И. В. Украинец, Н. Л. Березнякова, Г. П. Петюнин, И. А. Тугайбей, В. Б. Рыбаков^а, В. В. Чернышев^а, А. В. Туров^б

4-ГИДРОКСИХИНОЛОНЫ-2

120*. СИНТЕЗ И СТРОЕНИЕ ЭТИЛОВЫХ ЭФИРОВ 2-ГИДРОКСИ-4-ОКСО-4H-ПИРИДО[1,2-a]ПИРИМИДИН-3-КАРБОНОВЫХ КИСЛОТ

Предложен улучшенный метод получения и очистки этиловых эфиров 2-гидрокси-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновых кислот. По данным спектроскопии ЯМР 1 H и 13 C, в растворе ДМСО синтезированные соединения существуют в 2-гидрокси-4-оксоформе, тогда как в кристалле, по крайней мере в случае незамещенного производного, РСА зафиксирована биполярная 2,4-диоксоформа.

Ключевые слова: 2-аминопиридины, гетероциклические производные трикарбонилметана, 2-гидрокси-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновые кислоты, сложные эфиры, PCA

Интерес к производным 4-оксо-4Н-пиридо[1,2-а]пиримидинов обусловлен прежде всего широким спектром их биологической активности. Так, на основе этой молекулярной системы синтезированы бициклические диазасахара, способные высокоспецифично ингибировать β-глюкозидазу [2]. 2-(Бензизотиазол-2)ильное производное представлено в качестве нового орального ингибитора эластазы лейкоцитов человека, пригодного для лечения хронических обструктивных заболеваний легких, астмы, эмфиземы, цистических фиброзов и различных воспалительных реакций [3]. Замещенные этилендиамины, содержащие фрагмент пиридо[1,2-а]пиримидина, эффективны в борьбе с микобактериальными инфекциями, причем не только туберкулезными [4]. 4-Оксо-4Н-пиридо[1,2-а]пиримидин-3-карбоксамиды применяются как средства для профилактики желудочных повреждений, вызванных применением нестероидных противовоспалительных средств [5]. 2-Амино-4Н-пиридо[1,2-а]пиримидин-4-оны активно ингибируют агрегацию тромбоцитов человека [6], а их аналоги с фрагментом тетразола в положении 3 – синтез лейкотриенов [7].

В продолжение проводимых нами исследований по разработке препаративных методов синтеза, изучению строения, реакционной способности, химических превращений и биологических свойств 4-гидроксихинолин-2-онов и родственных им гетероциклов, данное сообщение посвящено этиловым эфирам 2-гидрокси-4-оксо-4H-пиридо[1,2-а]пиримидин-3-карбоновых кислот.

^{*} Сообщение 119 см. [1].

Известен способ получения этилового эфира 2-гидрокси-4-оксо-4Нпиридо[1,2-a]пиримидин-3-карбоновой кислоты (1a), заключающийся в конденсации 2-аминопиридина 2а с триэтилметантрикарбоксилатом в кипящем бромбензоле [8]. Во избежание образования побочных продуктов предложено использовать двукратный избыток триэтилметантрикарбоксилата и относительно большой объем растворителя. Хроматографический мониторинг (хотя и не совсем понятно, содержание какого именно продукта контролировалось) позволил определить, что реакция заканчивается через 6 ч. После удаления бромбензола и кристаллизации эфир 1а получен с выходом 68%. Неоднократное воспроизведение описанной методики и более тщательный анализ состава образующейся при этом реакционной смеси показали, что подавить нежелательные химические превращения все же не удается, поскольку в среднем около 20% 2-аминопиридина расходуется на образование побочного пиридил-2-амида 2-гидрокси-4-оксо-4Н-пиридо[1,2-а]пиримидин-3-карбоновой кислоты (3а).

$$R \xrightarrow{N} NH_{2}$$

$$2a-f$$

$$HC(COOEt)_{3}$$

$$HC(COOEt)_{3}$$

$$HC(COOEt)_{3}$$

$$HC(COOEt)_{3}$$

$$Me$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{2}$$

$$NH_{3}$$

$$NH_{4}$$

$$NH_{4}$$

$$NH_{5}$$

$$NH_{5}$$

$$NH_{7}$$

$$NH_{1}$$

$$NH_{1}$$

$$NH_{1}$$

$$NH_{2}$$

$$NH_{3}$$

$$NH_{4}$$

$$NH_{5}$$

$$NH_{5}$$

$$NH_{7}$$

$$NH_{1}$$

$$NH_{1}$$

$$NH_{1}$$

$$NH_{2}$$

$$NH_{3}$$

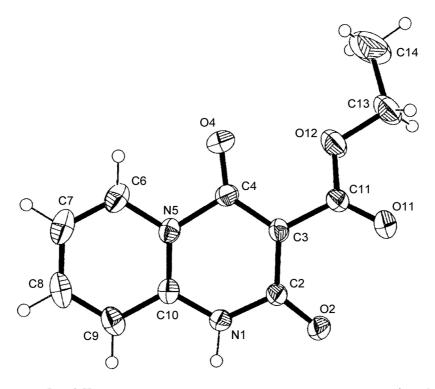
$$NH_{4}$$

$$NH_{5}$$

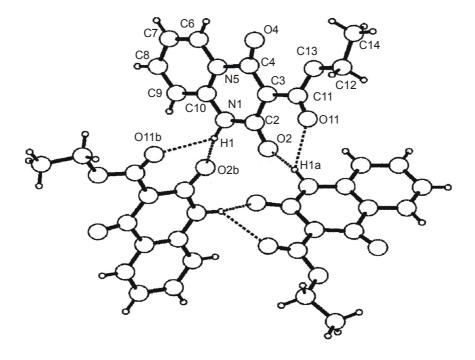
1 a R = H, b R = 7-Cl, c R = 7-Me, d R = 8-Me, e R = 9-Me; 2 a R = H, b R = 5-Cl, c R = 5-Me, d R = 4-Me, e R = 3-Me, f R = 6-Me; 3 a R =
$$R^1$$
 = H, b R = 7-Cl, R^1 = 5-Cl, c R = 7-Me, R^1 = 5-Me, d R = 8-Me, R^1 = 4-Me, e R = R^1 = 6-Me

