С. Ю. Рябова, Л. М. Алексеева, В. Г. Граник

1H-ПИРИДО[3,2-*b*]ИНДОЛЫ. СИНТЕЗ И ИССЛЕДОВАНИЕ НЕКОТОРЫХ СПЕКТРАЛЬНЫХ И ХИМИЧЕСКИХ СВОЙСТВ

Производные 2-циановинил-3-*n*-нитрофениламиноиндола при кипячении в трифторуксусной кислоте за счет активации группы CN циклизуются в соответствующие пиридо [3,2-*b*] индолы. Термическая циклизация эфира индолилакриловой кислоты осуществляется с участием более реакционноспособной этоксикарбонильной группы с образованием 3-цианопиридо [3,2-*b*] индола.

Ключевые слова: индол, индолинакриловая кислота, карболин, малононитрил, пиридоиндол, цианацетонитрил.

Хотя пиридо [3,2-b]индолы (δ -карболины) изучены менее подробно, чем α -, β - и γ -карболины, в литературе имеются данные о полезных свойствах соединений этого класса, в частности о биологической активности 1-незамещенных производных этой гетероциклической системы $[1,\ 2]$. Синтезу и свойствам 1H-пиридо [3,2-b]индолов посвящена, в сущности, одна работа [3], в которой описан многоступенчатый и сложный в экспериментальном отношении синтез 1-метил-1H-пиридо [3,2-b]индола (1), изучены некоторые химические свойства этого соединения и его основность в сравнении с изомерными карболиновыми соединениями.

Нами установлено, что 2-формил-3-n-нитрофениламиноиндол (2) взаимодействует с малононитрилом с образованием дициановинилпроизводного 3, который при нагревании трансформируется в соответствующий 2-иминодигидропиридо [3,2-b] индол (4). Судя по данным ЯМР 1 Н и 13 С спектроскопии, последний находится в равновесии с 1-n-нитрофенил-2-амино-3-циано-1Н-пиридо [3,2-b] индолом 4A [4, 5].

NHC₆H₄NO₂-
$$p$$

NHC₆H₄NO₂- p

NHC₆H₄NO₂- p

CN

CN

CN

CN

CN

NH

CN

NH

CN

NH

CN

NH

AA

NH

CN

Характеристики синтезированных соединений

Соеди- нение	Брутго- формула	Масс-спектр, <i>m/z</i>	<u>Найдено. %</u> Вычислено, %			ИК спектр, см ⁻¹	Т. пл., °С (*)	Выход, %
			C .	Н	N			
5	$C_{18}H_{12}CIN_5O_2 \cdot 0.5 H_2O$	329	<u>57.57</u> 57.68	3.69 3.50	18.74 18.69	3500—3300, 3200—3000, 2220, 1650, 1620	>390 (H ₂ O)	100
6	$C_{21}H_{16}N_6O_2$	384	65.96 65.62	4.30 4.20	21.92 21.86	2220, 1630, 1615	>300 разл. (CHCl3)	93
7	$C_{21}H_{17}CIN_6O_2 \cdot H_2O$	384	<u>55.85</u> 55.20	$\frac{4.23}{4.63}$	$\frac{18.74}{18.40}$	3460, 3390, 2210, 1630, 1610	>300 разл. (H ₂ O)	64
8a	$C_{18}H_{13}N_5O_3$	347	62.27 62.24	3.95 3.77	19.93 20.17	3400, 3300—3260, 3180, 2220, 1675, 1610, 1590	* (ДМФА—МеОН, 1:1)	84
8b	$C_{20}H_{16}N_4O_4$	376	$\frac{63.79}{63.82}$	4.26 4.29	14.82 14.89	3340, 2210, 1720, 1665, 1600, 1575	* (ДМФА-МеОН, 1:1)	97
9a	$C_{20}H_{14}F_{3}N_{5}O_{5}$		$\frac{52.18}{52.07}$	3.05 3.06	$\frac{15.39}{15.18}$	3420 (пл), 3360 (пл), 3280, 3140—3020, 1670, 1640, 1625	240-243 (MeOH)	86
9b	$C_{22}H_{17}F_3N_4O_6$		53.72 53.88	$\frac{3.56}{3.49}$	$\frac{11.43}{11.43}$	3300, 1695, 1665, 1615, 1590	239-240 (<i>i</i> -PrOH-MeOH)	92
10a	$C_{18}H_{13}N_5O_3$	347	$\frac{62.45}{62.24}$	$\frac{3.87}{3.77}$	$\frac{20.23}{20.17}$	3330-3100, 1650	241—242 (ДМФА—МеОН)	66
10b	$C_{20}H_{16}N_4O_4$	376	63.56 63.82	$\frac{4.29}{4.29}$	14.69 14.89	3370, 3130—3040, 1700, 1680, 1620	239—240 (ДМФА-ацетон)	80
11	$C_{18}H_{10}N_4O_3$	330	65.33 65.45	3.35 3.05	16.87 16.96	3300—3100, 2210, 1625	392—394 (ДМФА—Н ₂ О, 3:1)	78

Т. пл. определить не удается, по-видимому, из-за термической циклизации соединений.

