Л. М. Потиха, В. А. Ковтуненко, В. М. Кисиль

КОНДЕНСИРОВАННЫЕ ИЗОХИНОЛИНЫ

21*. КОНДЕНСАЦИЯ *о*-БРОММЕТИЛФЕНИЛАЦЕТОНИТРИЛА С ЗАМЕЩЕННЫМИ АНТРАНИЛОВЫМИ КИСЛОТАМИ

Взаимодействие замещенных антраниловых кислот и эфиров с o-бромметилфенилацетонитрилом приводит к гидробромидам 2,3-R,R 1 -7,12-дигидро-5H-изохино[2,3-a]-хиназолин-5-онов. Установлено, что 7,12-дигидро-5H-изохино[2,3-a]хиназолин-5-оны могут существовать в двух таутомерных формах — "имина" и "енамина". Положение таутомерного равновесия зависит от природы и положения заместителей в хиназолиновом фрагменте молекулы. Изучено борогидридное восстановление, окисление и взаимодействие 2,3-R,R 1 -7,12-дигидро-5H-изохино[2,3-a]хиназолин-5-онов с электрофильными реагентами.

Ключевые слова: антраниловая кислота, o-бромметилфенилацетонитрил, 7,12-дигидро-5H-изохино[2,3-a]хиназолин-5-он, енамин.

Ранее [2, 3] был разработан относительно простой метод синтеза производных изохино[2,3-а]хиназолиновой системы, состоящий во взаимодействии о-бромметилфенилацетонитрила (о-БМФА) с эфиром и нитрилом антраниловой кислоты. Свойства 7,12-дигидро-5H-изохино[2,3-а]хиназолин-5-она (1), полученного этим методом, изучались в ряде работ [1, 4-10]. Изохинохиназолин 1 проявляет высокую реакционную способность при взаимодействии с электрофильными реагентами [4-8], легко восстанавливается NaBH₄ до 6,6а,7,12-тетрагидропроизводных [4, 9], а также легко окисляется с образованием ароматических производных [1, 5, 10]. Все эти реакции, затрагивающие преимущественно триаду атомов $N_{(6)}$ – $C_{(6a)}$ – $C_{(7)}$, позволили получить ряд замещенных изохино[2,3-a]хиназолинов по положениям 6 и 7. Нами были предприняты попытки осуществить классические реакции ароматического электрофильного замещения. Однако, в силу высокой склонности соединения 1 к окислению, независимо от условий эти опыты приводили к осмолению или к сложным смесям неидентифицированных продуктов. Единственным решением этой проблемы было использование в синтезе изохинохиназолинов 1 замещенных исходных реагентов. С этой целью нами изучено взаимодействие о-БМФА с замещенными антраниловыми кислотами и их эфирами.

^{*} Сообщение 20 см. [1].

1–5 a $R = R^1 = OMe$; **b** R = H, $R^1 = Me$; **c** $R = R^1 = H$; **d** R = Cl, $R^1 = H$; **e** R = H, $R^1 = Cl$; **f** R = H, $R^1 = Br$; **g** $R = CO_2Me$, $R^1 = H$; **a**, **g** X = OMe, **b–f** X = OH

Реакции проводили по описанному ранее методу [2] сплавлением эквимолярной смеси реагентов при 130–150 °C или нагреванием их растворов в 2-пропаноле. Использование незамещенной антраниловой кислоты 2с приводит к гидробромиду 7,12-дигидро-5H-изохино[2,3-а]-хиназолин-5-она (1c) — соединению, идентичному по константам и спектральным характеристикам полученному ранее. Осуществление синтеза в этом случае требовало более длительного времени нагревания или более высокой температуры сплавления, а выход целевого продукта оказался несколько ниже (на 15–20%), чем при использовании эфира, что вполне объяснимо снижением реакционной способности кислоты в сравнении с эфиром. Взаимодействие о-БМФА с замещенными антраниловыми кислотами и их эфирами также приводит к целевым изохино[2,3-а]-хиназолинам 1b-g с хорошими выходами (50–60%). При проведении реакции в 2-пропаноле выход солей 1b-g несколько ниже, но продукты реакции при этом, как правило, не нуждаются в дальнейшей очистке.