С целью подбора более рациональных условий синтеза эфира **1a** нами изучено несколько модифицированных методик его получения. При этом варьировались как молярное соотношение между вступающими в реакцию реагентами (с 10, 20, 50 и 100% избытком триэтилметантрикарбоксилата), так и применяющиеся вспомогательные растворители с широким диапазоном температур кипения (толуол, ксилол, нитробензол). Были также поставлены опыты и в тройном избытке чистого триэтилметантрикарбоксилата.

По итогам проведенной серии экспериментов установлено, что наилучшие результаты могут быть достигнуты при проведении синтеза в кипящем ксилоле при двукратном избытке триэтилметантрикарбоксилата. Избежать образования пиридил-2-амида **3a** не удалось ни в одном из примеров. Очевидно, это является следствием прямого амидирования предварительно сформировавшегося гетероциклического эфира **1a** 2-аминопиридином, так как, во-первых, амид **3a** выделен и после проведения реакции в сравнительно низкокипящем толуоле, а, во-вторых, для


превращений типа термической внутримолекулярной циклизации промежуточного этилового эфира бис(пиридин-2-илкарбамоил)уксусной кислоты необходимы гораздо более жесткие условия [9]. Тем не менее, замена бромбензола на ксилол позволяет несколько повысить выход целевого эфира 1а при одновременном снижении количества нежелательного пиридил-2-амида 3а.

Подобно 2-аминопиридину в условиях изучаемой реакции ведут себя и его многие замещенные аналоги 2b-е. Соответствующие этиловые эфиры 2-гидрокси-4-оксо-4Н-пиридо[1,2-а]пиримидин-3-карбоновых кислот 1b-е выделены с хорошими выходами, хотя в некоторых случаях и наблюдаются специфические особенности. Так, например, реакция триэтилметантрикарбоксилата с 2-амино-3-метилпиридином (2e) приводит к образованию исключительно эфира 1е. Вероятно, его амидирование предотвращает соседство метильной и аминогрупп в аминопиридине 2е. В случае 2-амино-6-метилпиридина (2f) "нормальному" протеканию реакции препятствует также метильная группа, но блокирующая доступ уже к другому реакционному центру – пиридиновому атому азота (точнее к циклической группе NH иминоформы промежуточного пиридил-2-амида диэтоксикарбонилуксусной кислоты). В результате проведение синтеза в бромбензоле дает смесь метантри-N-(6-метилпиридин-2-ил)карбоксамида (4) и 6-метилпиридил-2-амида Зе в соотношении примерно 1:1 (по данным спектра ЯМР ¹Н), тогда как в кипящем ксилоле амид **3e** оказывается единственным продуктом конденсации триэтилметантрикарбоксилата с соединением 2f. Интересно, что ни в одном из опытов не удалось обнаружить даже следов этилового эфира 2-гидрокси-6-метил-4-оксо-4Нпиридо[1,2-а]пиримидин-3-карбоновой кислоты. Данное обстоятельство позволяет предположить, что пути формирования амидов 3 не ограничиваются только рассмотренными выше вариантами.


Следует отметить, что необходимость разделения продуктов реакции возникает в большинстве случаев независимо от условий проведения синтеза. Нами показано, что весьма эффективно эту задачу удается решить простой обработкой реакционной смеси горячей водой или другим, указанным в экспериментальной части растворителем, в которых амиды 3 практически нерастворимы, тогда как эфиры 1 кристаллизуются с очень высокой степенью чистоты.

Все полученные эфиры **1**а-е представляют собой бесцветные кристаллические вещества, растворимые в ДМФА и ДМСО, мало растворимые в холодной воде и, как правило, хорошо в горячей.

По данным РСА (рис. 1 и 2, табл. 1 и 2), проведенного на примере эфира ${\bf 1a}$, выявлено, что его бициклический фрагмент и атомы $O_{(2)}$, $O_{(4)}$ и $C_{(11)}$ лежат в одной плоскости с точностью 0.02 Å. Альтернирование связей во фрагменте $N_{(5)}$ – $C_{(6)}$ – $C_{(7)}$ – $C_{(8)}$ – $C_{(9)}$ – $C_{(10)}$ – $N_{(1)}$ (значения длин связей $N_{(5)}$ – $C_{(6)}$ 1.381(5), $C_{(7)}$ – $C_{(8)}$ 1.402(7), $C_{(9)}$ – $C_{(10)}$ 1.404(5) Å более близки к одинарным связям, а связи $C_{(6)}$ – $C_{(7)}$ 1.353(7), $C_{(8)}$ – $C_{(9)}$ 1.355(6), $C_{(10)}$ – $N_{(1)}$ 1.339(4) Å – ближе к двойным), отсутствие атома водорода при $C_{(3)}$ – объективно он находится у атома $N_{(1)}$, а также длины связей $C_{(2)}$ – $C_{(3)}$ 1.441(4), $C_{(3)}$ – $C_{(4)}$ 1.414(5), $C_{(3)}$ – $C_{(11)}$ 1.472(5) Å позволяют сделать вывод, что в крис-