Высокая основность соединения 1 (р K_2 10.77) [3] не оставляет сомнений, что его протонирование протекает по атому азота пятичленного цикла. Чтобы установить, сохраняется ли такое направление протонизации при наличии 2-аминогруппы в соединении 4А, был получен хлорид 5 этого трицикла и сопоставлены спектры ЯМР ¹Н протонированного 5 и непротонированного 4А соединений. Наиболее характерными различиями этих веществ является наличие в спектре ЯМР ¹Н основания 4А уширенного сигнала при 6.17 м. д. (2H, уш. с, NH₂) и превращение его в хлориде в сигналы 8.48 (2H, ш. с, NH₂) и 12.78 м. д. (1H, ш. с, NH индола). Естественно, что в клориде 5 все сигналы протонов сдвинуты в слабое поле (см. экспериментальную часть), но наибольший сдвиг 0.88 м. д. претерпевает сигнал 4-Н, что указывает на преимущественную локализацию положительного заряда на эндоциклическом атоме азота пиридинового цикла. Наличие первичной аминогруппы в 4А подтверждается возможностью взаимодействия этого соединения с диэтилацеталем диметилформамида с образованием соответствующего амидина 6. Аналогично хлориду 5 из амидина 6 получен хлорид 7 и сопоставлены спектры ЯМР ¹Н соединений 6 и 7.

И в этом случае (при переходе от 6 к 7) наибольший сдвиг в слабое поле характерен для протона в положении 4 молекулы, однако различие 0.42 м. д. заметно меньше, чем для пары 4 - 6, что, возможно, связано с некоторой делокализацией положительного заряда на амидиновый фрагмент (резонанс 7 - 7a).

Возможность синтеза $1\text{H-}\delta$ -карболинов не ограничивается реакцией циклизации только дициановинильного производного 3. При взаимодействии альдегида 2 с цианацетамидом и циануксусным эфиром получены амид 8a и эфир 8b β -индолилакриловой кислоты. Оказалось, однако, что циклизация последних в условиях циклизации $3 \longrightarrow 4$ (нагревание в смеси метанол—ДМФА [4,5]) не имеет места*.

^{*} Амид 8а после такого нагревания выделен в виде сольвата с ДМ Φ А, который в обычных условиях стабилен и разрушается только при нагревании до 150 °C.

 $8-10 \text{ a R} = \text{CONH}_2, \text{ b R} = \text{COOEt}$

Такое затруднение циклизации, возможно, связано с заменой одной из цианогрупп в соединении 3 на значительно более объемистые группы CONH2 и COOEt и некоторым выводом из плоскости молекулы акрилового фрагмента.

 ${\rm T}\ {\rm a}\ {\rm f}\ {\rm n}\ {\rm n}\ {\rm u}\ {\rm u}\ {\rm a}\ {\rm 2}$ Спектры ЯМР 1 Н синтезированных δ -карболинов (ДМСО-d6)

Соеди-	Химические сдвиги, δ , м. д.									
	4-H, c	6-H, д	7-H, T	8-H, T	9-H, д	С ₆ H ₄ NO ₂ , A ₂ B ₂ -систе- ма	NН, ш. с	NH ₂ , ш. с	другие сигналы	
4	8.25	7.42	7.23	6.74	5.91	7.88; 8.55		6.17		
5	9.13	7.67	7.52	6.95	5.96	8.13; 8.72	12.78	8.48		
6	8.83	7.54	7.22	6.6	6.05	7.90; 8.60			8.2 (1H, с, CH); 2.69; 3.1 (6H, два с, N(CH ₃) ₂)	
7	9.25	7.75	7.6	7.1	6.2	8.0; 8.62	13 .		8.4 (1H, с, CH); 2.75; 3.2 (6H, два с, N(CH ₃) ₂)	
9b	9.08	8	7.53	6.98	5.99	8.16; 8.75	12.4	8.48	1.42 (3H, M, COOCH ₂ CH ₃); 4.47 (2H, KB, COOCH ₂ CH ₃)	
10b	8.41	7.43	7.22	6.71	5.93	7.81; 8.51		*	1.35 (3H, M, COOCH ₂ CH ₃); 4.31 (2H, KB, COOCH ₂ CH ₃)	
11	8.68	7.52	7.32	6.82	6.11	7.88; 8.54	12			

^{*} Сигнал протонов группы NH_2 не наблюдается (маскируется сигналом воды растворителя).

