В. В. Кузнецов

АНАЛИЗ КОНФОРМАЦИОННОГО СОСТАВА СТЕРЕОИЗОМЕРОВ 4,5- И 5,6-ДИМЕТИЛ-1,3,2-ОКСАЗАБОРИНАНОВ

С помощью эмпирического (ММ2) и полуэмпирического (АМ1) методов проведен расчет энергии с полной оптимизацией геометрии молекул *цис-* и *транс-*изомеров 4,5- и 5,6-диметил-1,3,2-оксазаборинанов, а также модельных 1,3,2-оксазаборинанов и тетрагидро-1,3-оксазинов. Из сопоставления экспериментальных и расчетных КССВ и данных по относительной энергии отдельных конформеров следует, что молекулы циклических борных эфиров образуют многокомпонентную равновесную систему, включающую формы софы и полукресла с экваториальной ориенталией N—H.

Систематические исследования стереохимии замещенных 1,3,2-оксаза-боринанов показали, что для молекул большинства указанных соединений карактерна преимущественная конформация софы или состояние равновесия между инвертомерами софы [1, 2]. Однако в ряде случаев для интерпретации данных ЯМР допускалась возможность участия в конформационном равновесии одной из гибких форм [2—5]. Сложность оценки относительной стабильности таких форм в рамках метода CNDO [6] из-за неполного учета энергии электронного обмена в гетероатомном фрагменте [7, 8] сохраняет вероятность ошибочных конформационных отнесений на основании данных ЯМР. В этой связи целью настоящей работы является исследование конформационного состава молекул индивидуальных стереоизомернов 4,5- и 5,6-диметил-1,3,2-оксазаборинанов (I, II), а также модельных 1,3,2-оксазаборинанов (III—V) и тетрагидро-1,3-оксазинов (VI—X) методами молекулярной механики ММ2 [9] и ССП МО ЛКАО в параметризации АМ1 [10, 11] в сочетании с данными ЯМР [3].

$$R^2$$
 O X N H

$$\begin{split} &\text{I X = B-H, R = R}^1 = \text{Me, R}^2 = \text{H; II X = B-H, R = H, R}^1 = \text{R}^2 = \text{Me; III X = B-H, R = R}^2 = \text{H,} \\ &\text{R}^1 = \text{Me; IV X = B-H, R = Me, R}^1 = \text{R}^2 = \text{H; V X = B-H, R = R}^1 = \text{H, R}^2 = \text{Me;} \\ &\text{VI X = CH_2, R = R}^2 = \text{H, R}^1 = \text{Me; VII X = CH_2, R = Me, R}^1 = \text{R}^2 = \text{H; VIII X = CH_2, R = R}^1 = \text{H,} \\ &\text{R}^2 = \text{Me; IX X = CH_2, R = R}^1 = \text{Me, R}^2 = \text{H; X X = CH_2, R = H, R}^1 = \text{R}^2 = \text{Me} \end{split}$$

В результате для молекул эфиров I и II на поверхности потенциальной энергии обнаружен ряд минимумов, отвечающих конформерам софы (С), полукресла (ПК 1, ПК 2), а также 1,4-, 3,6- и 2,5-твист (1,4-, 3,6- и 2,5-Т) с диэкваториальной (ее, mpanc-) либо экваториально-аксиальной (еа, μuc -) ориентацией заместителей.

Все формы кроме C получены при условии фиксации торсионных углов $C_{(4)}NBO$ и $C_{(6)}OBN$, в противном случае они изомеризуются в софу. Конформер 2,5-Т в ходе минимизации в приближении AM1 даже при этих ограничениях превращается в полукресло.

Из значений внутрициклических торсионных углов наиболее стабильных конформеров *цис*- и *транс*-изомеров (на примере эфира I, табл. 1) следует, что формы ПК 1 и ПК 2 различаются степенью искажения фрагментов С(4)NBO и С(6)OBN. Необходимо также отметить большую уплощенность софы (АМ1) по сравнению с результатами ММ2. Расчетные значения длин связей и валентных углов этой формы соответствуют данным эксперимента [12, 13].