Puc. 1. Нумерация атомов и пространственное строение молекулы эфира 1a

Puc. 2. Система межмолекулярных водородных связей в кристалле эфира 1a

Таблица 1 Межатомные расстояния (*I*) в структуре эфира 1а

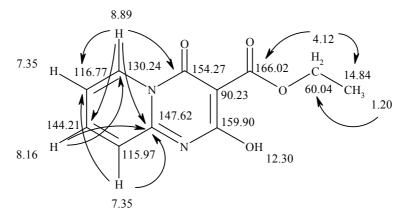
Связь	l, Å	Связь	l, Å
N ₍₁₎ -C ₍₁₀₎	1.339(4)	C ₍₇₎ –H ₍₇₎	0.9300
$N_{(1)}-C_{(2)}$	1.386(4)	$C_{(8)}-C_{(9)}$	1.355(6)
$N_{(1)}-H_{(1)}$	0.91(5)	$C_{(8)}-H_{(8)}$	0.9300
$C_{(2)} - O_{(2)}$	1.232(4)	$C_{(9)}-C_{(10)}$	1.404(5)
$C_{(2)} - C_{(3)}$	1.441(4)	$C_{(9)}-H_{(9)}$	0.9300
$C_{(3)} - C_{(4)}$	1.414(5)	$C_{(11)} - O_{(11)}$	1.199(5)
$C_{(3)} - C_{(11)}$	1.472(5)	$C_{(11)} - O_{(12)}$	1.321(5)
$C_{(4)} - O_{(4)}$	1.197(4)	$O_{(12)}-C_{(13)}$	1.431(5)
$C_{(4)}-N_{(5)}$	1.500(5)	$C_{(13)}-C_{(14)}$	1.507(7)
$N_{(5)}-C_{(10)}$	1.352(4)	$C_{(13)}-H_{(13A)}$	0.9700
$N_{(5)}-C_{(6)}$	1.381(5)	$C_{(13)}-H_{(13B)}$	0.9700
$C_{(6)} - C_{(7)}$	1.353(7)	$C_{(14)}-H_{(14A)}$	0.9600
$C_{(6)}-H_{(6)}$	0.9300	$C_{(14)}-H_{(14B)}$	0.9600
$C_{(7)} - C_{(8)}$	1.402(7)	C ₍₁₄₎ –H _(14C)	0.9600

Таблица 2 Валентные углы (ω) в структуре эфира 1a

Угол	ω, град.	Угол	ω, град.
$C_{(10)}-N_{(1)}-C_{(2)}$	125.9(3)	C ₍₇₎ -C ₍₈₎ -H ₍₈₎	119.9
$C_{(10)} - N_{(1)} - H_{(1)}$	112(3)	$C_{(8)}-C_{(9)}-C_{(10)}$	120.1(4)
$C_{(2)}-N_{(1)}-H_{(1)}$	121(3)	$C_{(8)}-C_{(9)}-H_{(9)}$	120.0
$O_{(2)}-C_{(2)}-N_{(1)}$	117.1(3)	$C_{(10)}-C_{(9)}-H_{(9)}$	120.0
$O_{(2)}-C_{(2)}-C_{(3)}$	126.6(3)	$N_{(1)}-C_{(10)}-N_{(5)}$	118.9(3)
$N_{(1)}-C_{(2)}-C_{(3)}$	116.2(3)	$N_{(1)}-C_{(10)}-C_{(9)}$	122.2(3)
$C_{(4)}$ – $C_{(3)}$ – $C_{(2)}$	122.0(3)	$N_{(5)}-C_{(10)}-C_{(9)}$	118.9(3)
$C_{(4)}$ – $C_{(3)}$ – $C_{(11)}$	119.0(3)	$O_{(11)}-C_{(11)}-O_{(12)}$	121.5(4)
$C_{(2)}-C_{(3)}-C_{(11)}$	118.8(3)	$O_{(11)}-C_{(11)}-C_{(3)}$	125.2(4)
$O_{(4)}-C_{(4)}-C_{(3)}$	130.9(4)	$O_{(12)}-C_{(11)}-C_{(3)}$	113.2(3)
$O_{(4)}-C_{(4)}-N_{(5)}$	114.5(3)	$C_{(11)}$ – $O_{(12)}$ – $C_{(13)}$	117.7(4)
$C_{(3)}-C_{(4)}-N_{(5)}$	114.6(3)	$O_{(12)}-C_{(13)}-C_{(14)}$	106.9(4)
$C_{(10)}-N_{(5)}-C_{(6)}$	121.1(3)	$O_{(12)}-C_{(13)}-H_{(13A)}$	110.3
$C_{(10)}-N_{(5)}-C_{(4)}$	122.3(3)	$C_{(14)}-C_{(13)}-H_{(13A)}$	110.3
$C_{(6)}-N_{(5)}-C_{(4)}$	116.5(3)	$O_{(12)}-C_{(13)}-H_{(13B)}$	110.3
$C_{(7)}-C_{(6)}-N_{(5)}$	120.4(4)	$C_{(14)}-C_{(13)}-H_{(13B)}$	110.3
$C_{(7)}-C_{(6)}-H_{(6)}$	119.8	$H_{(13A)}-C_{(13)}-H_{(13B)}$	108.6
$N_{(5)}-C_{(6)}-H_{(6)}$	119.8	$C_{(13)}-C_{(14)}-H_{(14A)}$	109.5
$C_{(6)}$ – $C_{(7)}$ – $C_{(8)}$	119.3(4)	$C_{(13)}$ – $C_{(14)}$ – $H_{(14B)}$	109.5
$C_{(6)}-C_{(7)}-H_{(7)}$	120.3	$H_{(14A)}-C_{(14)}-H_{(14B)}$	109.5
$C_{(8)}-C_{(7)}-H_{(7)}$	120.3	$C_{(13)}-C_{(14)}-H_{(14C)}$	109.5
$C_{(9)}$ – $C_{(8)}$ – $C_{(7)}$	120.2(4)	$H_{(14A)}-C_{(14)}-H_{(14C)}$	109.5
$C_{(9)}-C_{(8)}-H_{(8)}$	119.9	$H_{(14B)}-C_{(14)}-H_{(14C)}$	109.5