Заметное влияние на выход и строение продуктов реакции оказывает природа заместителей в антраниловых кислотах и эфирах. Ранее [3, 11] было показано, что образование изохино[2,3-а]хиназолинов — это многостадийный процесс, включающий образование продуктов алкилирования 3 и 2-арил-1,4-дигидро-3(2H)-изохинолиниминийбромидов 4.

В случае эфира антраниловой кислоты выделение промежуточных продуктов структуры 3 и 4 было сопряжено с трудностями, обусловленными их высокой реакционной способностью, что приводило сразу к циклическому продукту 1с. На примерах взаимодействия о-БМФА с другими аминами установлено [11], что определенное влияние на выход изохинолинимина 4 оказывает основность аминогруппы – выход соединения 4 снижается при увеличении основности. В свою очередь вероятность протекания циклизации 4 в 1 определяется реакционной способностью карбоксильной группы, которая зависит от электронных эффектов заместителей. Следствием этих факторов в нашем случае было образование смеси метил-2-{[2-(цианометил)бензил]амино}-4,5-диметоксибензоата (3a) и 2-[4,5-диметокси-2-(метоксикарбонил)фенил]-1,4-дигидро-3(2H)-изохинолиниминийбромида (4a) при проведении реакции с эфиром 4,5-диметоксиантраниловой кислоты **2a** в 2-пропаноле. Взаимодействие *о*-БМФА с эфиром 2а протекает быстро – через 15 мин кипячения смеси выпадает осадок, содержащий соединения За и 4а (1:2), и дальнейшее нагревание смеси не приводит к существенным изменениям в ее составе. Образование продуктов За и 4а установлено на основании данных спектра ЯМР ¹Н смеси, в котором наблюдаются сигналы протонов имониевой группы соединения 4а (с, 9.51 и с, 8.27 м. д.) и протонов метиленових групп $C_{(1)}H_2$ и $C_{(4)}H_2$ в виде AB-спиновых систем с $^2J=15.2$ (д. 4.98 и д. 4.72 м. д.) и 2J = 18.4 Гц (д, 4.22 и 4.06 м. д.) соответственно. Уширенный сигнал при 6.16 м. д. соответствует резонансу протона аминогруппы бензиламинобензоата За, а двухпротонные синглеты при 4.54 и 4.08 м. д. – резонансу протонов метиленовых групп CH₂NH и CH₂CN. Также легко относятся сигналы ароматических протонов (7.57–7.26 м. д.) и метоксигрупп (3.92-3.55 м. д.) обоих соединений. Положение и мультиплетность сигналов алифатических протонов полностью соответствуют характеристикам, установленным ранее для родственных структур [11]. Желаемый 2,3-диметоксиизохино[2,3-a]хиназолин **1a** был получен при попытке разделения смеси За, 4а кристаллизацией из уксусной кислоты или ДМФА.

Наличие сильных электроноакцепторных групп в антраниловой кислоте значительно снижает вероятность образования продукта алкилирования $\bf 3$ и, соответственно, образования целевого изохинохиназолина $\bf 1$. Так, при проведении реакции o-БМФА с 5-нитроантраниловой кислотой в 2-пропаноле лишь через $\bf 30$ ч кипячения было зафиксировано образование следов целевого 3-нитроизохино[2,3-a]хиназолина в реакционной смеси (согласно данным TCX и ЯМР 1 Н). Дальнейшее нагревание приводило только к увеличению количества побочных продуктов, а сплавление реагентов при $150\,^{\circ}$ С – к осмолению.

Во всех остальных случаях ($2\mathbf{b}$, \mathbf{d} - \mathbf{g}), приведенных на схеме, образование промежуточных продуктов типа $\mathbf{3}$ и $\mathbf{4}$ зафиксировано не было, а разница в выходах солей $\mathbf{1}$ составила не более 10%. Действием $\mathrm{Et}_3\mathrm{N}$ на

соли 1а,b,d-д получены их свободные основания 5а,b,d-д.