Таблица 1 Внутрициклические торсионные углы (град.) отдельных конформеров молекул эфира I

Конфи- гурация	Метод расчета	Конформер	1-2-3-4	2-3-4-5	3-4-5-6	4-5-6-1	5-6-1-2	6-1-2-3
цис-	MM2	C 4a5e	4,9	-30,2	55,8	-55,6	27,9	-3,3
		C 4e5a	5,8	-31,2	57,4	-59,1	32,8	-6,4
		IIK 1 5e	-2,1	-19,6	50,5	-60,4	37,0	-7,3
		IIK 1 5a	-1,4	-21,8	52,9	-62,7	39,0	-7,9
		ПК 2 5e	-6,3	32,7	-57,0	54,0	-25,0	1,6
		ПК 2 5а	-8,0	37,9	-61,1	54,2	-22,8	-0,6
	AM1	C 4a5e	0,7	-21,2	45,8	-53,6	33,7	-6,7
		C 4e5a	-2,9	-20,3	46,0	-53,2	32,0	-2,8
		ПК 1 5e	-2,5	-16,8	43,9	-55,5	37,1	-7,9
		ПК 1 5а	-4,2	-16,2	43,6	-55,3	36,9	-6,4
		ПК 2 5е	-5,6	28,2	-48,5	49,6	-27,1	4,1
		IIK 2 5a	-5,7	32,3	-50,3	46,1	-20,8	-1,2
транс-	MM2	C 4e5e	-2,3	27,7	-55,5	58,8	-31,9	4,3
s.		ΠK 1	-3,5	-18,9	50,7	-61,9	38,6	-7,1
		ПК 2	-7,5	37,0	-60,0	53,2	-21,6	-1,5
	AM1 ·	C 4e5e	2,6	19,4	-44,2	51,2	-30,5	2,8
		пк 1	-5,8	-12,5	40,1	-53,6	36,9	-6,8
		ПК 2	-5,7	30,9	-48,7	45,5	-21,0	-0,4

Относительные энергии конформеров эфиров I и II (табл. 2) показывают, что их стабильность убывает в ряду: $C \ge \Pi \hat{K} > 1,4-T > 3,6-T > 2,5-T$. Для *транс*-изомеров вблизи основного минимума (C4e5e либо C5e6e) существуют формы ПК 1 (почти вырождена по энергии) и ПК 2. Для цис-изомеров наиболее устойчив конформер С4а5е (либо С5еба), однако в окрестностях этих точек находится ряд локальных минимумов (С4е5а, Сбе5а, семейство полукресел) с различиями в энергии от 0,1 до 1,0 ккал/моль. Основная причина существования таких уплощенных глобальных минимумов связана с уменьшением $\Delta EC(4)$ CH3 и $\Delta EC(6)$ CH3 по сравнению с $\Delta EC_{(5)}CH_3$ (соединения I, II и модельные эфиры III—V, табл. 2), характерным для систем с плоской конфигурацией атома во втором положении кольца. В молекулах тетрагидро-1,3-оксазинов VI—X значения $\Delta EC_{(4)}$ CH3 и $\Delta EC_{(6)}$ CH3 в полтора-два раза выше, чем $\Delta EC_{(5)}$ CH3 (за исключением результатов AM 1, существенно занижающих величину $\Delta EC_{(6)}CH_3$ в соединениях VIII и X). Экспериментальные величины ΔG° метильной группы у $C_{(4)}$ и $C_{(6)}$ в тетрагидро-1,3-оксазинах неизвестны, однако они не должны заметно отличаться от $\Delta G^{\circ}C_{(4)}CH_3$ в 1,3-диоксанах (2,7...2,9 ккал/моль [14]). В то же время свободная конформационная энергия метильной группы у $C_{(5)}$ в оксазинах и 1,3,2-оксазаборинанах практически одинакова [15]. Из сказанного следует, что для молекул *цис*-изомеров оксазинов IX и X, по данным расчетов, характерно преобладание кресла К4е5а (К5абе), хотя и не исключается присутствие альтернативных форм, а для транс-изомеров доминируют формы К4е5е и К5ебе соответственно; это согласуется с данными ЯМР 16-22 1. Однако для цис- и транс-изомеров борных эфиров I и II выделить предпочтительную конформацию достаточно сложно. Необходимо также отметить, что для оксазинов VI—X более стабильны конформеры с аксиальной N—H связью (табл. 2), что подтверждено экспериментально [16—19, 23—25]. Напротив, отличительной особенностью 1,3,2-оксазаборинанов является планарная конфигурация атома азота, допускающая максимальный p— π -электронный обмен по связи B—N [1—5]. Поэтому конформеры с аксиальной N-H связью здесь отсутствуют (в ходе минимизации такие формы претерпевают быструю изомеризацию в софу со связью N—H, копланарной пяти атомам кольца). Это объективно свидетельствует о снижении по сравнению с оксазинами IX и X барьеров перехода между отдельными конформерами и повышении конформационной неоднородности как цис-, так и транс-изомеров эфиров I и II.