талле эфир **1а** представляет собой внутреннюю соль, в которой положительный заряд сосредоточен на атоме $N_{(1)}$, а отрицательный – на атоме $C_{(3)}$. Удлинение связи $C_{(2)}$ – $O_{(2)}$ 1.232(4) Å по сравнению с ее средним значением 1.210 Å [10], которому способствует также межмолекулярная водородная связь $N_{(1)}$ – $H_{(1)}$... $O_{(2b)}$ (0.33–y, 0.66+x–y, z–0.3) H...O 2.01 Å, N–H...O 149°, и укорочение связи $C_{(2)}$ – $C_{(3)}$ 1.441(4) Å по сравнению со средним значением 1.455 Å позволяют представить строение молекулы этилового эфира 2-гидрокси-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (1a) в кристалле как резонансный гибрид двух биполярных структур **5** и **6** с преимущественным вкладом 2,4-диоксо-формы **5**.

Карбонильная группа сложноэфирного заместителя при атоме $C_{(3)}$ несколько некопланарна плоскости бицикла (торсионный угол $O_{(11)}$ — $C_{(11)}$ — $C_{(3)}$ — $C_{(2)}$ — $16.39°). Такое положение сложноэфирного заместителя приводит к существенному отталкиванию между отрицательно заряженными атомами кислорода, что обусловливает заметное увеличение валентных углов <math>O_{(4)}$ — $C_{(4)}$ — $C_{(3)}$ до 130.9(4) и $O_{(2)}$ — $C_{(2)}$ — $C_{(3)}$ до 126.6(3)°. При этом возникает укороченный внутримолекулярный контакт $H_{(6)}$... $O_{(4)}$ 2.29 Å (сумма ван-дер-ваальсовых радиусов 2.46 Å [11]). Этильный заместитель в сложноэфирной группе находится в *ар*-положении относительно связи $C_{(3)}$ — $C_{(11)}$, а атом $C_{(14)}$ — в *ар*-конформации относительно связи $C_{(11)}$ — $O_{(12)}$ (торсионные углы $C_{(13)}$ — $O_{(12)}$ — $C_{(11)}$ — $C_{(3)}$ 176.1; $C_{(14)}$ — $C_{(13)}$ — $O_{(12)}$ — $C_{(11)}$ —176.1°). В кристалле эфира **1а** образуется интересная система межмолекулярных водородных связей $N_{(1)}$ — $H_{(1)}$... $O_{(2b)}$ и $N_{(1)}$ — $H_{(1)}$... $O_{(11b)}$, благодаря которой три молекулы располагаются и удерживаются вокруг оси третьего порядка (рис. 2).


Таким образом, из результатов PCA следует, что по крайней мере один из синтезированных 2-гидрокси-4-оксо-3-этоксикарбонил-4H-пиридо-[1,2-a]пиримидинов **1**, а именно незамещенный эфир **1a**, в кристалле существует в биполярной 2,4-диоксоформе.

К аналогичному выводу приводит изучение строения эфиров **1а**—е и методом масс-спектрометрии. Установлено, что при ионизации электронным ударом эти соединения образуют молекулярные ионы, распадающиеся по одинаковой схеме, рассмотренной на примере эфира **1a**. Низкая интенсивность пиков как молекулярного, так и последующих осколочных ионов вплоть до пика фрагмента с m/z 121 свидетельствует о том, что в 2,4-диоксоформе вероятность первоначального разрушения сложноэфирной группировки гораздо ниже, чем разрыв связей $C_{(4)}$ —N и $C_{(2)}$ — $C_{(3)}$, приводящий к образованию протонированного изоцианата с m/z 121, который, очевидно, далее изомеризуется в более устойчивый ароматический ион оксадиазолопиридина.

Попытки проверить чистоту эфиров **1а**—е на комплексном приборе, состоящем из газового хроматографа и масс-спектрометра в качестве детектора, оказались безуспешными из-за легкого разложения исследуемых веществ при их переводе в газовую фазу. Для увеличения летучести их превращали в 2-триметилсилоксипроизводные, что позволило подтвердить хроматографическую индивидуальность синтезированных соединений и, кроме того, отметить совершенно иное масс-спектрометрическое поведение модифицированных образцов по сравнению с исходными эфирами **1а**—е. Блокирование 2-гидроксигруппы (т. е. фактическое устранение способности эфиров **1а**—е к таутомерным переходам) приводит к тому, что первичная фрагментация пиридо[1,2-а]пиримидинового цикла оказывается полностью подавленной.