Спектральные характеристики (данные спектров ИК, ЯМР ¹Н растворов солей в СГ₃СО₂D и растворов оснований в СDСІ₃) замещенных изохинохиназолинов 1а,b,d-д в целом хорошо согласуются с таковыми для незамещенного изохинохиназолина 1с [2]. Ранее [5-7] мы сообщали о наличии енаминных свойств у соединения 1с (легкость дейтерообмена протонов при $C_{(6)}$, способность вступать в реакции $C_{(6)}$ -алкилирования и ацилирования и др.), однако зарегистрировать образование енаминной формы в явном виде не удавалось. Изучение спектров ЯМР ¹Н растворов солей 1а-д и их свободных оснований 5а-д в ДМСО-d₆ показало, что в полярных апротонных растворителях эти соединения могут существовать в двух таутомерных формах - иминной и енаминной, о чем свидетельствует двойной набор сигналов, отвечающий иминной (А) (преобладающая) и енаминной (В) форме (полные данные приведены в табл. 1). Более выраженной способностью к таутомеризации в этих условиях обладают основания 5. Соотношение двух форм А и В зависит от природы и положения заместителей в хиназолиновом фрагменте, причем влияние последнего фактора оказалось различным для солей 1 и оснований 5. В табл. 1 эти соединения расположены в порядке возрастания процентного содержания енаминной формы В в смеси. Количество формы В хорошо соотносится с величинами обычных гамметовских оконстант заместителей [12]: для оснований – относительно узлового атома $N_{(13)}$, а для солей – относительно карбонильной группы $C_{(5)}$ =О. На соотношение двух форм также влияет изменение температуры растворов повышение температуры приводит к незначительному уменьшению содержания формы В в смеси. Подобное явление прототропии и соответствующая температурная зависимость для замещенных 2-алкилхиназолин-4-онов наблюдались и ранее [13], но в менее выраженной форме.

Спектры ЯМР ¹Н протонных солей **1** в области ароматических протонов имеют некоторые отличия от спектров оснований **5**, состоящие в относительном положении сигналов протонов H-1 и H-4. В спектрах солей **1A** сигнал H-1 наблюдается в более слабом поле, чем H-4, а в форме **B** — наоборот. Это вполне объяснимо реализацией структуры 6H-изохино-[2,3-a]хиназолин-5-она при протонировании **1A**, так как наиболее устойчивой для хиназолин-4-онов является именно форма 3H [14]. В пользу 6H-формы солей **1A** также свидетельствует наблюдаемая разница в химических сдвигах протонов H-11 ($\Delta\delta \sim 0.45$ м. д.) и $C_{(12)}$ H₂ ($\Delta\delta \sim 0.5$ м. д.) форм **A** и **B**, которые для **1A** находятся в более слабом поле, чем для **1B**.

Природа и положение заместителей в хиназолиновом фрагменте, как оказалось, существенно влияет на химические свойства полученных изохинохиназолинов $\mathbf{1a-g}$ и $\mathbf{5a-g}$. Нами найдено, что соли $\mathbf{1d-g}$ в растворах ДМСО неустойчивы и легко окисляются с образованием смеси продуктов, основным компонентом ($\sim 60-80\%$) которой является бромид $\mathbf{2-R-unu}$ 3-R-5-оксо-5H,6H-изохино[$\mathbf{2,3-a}$]хиназолин-13-ия ($\mathbf{6a-d}$). При этом скорость окисления (от ~ 3 ч для $\mathbf{1g}$ до ~ 8 ч для $\mathbf{1d}$) полностью согласуется с зависимостью, найденой для соотношения таутомерных форм \mathbf{A} и \mathbf{B} в растворах солей (табл. 1). Заметим, что дегидрирование соли $\mathbf{1c}$

Таблица 1 Спектральные характеристики изохино[2,3-a]хиназолин-5-онов 1a-g, 5a-g, 7a-c, 8a,b, 9a-d