Ранее [3] на основании данных ЯМР ¹Н и ¹³С *транс*-изомерам 1,3,2-оксазаборинанов I и II была приписана преимущественная конформация софы, а цис- — конформация 2,5-Т. Малая вероятность реализации заметных количеств последней (наиболее неустойчивой) формы, ставшая очевидной после проведения расчетов, вызывает необходимость сравнения оптимальных геометрических параметров с реальной структурой молекул циклических эфиров I и II. С этой целью в настоящей работе на основе торсионных углов ϕ между соответствующими протонами (данные оптимальной геометрии) с помощью равенства [26] и значений электроотрицательности замещающих групп [27] определены расчетные величины КССВ $^3J_{\rm AX}$, $^3J_{\rm BX}$, $^3J_{\rm CX}$ и $^3J_{\rm DX}$ (табл. 3). Сравнение с экспериментальными КССВ [3] свидетельствует о невозможности однозначного выбора одного конформера как для цис-, так и для транс-изомеров; ни один из наборов расчетных констант, как показывают значения $\Sigma \mid \Delta J \mid$, не соответствует в полной мере данным ЯМР ¹Н. В основном это обусловлено не погрешностями в параметризации уравнения [26] и не отсутствием поправки на влияние среды (в каждом случае рассчитывалась изолированная молекула в вакууме), а невозможностью реализации торсионных углов, соответствующих экспериментальным КССВ. Действительно, для всех значений ф любого конформера существует эмпирическая зависимость (табл. 3): ϕ AX + ϕ BX (либо ϕ AX - ϕ BX) и ϕ CX + ϕ DX (либо ϕ CX - ϕ DX) =

 $= 116,0 - 121,6^{\circ}$.

Таблица 2 Относительные энергии конформеров молекул соединений I—X (ккал/моль)