Вместе с тем, в литературе эфир 1а описан как производное 2-гидрокси-4-оксопиридо[1,2-a]пиримидина [8]. Анализ спектров ЯМР 1 Н эфиров 1а-е показывает, что все они однотипны и в принципе не противоречат ни одной из возможных таутомерных форм. Говоря иначе, однозначно трактовать строение полученных соединений в растворе на основании только лишь этих данных не представляется возможным. Например, предположим, что в спектре ЯМР ¹Н эфира **1а** в наиболее слабом поле, при 12.30 м. д., расположен сигнал гидроксильного протона. Сигнал этот сильно уширен. Одновременно уширен и сигнал остаточной воды при 3.3 м. д. Это свидетельствует о достаточно быстром протонном обмене между гидроксильным протоном и водой. Наличие такого обмена является большим препятствием для корреляционных экспериментов, поскольку за время периода смешивания в импульсной последовательности гидроксильный протон успевает полностью отрелаксировать. Соответственно, в спектре НМВС для гидроксильного протона корреляций не найдено. Поэтому прямо установить его локализацию из спектра не удается. Сигналы ароматических протонов дают в протонном спектре характерную для пиридина картину. В наиболее слабом поле, при 8.89 м. д., расположен сигнал протона Н-6. На его химический сдвиг

влияют, с одной стороны, наличие соседнего гетероциклического атома азота, а с другой стороны, неподеленная электронная пара кислорода при $C_{(4)}$. В достаточно слабом поле, при $8.16\,$ м. д., расположен и сигнал протона H-8, который формально является γ -пиридиновым. Остальные два ароматических протона дают совпадающие сигналы при $7.35\,$ м. д. Отнесение сигналов в спектре ЯМР 13 С сделано на основании корреляционного спектра HMBC. В данном случае, вследствие малого количества сигналов, протонированные атомы углерода можно отнести на основании наличия остаточных корреляций через одну связь, а четвертичные атомы углерода отнесены на основании корреляций через $2-3\,$ химических связи (табл. 3).

Отнесение сигнала атома $C_{(4)}$ следует из наличия корреляции с протоном H-6. Узловой атом углерода между двумя гетероциклическими атомами азота можно отнести по наличию корреляций с атомами H-6,8 и H-9. Карбонильный атом углерода сложноэфирного заместителя можно отнести на основании его корреляции с сигналом протонов метиленовой группы. Для двух атомов углерода корреляции не обнаружены. Поскольку в спектре неотнесенными оказались сигналы при 90.23 и 159.90 м. д., то первый из них следует отнести к атому $C_{(3)}$, а второй – к $C_{(2)}$.

Спектры ЯМР 13 С эфиров **1а**—е также оказались схожими, причем их детальное рассмотрение показывает, что сигналы атомов $C_{(2)}$ и $C_{(9)}$ имеют ширину в 3—4 раза большую, чем ширина остальных сигналов. Эти сигналы соответствуют атомам углерода, расположенным вблизи атома $N_{(1)}$.

Таблица 3 Корреляции, найденные для эфира 1a

δ, м. д.	НМВС, одна связь	НМВС, 2-3 химических связи
12.30	_	_
8.89	130.24	154.27, 147.62, 144.21, 116.77
8.16	144.21	147.62, 130.24
7.35	116.77, 115.97	147.62, 130.24, 116.77, 115.97
4.12	60.04	166.02, 14.84
1.20	14.84	60.04

Уширение сигналов чаще всего связано с наличием обменных 872 процессов, из чего следует, что в эфирах **1а-е** атом водорода, скорее всего, не фиксирован при гидроксильной группе 2-ОН, а имеет место равновесие представленных на схеме двух таутомерных форм, хотя данный факт и не является однозначным подтверждением наличия такой таутомерии.

Полезную дополнительную информацию дает также сравнение экспериментальных спектров ЯМР ¹³С с расчетными. Вычисления, проведенные для всех таутомеров по нескольким программам, показывают, что наиболее близкими к реальным являются расчетные спектры 2-гидроксиформ. Особенно показательны в этом плане сигналы атомов углерода в положениях 3 пиридо[1,2-а]пиримидиновых ядер: их среднее значение для 2-гидроксиформы составляет 89.4, тогда как для всех остальных таутомеров ~65 м. д. В экспериментальных же спектрах указанные сигналы находятся в области 90 м. д., на основании чего логично предположить, что в растворе ДМСО синтезированные соединения представлены преимущественно 2-гидроксиформами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹³С эфиров **1а-е**, ЯМР ¹Н, а также гетероядерный корреляционный спектр НМВС эфира **1а** получены на спектрометре Varian Mercury-400 (100 и 400 МГц соответственно) в ДМСО-d₆. Спектры ЯМР ¹Н остальных соединений записаны на приборе Varian Mercury-VX-200 (200 МГц) в ДМСО-d₆. Во всех случаях внутренний стандарт ТМС. Масс-спектры эфиров **1а-е** получены на спектрометре Varian 1200L в режиме полного сканирования в диапазоне 45–550 *m/z*, ионизация ЭУ 70 эВ при прямом вводе образца. Хромато-масс-спектры зарегистрированы на приборе Hewlett Packard 5890/5972 в режиме полного сканирования в диапазоне 35–700 *m/z*, ионизация ЭУ 70 эВ; для увеличения летучести эфиры **1а-е** переводили в 2-триметилсилоксипроизводные с помощью N,О-бис-(триметилсилил)трифторацетамида; хроматографическая колонка Hewlett Packard-5MS: длина 25 м, внутренний диаметр 0.2 мм, неподвижная фаза — пленка полисилоксана (5% дифенилполисилоксан, 95% диметилполисилоксан) толщиной 0.33 мкм, газ-носитель — гелий. В работе использованы коммерческие 2-аминопиридины и триэтилметантрикар-боксилат фирмы Fluka.