Осуществить циклизацию соединений 8a, b удалось при их нагревании в трифторуксусной кислоте. Последующая обработка промежуточных трифторацетатов 9a, b щелочью в спиртах приводит к 1H- δ -карболинам 10a, b. При дальнейшем исследовании свойств эфира 8b было установлено, что термическая циклизация этого соединения в карболин также возможна, однако она протекает по иному направлению. При кипячении соединения 8b в этиленгликоле наблюдается замыкание пиридинового кольца с участием группы 3-NH и этоксикарбонильной (а не циано-)группы с образованием 1,2-дигидро-1-n-нитрофенил-3-цианопиридо [3,2-b] индолона-2 (11).

Другими словами, при нагревании соединения **8b** в CF₃COOH наблюдается активация цианогруппы, вероятно, за счет протонирования, а для термического процесса более реакционноспособной является этокси-карбонильная группа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе Perkin-Elmer 457 в виде паст в вазелиновом масле. Масс-спектры получены на спектрометре Varian MAT-112 (70 эВ) с прямым вводом образца в ионный источник. Спектры ЯМР 1 Н записаны на спектрометре Uniti Plus 400 (Varian). Внутренний стандарт ТМС, растворитель ДМСО-d6. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системах хлороформ—метанол, 10:1, и этилацетат—изопропанол—аммиак, 5:3:1. Физико-химические свойства и выходы соединений приведены в табл. 1, спектры ЯМР 1 Н δ -карболинов — в табл. 2.

Хлорид 1-n-нитрофенил-2-амино-3-циано-5H-пиридо[3,2-b] индолиния (5). Смесь 4.5 г (13.7 ммоль) карболина 4 и 180 мл концентрированной соляной кислоты перемешивают при комнатной температуре 1 ч. Осадок отфильтровывают, промывают водой и сушат. Получают 5.0 г хлорида 5.

1-n-Нитрофенил-2-диметиламинометиленамино-3-диано-1Н-пиридо[3,2-b]индол (6). Смесь 3 г (9.1 ммоль) карболина 4 и 30 мл диэтилацеталя ДМФА кипятят 4 ч. Охлаждают, выпавший осадок отфильтровывают, промывают эфиром. Получают 3.28 г амидина 6.

Хлорид 1-*n*-нитрофенил-2-диметиламинометиленамино-3-циано-5H-пиридо [3,2-*b*] индолиния (7). Смесь 0.4 г (1 ммоль) амидина 6, 20 мл воды и 3 мл концентрированной соляной кислоты перемешивают 3 ч при 20 °C. Осадок желтого цвета отфильтровывают, промывают водой и перекристаллизовывают из воды. Сушат при 100 °C. Получают 0.28 г хлорида 7.

Амид α -циано- β -(3-n-нитрофениламиноиндолил-2)акриловой кислоты (8a). Смесь 1.65 г (5.9 ммоль) 2-формилиндола 2, 0.52 г (6.2 ммоль) цианацетамида, 0.84 мл (6 ммоль) триэтиламина в 60 мл изопропанола кипятят при перемешивании 7 ч. Охлаждают, осадок отфильтровывают, промывают изопропанолом. Получают 1.73 г амида 8a в виде кристаллов темно-вишневого цвета. При перекристаллизации из смеси метанол—ДМФА, 1:1, вещество становится желтым и представляет собой сольват амида 8a с ДМФА. После высушивания при температуре 150 °C сольват разрушается. Спектр ЯМР 1 Н, δ , м. д.: 7.06 (1H, м, 5-H); 7.25 (1H, м, 4-H); 7.35 (1H, м, 6-H); 7.67 (1H, м, 6-H); 6.81; 8.07 (4H, два м, C₆H₄NO₂); 8.10 (1H, c, CH); 9.45 (1H, уш. c, 3-NH); 11.10 (1H, уш. c, NH-ind); 7.86; 7.69 (2H, два уш. c, CONH₂). Найдено, %: C 59.45; H 4.69; N 19.85. C₁₈H₁₃N₅O₃ · C₃H₇NO. Вычислено, %: C 59.99; H 4.80; N 19.99.

