. Кемме, Я. Я. Блейделис, Э. Э. Лиепиньш, Э. Я. Лукевиц, Авт. свид. СССР № 1182788, 1985; Откр., изобрет., № 45, 268 (1985).
- 9. Н. П. Ерчак, А. А. Кемме, Я. Я. Блейделис, Г. А. Анценс. Авт. свид. СССР № 1274271, 1986; Откр., изобрет., № 44, 269 (1986).
- 10. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 11. R. Tacke, B. Pfrommer, M. Pülm, R. Bertermann, Eur. J. Inorg. Chem., 807 (1999).
- 12. J. J. P. Stewart, J. Mol. Modeling, 107, 1173 (2007).
- 13. И. Б. Берсукер, Электронное строение и свойства координационных соеди нений, Химия, Ленинград, 1986.
- 14. А. Ф. Мишнев, С. В. Беляков, Кристаллография, 33, 835 (1988).
- 15. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).
- 16. J. J. P. Stewart, *MOPAC2007: Stewart Computational Chemistry*, Colorado Springs, CO, USA, 2007.

Латвийский институт органического синтеза, Pura LV-1006 e-mail: serg@osi.lv Поступило 22.07.2008

^аБрестский государственный университет им. А. С. Пушкина, Брест 224665, Беларусь e-mail: box@brsu.brest.by

⁶Подлясский университет, Седльце 08-110, Польша e-mail: erchak@ap.siedlce.pl