Соеди-	Конформер	1	MM2	AM	AM1		
нение		E	ΔE	-E	ΔE		
1	2	3	4	5	6		
	цис-						
	C 4a5e	5,4	0,0	1892,8	0,0		
	C 4e5a	6,0	0,6	1892,6	0,2		
	ПК 1 5e	5,7	0,3	1892,7	0,1		
	ПК 1 5а	6,3	0,9	1892,4	0,4		
	ПК 2 5e	5,4	0,0	1892,5	0,3		
	TIK 2 5a	6,4	1,0	1891,8	1,0		
	1,4-T 5e	7,7	2,3	1889,9	2,9		
	1,4-T 5a	8,5	3,1	1889,9	2,9		
	3,6-T 4e	9,2	3,8	1889,3	3,5		
	3,6-T 4a	7,9	2,5	1889,0	3,8		
	2,5-Т	13,1	7,7	_			
	транс-						
	C 4e5e	4,8	0,0	1893,9	0,1		
	ПК 1	5,0	0,2	1894,0	0,0		
	ПК 2	5,2	0,4	1893,0	1,0		
	1,4-T	6,5	1,7	1892,4	1,6		
	3,6-T	7,8	3,0	1890,5	3,5		
	2,5-T	11,8	7,0	-	_		
		5)CH3*	1,2		1,3		
		4)CH3*	0,6		1,1		
ſ	цис-						
	C 5e6a	5,3	0,0	1892,8	0,0		
	C 5a6e	6,0	0,7	1892,0	0,8		
	ПК 1 5e	5,4	0,1	1892,7	0,1		
	IIK 1 5a	6,3	1,0	1892,4	0,8		
	ПК 2 5е	5,5	0,2	1892,4	0,4		
	IIK 2 5a	6,4	1,1	1891,5	1,8		
	1,4-T 5e	7,2	1,9	1890,8	2,3		
	1,4-T 5a	8,5	3,2	1889,8	3,0		
	3,6-T 5e	8,5	3,2	1888,6	4,2		
	3,6-T 5a	9,3	4,0	1887,9	4,9		
	2,5-T	13,2	7,9	-			
	транс-						
	C 5e6e	4,8	0,0	1893,4	0,0		
	ПК 1	5,1	0,3	1893,3	0,1		
	пк 2	5,1	0,3	1892,6	0,8		
	1,4-T	7,0	2,2	1891,3	2,1		
	3,6-T	7,3	2,5	1890,4	3,0		
	2,5-T	11,7	6,9	_			
		(5)CH3	1,2		1,4		
	1	(6)CH3*	0,5		0,6		
п	C 5e	3,3	0,0	1614,9	0,0		
	C 5a	4,5	1,2	1614,0	0,9		
v	C 4e	3,3	0,0	1614,5	0,0		
-	C 4a	4,0	0,7	1613,8	0,7		

1	2	3	4	5	6
v	C 6e	2.2	0.0	1610.5	
Y	C 6a	3,3	0,0	1613,7	0,0
VI	K 3e5e	4,0	0,7	1613,4	0,3
¥1	K 3a5e	6,1	0,2	1652,6	5,0
	K 3e5a	5,9	0,0	1657,6	0,0
		7,2	1,3	1651,6	6,0
	K 3a5a	7,1	1,2	1656,9	1,0
	1	(5)CH3	1,2		1,0
	i i	N—H	0,1		5,0
VII	K 3e4e	6,2	0,1	1651,4	5,4
	K 3a4e	6,1	0,0	1656,8	0,0
	K 3e4a	8,1	2,0	1652,0	4,8
	K 3a4a	8,0	1,9	1655,1	1,7
	$\Delta E C_0$		1,9		1,7
	1 :	Ň—H	0,1		3,15,4
VIII	K 3e6e	6,3	0,2	1651,1	5,0
	K 3a6e	6,1	0,0	1656,1	0,0
	K 3e6a	8,6	2,5	1651,0	5,1
	K 3a6a	8,5	2,4	1655,8	0,3
	$\Delta E C_0$		2,4		0,3
	ΔE N	VH	0,10,2		5.05,1
ΙX	транс-				
	K 3e4e5e	7,4	0,2	1930,9	5,4
	K 3a4e5e	7,2	0,0	1936,3	0,0
•	цис-				
	K 3e4e5a	8,6	0,1	1929,8	5,5
	K 3a4e5a	8,5	0,0	1935,3	0,0
	K 3e4a5e	9,3	0,8	1931,0	4,3
	$\Delta E C_0$	(4)CH3	2,0		2,0
		(5)CH3	1,3		1,0
	ΔE N	N—H	0,10,2		3,35,5
X	транс-				
	K 3e5e6e	7,4	0,1	1930,9	5,0
	К За5ебе	7,3	0,0	1935,9	0,0
	цис-				
	К Зе5абе	8,7	0,1	1929,5	5,8
	K 3a5a6e	8,6	0,0	1934,9	0,4
	K 3e5e6a	9,6	1,0	1930,4	4,9
	K 3a5e6a	9,5	0,9	1935,3	0,0
	ΔE C		1,3	* /*	0,0
	$\Delta E C$		2,2		0,6