Соединение	ИК спектр,	Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J , Γ ц)						
Соединение	v, cm ⁻¹	NH	NH ArH			другие сигналы		
1	2	3	4	5	6	7		
1a-A	3450 (NH), 1720 (C=O), 1640 (C=N), 1295 (C-O)	-	7.68 (1H, c, H-1), 7.61 (2H, M, H-4,11), 7.43 (3H, M, H-8,9,10)	5.69	4.45	4.16 (3H, c, 2-OCH ₃) 3.98 (3H, c, 3-OCH ₃)		
1b-A	3390 (NH), 1720 (C=O), 1620 (C=N)	_	8.34 (1H, д, ° <i>J</i> = 9.2, H-1), 8.11 (1H, уш. с, H-4), 7.99 (1H, уш. д, ° <i>J</i> = 9.2, H-2), 7.61 (1H, м, H-11), 7.42 (3H, м, H-8,9,10)	2.57 (3H, c, CH ₃)				
1c-A	_*	_	8.46 (1H, д, ° <i>J</i> = 8.0, H-1), 8.32 (1H, д, ° <i>J</i> = 7.8, H-4), 8.17 (1H, т, ° <i>J</i> = 7.8, H-3), 7.84 (1H, т, ° <i>J</i> = 7.8, H-2), 7.63 (1H, м, H-11), 7.43 (3H, м, H-8,9,10)	5.74	4.56	-		
1d-A	3420 (NH), 1715 (C=O), 1610 (C=N)	_	8.52 (1H, уш. c, H-1), 8.31 (1H, д, ^{o}J = 8.2, H-4), 7.82 (1H, уш. д, ^{o}J = 8.2, H-3), 7.57 (1H, м, H-11), 7.43 (3H, м, H-8,9,10)	5.67	4.52	-		
1d-B (22%)		9.60 уш.	7.78 (1H, д, ${}^{o}J$ = 8.4, H-4), 7.31 (1H, с, H-1), 7.17 (1H, м, H-11), 6.97 (1H, д, J = 8.4, H-3), 6.92 (2H, м, H-9,10), 6.61 (1H, м, H-8)	5.19 (3H, уш. c)		-		
1e-A	(NH), 1730 (C=O), 1640 (C=N)	_	8.52 (1H, μ , $J = 9.0$, H-1), 8.23 (1H, μ , $J = 2.0$, H-4), 8.17 (1H, μ , μ , $J = 9.0$, $J = 9.0$, $J = 9.0$, $J = 9.0$, 7.61 (1H, $J = 1$), 7.42 (3H, $J = 1$), 7.42 (3H, $J = 1$), 7.42 (3H, $J = 1$)		4.55	-		
1e-B (33%)		9.65 уш.	7.73 (1H, д, mJ = 2.0, H-4), 7.57 (1H, д. д, oJ = 9.0, mJ = 2.0, H-2), 7.30 (1H, д, oJ = 9.0, H-1), 7.14 (1H, м, H-11), 6.92 (2H, м, H-9,10), 6.61 (1H, д, oJ = 6.4, H-8)	* * *		_		
1f-A	3420 (NH), 1700 (C=O), 1625 (C=N)	_	8.42 (1H, д, ${}^{o}J$ = 9.0, H-1), 8.38 (1H, д, ${}^{m}J$ = 2.0, H-4), 8.29 (1H, д. д, ${}^{o}J$ = 9.0, ${}^{m}J$ = 2.0, H-2), 7.62 (1H, м, H-11), 7.43 (3H, м, H-8,9,10)	5.70	4.53	-		
1f-B (34%)		9.66 уш.	7.89 (1H, д, ${}^m J$ = 2.5, H-4), 7.70 (1H, д. д, ${}^o J$ = 8.8, ${}^m J$ = 2.5, H-2), 7.30 (1H, д, ${}^o J$ = 8.8, H-1), 7.15 (1H, м, H-11), 6.93 (2H, м, H-9,10), 6.63 (1H, м, H-8)	5.20 (3H, уш. c)		-		
1g-A	3400 (NH), 1710 (уш., C=O, C=N),	_	8.77 (1H, уш. С, H-1), 8.42 (1H, д, ° <i>J</i> = 8.0, H-4), 8.29 (1H, уш. Д, ° <i>J</i> = 8.0, H-3), 7.67 (1H, м, H-11), 7.42 (3H, м, H-8,9,10)		4.58	4.02 (3H, c, OCH ₃)		
1g-B (40%)	1290 (C-O)	9.72 уш.	7.89 (1H, д, ${}^{o}J$ = 7.6, H-4), 7.68 (1H, c, H-1), 7.54 (1H, д, ${}^{o}J$ = 7.6, H-3), 7.23 (1H, д, ${}^{o}J$ = 6.4, H-11), 6.93 (2H, м, H-9,10), 6.64 (1H, д, ${}^{o}J$ = 7.6, H-8)	5.24 (3H, уш. C)		3.94 (3H, c, OCH ₃)		