Этиловый эфир α -циано- β -(3-n-нитрофениламиноиндолил-2)акриловой кислоты (8b). Получают 5.7 гэфира 8b из смеси 4.4 г (16 ммоль) 2-формилиндола 2, 100 мл изопропанола, 4.4 мл (60 ммоль) циануксусного эфира и 0.6 мл (6 ммоль) триэтиламина в условиях синтеза амида 8a. Спектр ЯМР 1 Н, δ , м. д.: 7.07 (1H, м, 5-H); 7.28 (1H, м, 4-H); 7.39 (1H, м, 6-H); 7.72 (1H, м, 7-H); 8.67; 8.22 (4H, два м, C₆H₄NO₂); 8.22 (1H, c, CH); 9.68 (1H, уш. c, 3-NH); 11.11 (1H, уш. c, NH-ind); 1.29 (3H, τ , OCH₂CH₃); 4.29 (2H, τ , OCH₂CH₃).

Трифторацетат 1-n-нитрофенил-2-амино-3-карбамоил-5Н-пиридо [3,2-b]индолиния (9a). Раствор 0.35 г (1 ммоль) амида 8а в 10 мл трифторуксусной кислоты кипятят 1 ч. Выливают в 50 мл воды. Выпавший осадок отфильтровывают, промывают водой, 1% раствором бикарбоната натрия, водой и сушат. Получают 0.4 г трифторацетата 9а.

Трифторацетат 1-*n*-нитрофенил-2-амино-3-этоксикарбонил-5H-пиридо[3,2-*b*]индолиния (9b). Раствор 0.1 г (0.27 ммоль) эфира 8b кипятят 2 ч и оставляют на 24 ч при 20 °C. Затем выливают в 20 мл воды. Выпавший осадок отфильтровывают, промывают водой, 1% раствором бикарбоната натрия, водой и сушат. Получают 0.12 г трифторацетата 9b.

1-*п*-Нитрофенил-2-амино-3-карбамоил-1H-пиридо[3,2-*b*]индол (10а). К метанольному раствору 0.16 г (0.35 ммоль) трифторацетата 9а добавляют 0.5 мл 1 н. раствора едкого кали, нагревают до кипения и охлаждают. Осадок отфильтровывают, промывают метанолом и водой, сушат. Получают 0.12 г пиридоиндола 10а, который суспендируют в метаноле, нагревают до кипения и по каплям добавляют ДМФА до растворения вещества. Раствор фильтруют, охлаждают. Чистый пиридоиндол 10а (0.08 г) получают при высаживании эфиром.

1-*n*-Нитрофенил-2-амино-3-этоксикарбонил-1Н-пиридо[3,2-*b*]индол (10b). К суспензии 2.45 г (5 ммоль) трифторацетата 9b в 50 мл этанола добавляют 7.5 мл 1 н. раствора едкого кали и кипятят 0.5 ч. Охлаждают, осадок отфильтровывают, промывают этанолом и водой, сушат. Получают 1.5 г пиридоиндола 10b.

1-n-Нитрофенил-3- η иано-1,2- η игидропиридо[3,2-b]индолон-2 (11). Кипятят при перемешивании 3.5 г (9 ммоль) эфира 8b в 140 мл этиленгликоля 45 мин. Охлаждают, выпавший осадок отфильтровывают, промывают метанолом. Получают 2.4 г пиридоиндолона 11.

Работа выполнена при финансовой поддержке РФФИ, грант № 97-03-33066.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Н. Суворов, В. А. Чернов, В. С. Вележева, Ю. А. Ершова, С. В. Симаков, В. П. Севодин, *Хим.-фарм. журн.*, 15, № 9, 27 (1981).
- S. Minami, S. Yamabe, S. Shigeru, H. Sakurai, T. Hirose, Japan Pat. 76136698; Chem. Abstr., 87, 5937 (1977).
- 3. R. A. Abramovitch, K. A. N. Adams, A. D. Notation, Can. J. Chem., 38, 2152 (1960).
- 4. S. Yu. Ryabova, L. M. Alekseeva, V. G. Granik, Mendeleev Commun., N 3, 107 (1995).
- 5. С. Ю. Рябова, Л. М. Алексеева, В. Г. Граник, Хим.-фарм. журн., 30, № 9, 29 (1996).

ГНЦ РФ «НИОПИК», Москва 103787, Россия Поступило в редакцию 17.11.98