^{*} ΔE C₍₅₎CH₃ = E C 4e5a - E C 4 e5e (либо E K 3a5a - E K 3a5e; либо E K 3a4e5a — E K 3a4e5e); приведено наименьшее из возможных значений Δ . Аналогичным образом получены значения ΔE C₍₄₎CH₃ и ΔE C₍₆₎CH₃.

Талища 3

Значения торсионных углов между протонами (град.) и КССВ (Гц) для наиболее стабильных конформеров молекул эфиров I и II

Соеди- нение	Метод расчета	Конформер	$\phi_{ m AX}$	$\phi_{ ext{BX}}$	ϕ_{CX}	$\phi_{ m DX}$	3 _{JAX}	$^{3}J_{ m BX}$	$^{3}J_{\mathrm{CX}}$	$^{3}J_{\mathrm{DX}}$	Σ Δ / •
1	2	3	4	5	6	7	8	9	10	11	12
_							0.0	2.0	2.0		5.6
цис-I	MM2	C 4e5a	57,2	64,5	57,7	•—	3,9	3,0	3,9		5,6
		C 4a5e	177,8	56, 1	54,0	•—	11,4	4,1	4,4		5,1
		ПК 1 5е	177,3	60,2	49,6	· 	11,4	3,5	5,0	·	6,3
		ПК 1 5а	60,5	61,6	53,6		3,5	3,4	4,4		6,1
	į	ПК 2 5е	176,4	54,8	55,0		11,3	4,2	4,2	٠	4,7
	4	ПК 2 5а	52,8	68,3	61,2		4,5	2,7	3,4		5,0
	AM1	C 4e5a	48,4	72,8	46,0		5,1	2,3	5,5		6,7
		C 4a5e	175,6	54,2	45,4		11,3	4,3	5,6		6,0
		ПК 1 5e	177,6	55,9	43,9	1 bisset	11,4	4,1	5,8	· -	6,5
		ПК 1 5а	50,3	71,1	43,8		4,8	2,4	5,8		7,2
		ПК 2 5е	171,6	50,6	47,6		11,2	4,8	5,3		5,7
		IIK 2 5a	41,7	78,9	49,9		6,1	1,9	4,9		5,5
		,	·	·			,				
		1	1								

1	2	3	4	5	6	7	8	9	1.0	11	12
транс-І ММ2	MM2	C 4e5e	179,7	58,1	179,8	٠	11,4	3,8	11,4		3,6
	j	ПК 1	176,6	60,6	175,3	•	11,4	3,5	11,4	٠	3,9
		ПК 2	175,3	53,7	175,9		11,3	4,4	11,4		2,9
	AM1	C 4e5e	171,4	50,5	167,7	·	11,2	4,8	11,0		2,4
		ПК 1	173,7	52,4	163,8		11,3	4,6	10,7	٠	2,0
	.	ПК 2	166,0	45,6	172,0	•	10,8	5,5	11,3		3,8
цис-II	MM2	C 5e6a	59,9		54,4	65,3	3,4		4,5	3,1	6,0
,		C 5a6e	54,8		175,1	55,2	4,0		12,0	4,4	3,8
		ПК 1 <i>5</i> е	57,0	•	172,1	52,4	3,7	•	11,8	4,8	3,3
		IIK 1 5a	63,0		50,7	68,7	3,0		5,1	2,8	6,1
	,	ПК 2 5e	52,0		178,1	57,8	4,4	· —	12,0	4,0	4,6
		ПК 2 5а	55,2	.)	58,1	62,2	4,0	· -	4,0	3,5	6,3
	AM1	C 5e6a	52,4		39,9	76,8	4,3		6,7	2,1	5,3
		C 5a6e	48,5	•	165,1	48,4	4,8		11,4	5,4	4,6
		ПК 1 5e	49,4	• • • • • • • • • • • • • • • • • • • •	163,5	46,8	4,7		11,2	5,6	4,5
	ŀ	ПК 1 5а	53,3		38,4	78,2	4,2		6,9	2,1	4,6
		ПК 2 5е	45,3		169,0	52,1	5,3	•	11,7	4,9	4,9
		ПК 2 5а	45,8		45,1	71,9	5,2		5,9	2,5	6,6
транс-II	MM2	C 5e6e	178,0	*	177,3	57,0	10,8		12,0	4,2	3,7
		ПК 1	174,1	-	173,6	53,6	10,7		11,9	4,6	3,9
		ПК 2	176,5		179,3	59,8	10,8	•	12,0	3,8	3,3
	AM1	C 5e6e	174,9		164,2	47,6	10,7		11,3	5,5	4,2
		ПК 1	176,5	•	162,4	45,9	10,8		11,1	5,8	4,2
		ПК 2	166,0		167,8	50,9	10,3		11,6	5,0	3,6