5a-A	1600 (уш., C=O, C=N), 1500, 1250 (С-О)	-	7.53 (1H, д. д, ${}^{o}J$ = 7.2, ${}^{m}J$ = 2.0, H-11), 7.47 (1H, c, H-4), 7.41 (1H, д. д, ${}^{o}J$ = 7.2, ${}^{m}J$ = 2.0, H-8), 7.37–7.33 (3H, м, H-1,9,10)		4.13	4.05 (3H, c, 2-OCH ₃), 3.90 (3H, c, 3-OCH ₃)
5b-A	3420, 1630 (C=O), 1600 (C=N), 1520, 1470	-	7.91 (1H, c, H-4), 7.82 (1H, д, ° <i>J</i> = 8.0, H-1), 7.63–7.31 (5H**, м, H-2, H-8–H-11), 6.82 (1H, м, H-10), 6.71 (1H, м, H-8)	5.34	4.12	2.47 (3H, c, CH ₃)
5b-B (24%)		10.74	7.63–7.31 (2H**, м, H-1, H-4), 7.03 (3H, м, H-2,9,11), 6.82 (1H, м, H-10), 6.71 (1H, м, H-8)	4.91	4.89 (1H, c)	2.32 (3H, c, CH ₃)
5c-A	_*	-	8.10 (1H, д, ° <i>J</i> = 7.6, H-4), 7.97 (1H, д, ° <i>J</i> = 8.0, H-1), 7.86 (1H, т, ° <i>J</i> = 8.0, H-2), 7.52–7.31 (5H, м, H-3, H-8–H-11)	5.39	4.15	=
5c-B (31%)		10.83	7.80 (1H, д, ${}^{o}J$ = 7.2, H-4), 7.58 (1H, т, ${}^{o}J$ = 8.0, H-2), 7.20 (1H, д, ${}^{o}J$ = 8.0, H-1), 7.08–7.00 (3H, м, H-3,9,11), 6.88 (1H, т, ${}^{o}J$ = 6.8, H-10), 6.76 (1H, д, ${}^{o}J$ = 7.2, H-8)	5.03	4.93 (1H, c)	-
5d-A	3440 (NH), 1635 (C=O),	-	8.09 (2H, м, H-1, H-4), 7.51–7.45 (2H, м, H-3,11), 7.39 (1H, д, ° <i>J</i> = 7.6, H-8), 7.32 (2H, м, H-9,10)	5.37	4.15	=
5d-B (54%)	1585 (C=N), 1510, 1440, 745	10.91	7.73 (1H, π , $\sigma J = 8.2$, H-4), 7.21 (1H, c, H-1), 7.06 (1H, π , $\sigma J = 8.0$, H-11), 7.02 (1H, π , $\sigma J = 8.0$, H-9), 6.94(1H, π , $\sigma J = 8.0$, H-3), 6.87 (1H, π , $\sigma J = 8.0$, H-10), 6.75 (1H, π , $\sigma J = 7.6$, H-8)	5.01	4.95 (1H, c)	-
5e-A	1645 (C=O), 1610 (C=N), 1510, 1475,	_	8.02 (1H, д, mJ = 2.8, H-4), 7.80 (1H, д. д, oJ = 8.8, mJ = 2.8, H-2), 7.49 (1H, д, oJ = 8.8, H-1), 7.39–7.27 (4H, м, H-8–H-11)	5.37	4.14	=
5e-B (35%)	1345, 760	10.96	8.02 (1H, \pm , $\sigma J = 8.2$, H-2), 7.49 (1H, \pm , $\sigma J = 2.8$, H-4), 7.17 (1H, \pm , $\sigma J = 8.2$, H-1), 7.02 (2H, \pm , H-9,11), 6.86 (1H, \pm , $\sigma J = 7.6$, H-10), 6.74 (1H, \pm , $\sigma J = 7.6$, H-8)	4.99	4.94 (1H, c)	_