Этиловый эфир 2-гидрокси-4-оксо-4Н-пиридо[1,2-а]пиримидин-3-карбоновой кислоты (1a). Раствор 0.94 г (0.01 моль) 2-аминопиридина 2a и 4.21 мл (0.02 моль) триэтилметантрикарбоксилата в 10 мл ксилола (использовалась коммерческая смесь изомеров) кипятят 1-1.5 ч, предоставляя возможность выделяющемуся этанолу отгоняться через дефлегматор. Охлаждают, прибавляют 50 мл гексана. Через 2-3 ч выделившийся кристаллический осадок отфильтровывают, промывают гексаном, сушат (при больших загрузках непрореагировавший триэтилметантрикарбоксилат легко регенерируется из фильтрата). Полученное соединение обрабатывают 20 мл кипящей воды и фильтруют. Из фильтрата выкристаллизовывается эфир 1a. Выход 1.78 г (76%). Т. пл. 220-222 °C (вода). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 12.30 (1H, уш. с, OH); 8.89 (1H, д. д, J = 7.4 и J = 1.0, H-6); 8.16 (1H, T. π , J = 7.8 μ J = 1.4, H-8); 7.41–7.32 (2H, μ , H-7,9); 4.12 (2H, μ , μ = 7.0, OCH₂); 1.20 (3H, μ , J = 7.0, CH₃). Chektp SMP ¹³C, δ , μ , μ : 166.02 (CO₂), 159.90 (C₂), 154.27 (C₄), 147.62 (C_(9a)), 144.21 (C₍₈₎), 130.24 (C₍₆₎), 116.77 (C₍₇₎), 115.97 (C₍₉₎), 90.23 (C₍₃₎), 60.04 (OCH₂), 14.84 (CH₃). Macc-спектр, *m/z* (*I*_{отн}, %): 234 [M]⁺ (6.2), 189 [M-OEt]⁺ (3.6), 162 $[M-COOC_2H_4]^+$ (15.8), 134 $[M-CO_2C_2H_4-CO]^+$ (4.1), 121 (100). Масс-спектр 2-триметилсилоксипроизводного, m/z ($I_{\text{отн}}$, %): 306 [M]⁺ (31), 291 [M–Me]⁺ (25), 263 [M–Me–C₂H₄]⁺ (100), 261 [M-OEt]⁺ (69), 234 [M-OEt-CO]⁺ (30), 233 [M-OEt-CO]⁺ (58), 219 $[M-Me-C_2H_4-CO_2]^+$ (20), 206 (38).

Соединения 1b-е получают по методике предыдущего опыта.

Этиловый эфир 2-гидрокси-4-оксо-7-хлор-4Н-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (1b). Выход 70%. Т. пл. 203–205 °C (этанол). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц):

12.66 (1H, уш. с, ОН); 8.88 (1H, д, J = 2.4, H-6); 8.23 (1H, д. д, J = 8.3 и J = 2.4, H-8); 7.38 (1H, д, J = 9.3, H-9); 4.14 (2H, к, J = 7.1, OCH₂); 1.21 (3H, т, J = 7.1, CH₃). Спектр ЯМР ¹³С, δ , м. д.: 165.90 (CO₂), 160.50 (C₍₂₎), 153.72 (C₍₄₎), 147.12 (C_(9a)), 143.76 (C₍₈₎), 127.84 (C₍₉₎), 123.15 (C₍₆₎), 118.86 (C₍₇₎), 90.03 (C₍₃₎), 60.26 (OCH₂), 14.80 (CH₃). Масс-спектр, m/z ($I_{\rm OTH}$, %): 268 [M]⁺ (34.6), 223 [M–OEt]⁺ (4.7), 196 [M–CO₂C₂H₄]⁺ (27.7), 168 [M–CO₂C₂H₄–CO]⁺ (59.6), 155 (100). Масс-спектр 2-триметилсилоксипроизводного, m/z ($I_{\rm OTH}$, %): 340 [M]⁺ (38), 325 [M–Me]⁺ (30), 297 [М–Ме–С₂H₄]⁺ (100), 295 [М–ОЕt]⁺ (62), 268 [М–ОЕt–СО]⁺ (37), 267 [М–ОЕt–СО]⁺ (51), 253 [М–Ме–С₂H₄–СО₂]⁺ (26), 240 (30). В обоих случаях значения m/z приведены только для изотопа ³⁵Cl. Найдено, %: С 49.30; Н 3.47; N 10.35. C₁₁H₉ClN₂O₄. Вычислено, %: С 49.18; Н 3.38; N 10.43.

Этиловый эфир 2-гидрокси-7-метил-4-оксо-4H-пиридо[1,2-a] пиримидин-3-карбоновой кислоты (1c). Выход 77%. Т. пл. 207–209 °C (вода). Спектр ЯМР 1 H, δ , м. д. (J, Γ п): 12.31 (1H, уш. с, OH); 8.73 (1H, с, H-6); 8.05 (1H, д. д. J = 8.6 и J = 1.6, H-8); 7.30 (1H, д. J = 8.9, H-9); 4.13 (2H, к. J = 7.2, OCH2); 2.36 (3H, с, CH3); 1.21 (3H, т. J = 7.1, CH2CH3). Спектр ЯМР 13 С, δ , м. д.: 166.11 (CO2), 159.82 (C₍₂₎), 154.20 (C₍₄₎), 146.19 (C_(9a)), 146.08 (C₍₈₎), 127.72 (C₍₆₎), 126.55 (C₍₇₎), 115.60 (C₍₉₎), 90.22 (C₍₃₎), 60.04 (OCH2), 17.88 (CH3), 14.83 (OCH2CH3). Масс-спектр, m/z ($I_{\text{отн}}$, %): 248 [M] $^+$ (35.9), 203 [M-OEt] $^+$ (18.9), 176 [M-CO2C2H4] $^+$ (42.7), 148 [M-CO2C2H4-CO] $^+$ (61.5), 135 (100). Масс-спектр 2-триметилсилоксипроизводного, m/z ($I_{\text{отн}}$, %): 320 [M] $^+$ (37), 305 [M-Me] $^+$ (33), 277 [М-Ме-C2H4] $^+$ (100), 275 [М-ОЕt] $^+$ (60), 248 [М-ОЕt-CO] $^+$ (34), 247 [М-ОЕt-CO] $^+$ (52), 233 [М-Ме-C2H4-CO2] $^+$ (26), 220 (34). Найдено, %: C 58.19; H 4.94; N 11.36. C_{12} H₁₂N₂O₄. Вычислено, %: C 58.06; H 4.87; N 11.28.