^{*} $\sum \Delta I$ = $\sum J_{3KCH} - J_{DACH}$ | Экспериментальные КССВ [3]: μuc -1 $^3J_{AX} = 7.6$ Гц, $^3J_{BX} = 4.5$ Гц, $^3J_{CX} = 3.5$ Гц; mpanc-4 $^3J_{AX} = 11.2$ Гц, $^3J_{BX} = 4.6$ Гц, $^3J_{CX} = 8.8$ Гц, $^3J_{CX} = 8.8$

Нетрудно видеть (табл. 4), что удовлетворяющие экспериментальным КССВ углы, установленные по уравнению [26], отклоняются от выявленной эмпирической зависимости на 20...30° (за исключением *mpaнс-I*). Отсюда следует, что реальному состоянию молекул эфиров I и II в полном соответствии с расчетными данными отвечает не один, а несколько конформеров. Для *транс-изомеров* преобладает софа С4е5е (С5ебе) с возможным вкладом ПК 1 и ПК 2, а для *цис-*изомеров, в противоположность результатам [3], характерно многокомпонентное равновесие с участием форм С4а5е (С5еба), С4е5а (С5абе) и семейства полукресел.

Таблица 4 Значения торсионных углов (град.), соответствующие экспериментальным КССВ эфиров I и II

Конфи-		I		п				
гурация	φ _{AX}	φ _{BX}	$\phi_{AX^{\pm}}\phi_{BX}$	ф сх	φ _{DX}	$\phi_{\text{CX}^{\pm}}\phi_{\text{DX}}$		
<i>цис</i> *-	140,5 (31)	53 (122)	87,5 (91)	145 (25)	54 (95)	91 (95)		
транс-	172,0	52,0	120	157,5	61,0	96,5		

^{*} Для цис-изомеров определено два альтернативных набора углов.