Окончание таблицы 1

1	2	3	4	5	6	7
5f-A	1623 (C=O), 1585 (C=N), 1510, 1485,	_	8.15 (1H, c, H-4), 7.92 (2H, м, H-1,2), 7.47 (1H, д, ° <i>J</i> = 6.4, H-11), 7.38 (1H, д, ° <i>J</i> = 6.8, H-8), 7.31 (2H, м, H-9,10)	5.35	4.12	-
5f-B (38%)	1460, 745	10.95	7.82 (1H, д, $^m\!J$ = 2.0, H-4), 7.62 (1H, д. д, $^o\!J$ = 8.8, $^m\!J$ = 2.0, H-2), 7.10 (1H, д, $^o\!J$ = 8.8, H-1), 7.01 (2H, м, H-9,11), 6.85 (1H, т, $^o\!J$ = 7.2, H-10), 6.73 (1H, д, $^o\!J$ = 6.8, H-8)	4.98	4.93 (1H, c)	_
5g-A	3420 (NH), 1720 (C=O), 1630 (C=O),	=	8.44 (1H, c, H-1), 8.19 (1H, \pm , \pm) = 7.6, H-4), 7.87 (1H, \pm , \pm) = 7.6, H-3), 7.57 (1H**, \pm , M, H-11), 7.39–7.30 (3H, M, H-8,9,10)	5.43	4.16	3.98 (3H, c, OCH ₃)
5g-B (46%)	1590 (C=O), 1590 (C=N), 1245 (C-O), 755	11.01	7.99 (1H, д, ${}^{o}J$ = 7.2, H-4), 7.57 (1H**, м, H-1), 7.51 (1H, д, ${}^{o}J$ = 7.2, H-3), 7.12 (1H, д, ${}^{o}J$ = 6.0, H-11), 7.02 (1H, м, H-9), 6.87 (1H, м, H-10), 6.75 (1H, д, ${}^{o}J$ = 6.4, H-8)	5.04	4.94 (1H, c)	3.92 (3H, c, OCH ₃)
7a	1720 (C=O), 1605 (C=N), 1515, 1290 (C-O)	_	7.93 (1H, \pm , $\sigma J = 8.0$, H-8), 7.74 (1H, \pm , H-1), 7.70 (1H, \pm , $\sigma J = 8.0$, H-11), 7.60 (1H, \pm , H-4), 7.50 (2H, \pm , $\sigma J = 8.4$, H-2',6'), 7.41 (1H, \pm , $\sigma J = 8.0$, H-10), 7.33 (1H, \pm , $\sigma J = 8.0$, H-9), 6.62 (2H, \pm , $\sigma J = 8.4$, H-3',5')	5.76	_	7.78 (1H, c, =CHAr), 4.20 (3H, c, 2-OCH ₃), 3.99 (3H, c, 3-OCH ₃), 3.07 (6H, c, N(CH ₃) ₂)
7b	1720 (C=O), 1600 (C=N), 1515, 1325	_	8.38 (1H, Ξ , G) = 9.0, H-1), 8.17 (1H, Ξ , G) = 2.4, H-4), 8.05 (1H, Ξ , G) = 9.0, G = 2.4, H-2), 7.70 (2H, Ξ , G) = 8.0, H-8,11), 7.51 (2H, Ξ , G) = 8.8, H-2',6'), 7.39 (1H, Ξ , G) = 8.0, H-10), 7.31 (1H, Ξ , G) = 8.0, H-9), 6.64 (2H, Ξ , G) = 8.8, H-3',5')	5.58	_	7.82 (1H, c, =CHAr), 3.07 (6H, c, N(CH ₃) ₂)
7 c	1730 (C=O), 1640, 1590 (C=N), 1515, 1255 (C-O), 750	_	8.73 (1H, c, H-1), 8.37 (1H, μ , ${}^{o}J$ = 8.0, H-4), 8.19 (1H, μ , ${}^{o}J$ = 8.0, H-3), 7.79 (1H, μ , ${}^{o}J$ = 8.0, H-8), 7.71 (1H, μ , ${}^{o}J$ = 8.0, H-11), 7.53 (2H, μ , ${}^{o}J$ = 8.8, H-2',6'), 7.41 (1H, μ , ${}^{o}J$ = 8.0, H-10), 7.32 (1H, μ , ${}^{o}J$ = 8.0, H-9), 6.65 (2H, μ , ${}^{o}J$ = 8.8, H-3',5')	5.66	_	7.82 (1H, c, =CHAr), 4.03 (3H, c, OCH ₃), 3.06 (6H, c, N(CH ₃) ₂)