Этиловый эфир 2-гидрокси-8-метил-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (1d). Выход 72%. Т. пл. 231–233 °C (вода). Спектр ЯМР ¹H, δ , м. д. (J, Γ п): 12.26 (1H, уш. с, OH); 8.78 (1H, д. J = 7.1, H-6); 7.22 (1H, д. д. J = 7.0 и J = 1.5, H-7); 7.11 (1H, с. H-9); 4.12 (2H, к. J = 7.1, OCH₂); 2.44 (3H, с. CH₃); 1.20 (3H, т. J = 7.1, CH₂CH₃). Спектр ЯМР ¹³С, δ , м. д.: 166.03 (CO₂), 159.89 (C₍₂₎), 156.98 (C₍₄₎), 154.20 (C_(9a)), 146.97 (C₍₈₎), 126.59 (C₍₇₎), 118.78 (C₍₆₎), 114.03 (C₍₉₎), 89.73 (C₍₃₎), 59.95 (OCH₂), 21.88 (CH₃), 14.85 (OCH₂CH₃). Масс-спектр, m/z ($I_{\text{отн}}$, %): 248 [M] ' (35.4), 203 [M–OEt] ' (23.4), 176 [M–COOC₂H₄] ' (59.1), 148 [M–COOC₂H₄–CO] ' (41), 135 (100). Масс-спектр 2-триметилсилоксипроизводного, m/z ($I_{\text{отн}}$, %): 320 [M] ' (40), 305 [M–Me] ' (36), 277 [М–Ме–С₂H₄] ' (100), 275 [M–OEt] ' (55), 248 [M–OEt–CO] ' (39), 247 [M–OEt–CO] ' (48), 233 [M–Me–C₂H₄–CO₂] ' (21), 220 (27). Найдено, %: C 58.12; H 4.75; N 11.17. $C_{12}H_{12}N_2O_4$. Вычислено, %: C 58.06; H 4.87; N 11.28.

Этиловый эфир 2-гидрокси-9-метил-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (1e). Выход 84%. Т. пл. 189–191 °C (ацетон). Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 12.47 (1H, уш. c, OH); 8.82 (1H, д, J = 7.1, H-6); 7.97 (1H, д. д, J = 7.1 и J = 1.0, H-8); 7.26 (1H, д, J = 7.0, H-7); 4.23 (2H, к, J = 7.1, OCH₂); 2.41 (3H, c, CH₃); 1.25 (3H, т, J = 7.1, CH₂CH₃). Спектр ЯМР ¹³С, δ , м. д.: 169.14 (CO₂), 159.17 (C₍₂₎), 155.49 (C₍₄₎), 150.08 (C_(9a)), 141.04 (C₍₈₎), 127.40 (C₍₆₎), 120.21 (C₍₉₎), 116.00 (C₍₇₎), 89.43 (C₍₃₎), 61.00 (OCH₂), 17.73 (CH₃), 14.73 (OCH₂CH₃). Масс-спектр, m/z ($I_{\text{отн}}$, %): 248 [M]+ (32.2), 203 [M-OEt]+ (23.4), 176 [М-СО₂C₂H₄]+ (56.3), 148 [М-СО₂C₂H₄-CO]+ (65.6), 135 (100). Масс-спектр 2-триметил-силоксипроизводного, m/z ($I_{\text{отн}}$, %): 320 [M]+ (33), 305 [М-Ме]+ (30), 277 [М-Ме-С₂H₄]+ (100), 275 [М-ОЕt]+ (54), 248 [М-ОЕt-СО]+ (28), 247 [М-ОЕt-СО]+ (49), 233 [М-Ме-С₂H₄-CO₂]+ (32), 220 (36). Найдено, %: C 58.20; H 4.96; N 11.22. C₁₂H₁₂N₂O₄. Вычислено, %: C 58.06; H 4.87; N 11.28.

Рентгеноструктурное исследование этилового эфира 2-гидрокси-4-оксо-4Н-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (1a). Кристаллы эфира 1a тригональные (вода), при 20 °C a=b=25.475(8), c=8.662(7) Å, $\alpha=\beta=90^\circ$, $\gamma=120^\circ$, V=4868(4) Å 3 , $M_r=234.2$ 1, Z=18, пространственная группа R3c, $d_{\rm выч}=1.438$ г/см 3 , $\mu({\rm Mo}K\alpha)=0.946$ мм $^{-1}$, F(000)=2196. Параметры элементарной ячейки и интенсивности 3200 отражений (1180 независимых, $R_{\rm int}=0.113$) измеряли и уточняли по 25 рефлексам в интервале углов θ 28–30° на дифрактометре CAD4 (Си $K\alpha$ -излучение, графитовый монохроматор, ω -сканирование). Дифрактометри- ческий эксперимент проводился на кристалле с линейными размерами 4.0 \times 0.2 \times 0.2 мм (3.47 \leq θ \leq 74.91°; область индексов h, k, l: $0 \leq h \leq$ 31, $-31 \leq k \leq$ 27, $-10 \leq l \leq$ 0).