Таким образом, исследованные соединения относятся к конформационно гибким системам, предполагающим существование вблизи точки минимума заметных количеств геометрически неэквивалентных форм [28, 29]. Полученные результаты дополняют базу данных по стереохимии 1,3,2-оксазаборинанов и открывают возможность прогнозирования конформационного состава молекул этих соединений с несколькими хиральными центрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Калюский А. Р., Кузнецов В. В., Шапиро Ю. Е., Бочкор С. А., Грень А. И. // ХГС. 1990. № 10. С. 1424.
- 2. *Калюский А. Р.* Автореф. дис. ...канд. хим. наук. Одесса, 1990. 21 с.
- 3. Калюский А. Р., Кузнецов В. В., Тимофеев О. С., Грень А. И. // ЖОХ. 1990. Т. 60. С. 2093.
- 4. *Калюский А. Р.*, *Кузнецов В. В.*, Грень А. И. // // ЖОХ. 1991. Т. 61. С. 1351.
- 5. Калюский А. Р., Кузнецов В. В., Брусиловский Ю. Э., Горбатюк В. Я., Глухова М. Г., Грень А. И. // ЖОрХ. 1990. Т. 26. С. 2498.
- 6. Калюский А. Р., Кузнецов В. В., Кругляк Н. Е., Юданова И. В., Тригуб Л. П., Грень А. И. // Деп. в ВИНИТИ, № 1113-В 90; РЖХ. — 1990. — № 11. — Б1095.
- Bingham R. C., Dewar M. J. S., Lo D. H. // J. Amer. Chem. Soc. 1975. Vol. 97. P. 1294.
- 8. Birner P., Hofmann H. // Int. J. Quant. Chem. 1982. Vol. 21. P. 833.
- 9. Allinger N. L. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 8127.
- Dewar M. J. S., Zoebisch E. G., Healy E. P., Stewart J. J. P. // J. Amer. Chem. Soc. 1985. Vol. 107. — P. 3902.
- 11. Dewar M. J. S., Jie C., Zoebisch E. G. // Organometallics. 1988. Vol. 7. P. 513.
- 12. $\mathit{Грень}$ А. И., $\mathit{Кузнецов}$ В. В. Химия циклических эфиров борных кислот. Киев: Наукова думка, 1988. 160 с.
- 13. Seip R., Seip H. // J. Mol. Struct. 1975. Vol. 28. P. 441.
- 14. Внутреннее вращение молекул / Под ред. В. Орвилл-Томаса. М.: Мир, 1977. С. 373.
- 15. Кузнецов В. В., Калюский А. Р., Грень А. И. // ХГС. 1996. № 1. С. 106.
- 16. Самитов Ю. Ю., Унковский Б. В., Бойко И. П., Жук О. И., Малина Ю. Ф. // ЖОрХ. 1973. Т. 9. С. 193.
- 17. Самитов Ю. Ю., Жук О. И., Унковский Б. В., Бойко И. П., Малина Ю. Ф. // ЖОрХ. 1973. Т. 9. С. 201.

- 18. Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1056 хп-Д80; РЖХ. 1981. № 9. Б329.
- 19. Latypova F. N., Zorin V. V., Zlotskii S. S., Rakhmankulov D. L., Karakhanov R. A., Bartok M., Molnar A. // Acta phys. chem. 1981. Vol. 27. P. 87.
- 20. Алимирзоев Ф. А., Степанянц А. У., Латыпова Ф. Н., Унковский Б. В. // Деп. в ОНИИ-ТЭХИМ, № 3093/79 деп; РЖХ. 1980. № 3. Б325.
- 21. Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1055 хп-Д80; РЖХ. 1981. № 9. Б330.
- 22. Данилова О. И., Самитов Ю. Ю., Бойко И. П., Бордюкова Т. О., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 539 хп-Д81; РЖХ. 1981. № 24. Б392.
- Данилова О. И., Самитов Ю. Ю., Бойко И. П., Унковский Б. В. // Деп. в ОНИИТЭХИМ, № 1058 хп-Д80; РЖХ. — 1981. — № 9. — Б328.
- 24. Booth H., Lemieux R. U. // Can. J. Che. 1971. Vol. 49. P. 777.
- Cook M. J., Jones R. A. Y., Katritzky A. R., Manas M. M., Richards A. C., Sparrow A. J., Trepanier D. L. // J. Chem. Soc. Perkin Trans. II. — 1973. — N 4. — P. 325.
- 26. Durette P. L., Horton D. // Org. Mag. Res. 1971. Vol. 3. P. 417.
- 27. Huggins M. L. // J. Amer. Chem. Soc. 1953. Vol. 75. P. 4123.
- 28. Shishkin O. V., Polyakova A. S., Struchkov Yu. T., Desenko S. M. // Mendeleev Commun. 1994. N 5. P. 182.
- 29. Шишкин О. В. // Изв. РАН. Сер. хим. 1997. № 12. С. 2095.

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 270080 e-mail: physchem@paco.net Поступило в редакцию 10.09.98