8a	1645 (C=O), 1615 (C=O), 1595, 1550, 1260 (C-O)	14.90	7.43 (1H, c, H-4), 7.40 (1H, д, oJ = 8.0, H-8), 7.33 (1H, c, H-1), 7.27 (2H, м, H-10,11), 7.09 (1H, т, oJ = 8.0, H-9)	5.15	-	4.04 (3H, c, 2-OCH ₃), 3.89 (3H, c, 3-OCH ₃), 2.47 (3H, c, -COCH ₃)
8b	1680 (C=O), 1595, 1550, 760	14.67	8.09 (1H, π , mJ = 2.0, H-1), 8.03 (1H, π , oJ = 8.0, H-4), 7.39 (1H, π , oJ = 7.6, H-8), 7.32 (1H, π , oJ = 8.2, mJ = 2.0, H-3), 7.27 (2H, π , H-10,11), 7.11 (1H, π , oJ = 8.0, H-9)	5.14	-	2.48 (3H, c, -COCH ₃)
9a	3220 (NH), 3100, 2940, 1675 (уш., С=О), 1250 (С-О)	8.09 уш.	7.24 (2Н, м, Н-4,11), 7.20–7.11 (3Н, м, Н-8,9,10), 6.55 (1Н, с, Н-1)	$4.86 (д),$ $4.14 (д,$ $^2 J =$ $= 16.4)$	3.04 (1Н, м)	4.79 (1H, м, H-6a), 3.87 (3H, c, 2-OCH ₃), 3.74 (3H, c, 3-OCH ₃)
9b	3220 (NH), 3100, 2940, 1675 (уш., С=О), 1500	8.31 уш.	7.56 (1H, уш. c, H-4), 7.22–7.07 (5H, м, H-2, H-8–H-11), 6.83 (1H, д, ${}^o J$ = 8.0, H-1)	4.77 (д), 4.15 (д, $^2J =$ = 16.8)	3.02 (1Н, м)	4.81 (1H, м, H-6a), 2.26 (3H, с, СН ₃)
9с	3200 (NH), 3100, 2950, 1675 (уш., С=О), 1490	8.45 уш.	7.80 (1H, уш. c, H-4), 7.44 (1H, уш. д, ^{o}J = 8.8, H-2), 7.23–7.08 (4H, м, H-8–H-11), 6.90 (1H, д, ^{o}J = 8.8, H-1)	4.80 (д), 4.23 (д, $^2J =$ = 16.6)	3.03 (1Н, м)	4.91 (1Н, м, Н-6а)
9d	3200 (NH), 3080, 2940, 1680 (уш., C=O), 1605, 755	8.45 уш.	7.70 (1H, д, $^o\!J$ = 8.4, H-4), 7.26–7.09 (4H, м, H-8–H-11), 6.96 (1H, уш. с, H-1), 6.77 (1H, уш. д, $^o\!J$ = 8.4, H-3)	$4.84 (\pi),$ $4.25 (\pi,$ $^2 J =$ = 16.6)	3.04 (1Н, м)	4.94 (1Н, м, Н-6а)

^{*} Данные приведены в [2].