Структура расшифрована прямым методом по комплексу программ SHELXTL [12]. Положения атомов водорода рассчитаны геометрически и уточнены изотропно. Структура

уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных 874

атомов до $wR_2 = 0.115$ по 1180 отражениям ($R_1 = 0.049$, S = 1.089). Полная кристаллографическая информация по соединению **1a** депонирована в Кембриджском банке структурных данных (депонент ССDС № 297490). Пространственное расположение атомов в молекуле исследованного соединения и их нумерация показаны на рис. 1, полученном с использованием программы ORTEP3 [13]. Отдельные межатомные расстояния приведены в табл. 1, валентные углы – в табл. 2.

Пиридил-2-амид 2-гидрокси-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кис- лоты (3a). Не растворившийся в воде остаток на фильтре (см. пример по синтезу эфира 1a) высушивают. Выход 0.2 г (14%). Т. пл. 250–252 °С (ДМФА). Спектр ЯМР 1 Н, δ , м. д.: 14.15 (1H, c, OH); 12.00 (1H, c NH); 8.97–7.10 (8H, м, H аром.).

Соединения 3b-е получают аналогично.

- **5-Хлорпиридил-2-амид 2-гидрокси-4-оксо-7-хлор-4H-пиридо[1,2-а]пиримидин-3-карбоновой кислоты (3b)**. Выход 19%. Т. пл. 316–318 °C (ДМФА). Спектр ЯМР 1 Н, δ , м. д.: 14.01 (1H, c, OH); 12.03 (1H, c, NH); 9.00–7.52 (6H, м, H аром.). Найдено, %: С 47.77; H 2.41; N 20.32. C_{14} H $_8$ Cl $_2$ N $_4$ O $_3$. Вычислено, %: С 47.89; H 2.30; N 20.19.
- **5-Метилпиридил-2-амид 2-гидрокси-7-метил-4-оксо-4H-пиридо[1,2-а]пиримидин-3-карбоновой кислоты (3c**). Выход 11%. Т. пл. 324–326 °C (ДМФА). Спектр ЯМР 1 Н, δ , м. д.: 14.43 (1H, c, OH); 11.86 (1H, c, NH); 8.82–7.44 (6H, м, H аром.); 2.42 (3H, c, CH₃); 2.26 (3H, c, CH₃). Найдено, %: С 61.85; Н 4.47; N 18.20. $C_{16}H_{14}N_{4}O_{3}$. Вычислено, %: С 61.93; Н 4.55; N 18.05.
- **4-Метилпиридил-2-амид 2-гидрокси-8-метил-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (3d)**. Выход 8%. Т. пл. >340 °С (ДМФА). Спектр ЯМР 1 Н, δ , м. д.: 14.30 (1H, c, OH); 11.94 (1H, c, NH); 8.90–7.00 (6H, м, H аром.); 2.43 (3H, c, CH₃); 2.31 (3H, c, CH₃). Найдено, %: С 61.80; Н 4.43; N 18.13. С $_{16}$ Н $_{14}$ N $_{4}$ O $_{3}$. Вычислено, %: С 61.93; Н 4.55; N 18.05.
- **6-Метилпиридил-2-амид 2-гидрокси-6-метил-4-оксо-4H-пиридо[1,2-a]пиримидин-3-карбоновой кислоты (3e)**. Выход 26%. Т. пл. 226–228 °C (ДМФА). Спектр ЯМР 1 Н, δ , м. д.: 14.15 (1H, c, OH); 11.96 (1H, c NH); 8.03–6.92 (6H, м, H аром.); 2.91 (3H, c, CH₃); 2.40 (3H, c, CH₃). Найдено, %: С 61.81; Н 4.67; N 18.00. С $_{16}$ Н $_{14}$ N $_{4}$ O $_{3}$. Вычислено, %: С 61.93; Н 4.55; N 18.05.

СПИСОК ЛИТЕРАТУРЫ

- И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, С. В. Шишкина, XГС, 856 (2007).
- 2. D. D. Dhavale, M. M. Matin, T. Sharma, S. G. Sabharwal, *Bioorg. Med. Chem.*, **12**, 4039 (2004).
- 3. M. Varga, Z. Kapui, S. Batori, L. T. Nagy, L. Vasvari-Debreczy, E. Mikus, K. Urban-Svabo, P. Aranyi, *Eur. J. Med. Chem.*, **38**, 421 (2003).
- 4. M. N. Protopopova, R. E. Lee, R. A. Slayden, C. E. Barry, L. Einck, WO Pat. 03096989 (2003). http://ep.espacenet.com
- I. Hermecz, J. Sipos, L. Vasvari-Debreczy, K. Gyires, Z. Kapui, Acta Physiol. Hung., 80, 225 (1992).
- 6. G. Roma, M. Di. Braccio, G. Leoncini, B. Aprile, Farmaco, 48, 1225 (1993).
- Y. Hamasaki, M. Zaitu, K. Tsuji, M. Miyazaki, R. Hayasaki, E. Muro, S. Yamamoto, I. Kobayashi, M. Matsuo, T. Ichimaru, S. Miyazaki, *Int. J. Immunopharmacol.*, 22, 483 (2000).
- 8. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- 9. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, Н. Л. Березнякова, *XTC*, 1191 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1032 (2006)].
- 10. H.-B. Burgi, J. D. Dunitz, Struct. Correl., VCH, Weinheim, 1994, vol. 2, p. 741.
- 11. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 12. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the

Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998). 13. L. J. Farrugia, J. Appl. Crystallogr., **30**, 565 (1997).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 20.02.2006

^aМосковский государственный университет им. М. В. Ломоновова, Москва 119899, Россия e-mail: rybakov@biocryst.phys.msu.su

⁶Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: nmrlab@univ.kiev.ua