** Наложение сигналов форм **A** и **B**.

$$\textbf{6 a} \ R = CO_2Me, \ R^1 = H; \ \textbf{b} \ R = H, \ R^1 = Cl; \ \textbf{c} \ R = H, \ R^1 = Br; \ \textbf{d} \ R = Cl, \ R^1 = H; \\ \textbf{7 a} \ R = R^1 = OMe; \ \textbf{b} \ R = H, \ R^1 = Cl; \ \textbf{c} \ R = CO_2Me, \ R^1 = H; \\ \textbf{8 a} \ R = R^1 = OMe; \ \textbf{b} \ R = Cl, \ R^1 = H; \\ \textbf{R}^1 = H; \ \textbf{9 a} \ R = R^1 = OMe, \ \textbf{b} \ R = H, \ R^1 = Me; \ \textbf{c} \ R = H, \ R^1 = Br; \ \textbf{d} \ R = Cl, \ R^1 = H$$

наблюдалось в более жестких условиях (кипячение в бензонитриле) [1]. Об образовании соединений структуры **6** свидетельствуют найденые в спектрах ЯМР 1 Н смесей синглеты протонов H-12 (11.59, **6a**; 11.91, **6b,c**; 11.78 м. д., **6d**), H-1 (9.70 м. д.), H-11 (д, 8.60 м. д., **6a** и 9.0–9.12 м. д., **6b–d**) и H-7 (8.3–8.5 м. д.) в областях, характерных для ароматических солей изохино[2,3-a]хиназолина [1, 10].

Найденная зависимость для скорости превращения солей $1\mathbf{d}$ — \mathbf{g} соблюдается и при проведении конденсации их с n-(диметиламино)бензальдегидом в уксусном ангидриде. Непродолжительное нагревание смеси реагентов (3 мин — $1\mathbf{g}$, 10 мин — $1\mathbf{e}$, 30 мин — $1\mathbf{a}$) приводит к образованию окрашенных в темно-фиолетовый цвет гидробромидов 7-{[4-(диметиламино)фенил]метилиден}-7,12-дигидро-5H-изохино[2,3-a]хиназолин-5-онов $7\mathbf{a}$ — \mathbf{c} .

Ранее мы показали [5], что изохинохиназолин $\mathbf{5c}$ легко образует продукты $C_{(7)}$ -ацилирования при нагревании с хлорангидридами карбоновых кислот в безводном пиридине, причем эта реакция может быть осуществлена и в более мягких условиях. Так, изохинохиназолины $\mathbf{5a,d}$ легко ацилируются уксусным ангидридом в присутствии AcONa и образуют 7-ацетилпроизводные $\mathbf{8a,b}$ с хорошими выходами. Реакция не сопровождается образованием побочных продуктов, а отличие в поведении оснований $\mathbf{5a}$ и $\mathbf{5d}$ состоит только во времени превращения — наибольшее для $\mathbf{5a}$ и меньшее для $\mathbf{5d}$ (см. экспериментальную часть), что коррелирует с содержанием формы енамина \mathbf{B} для исходных оснований $\mathbf{5}$.

Характерной, на наш взгляд, реакцией, указывающей на наличие структурного фрагмента имина в молекуле (форма $\bf A$), является боро-570

гидридное восстановление. Установлено, что кратная связь $C_{(6a)} = N_{(6)}$

Таблица 2 Физико-химические свойства синтезированных соединений

Сое-	Брутто-формула		<u>Най</u> Вычи	Т. пл.,	Выход,		
не-	-F)	С	C H Br (N	°C*	(метод)
1a	$C_{18}H_{17}BrN_2O_3$	55.46 55.54	4.10 4.40	20.54 20.53	7.30 7.20	272–273	50 (A)
1b	$C_{17}H_{15}BrN_2O$	59.39 59.49	$\frac{4.36}{4.41}$	$\frac{23.30}{23.28}$	8.20 8.16	> 300 p.	28 (A), 59 (Б)
1d	C ₁₆ H ₁₂ BrClN ₂ O	<u>52.74</u> 52.85	3.28 3.33	22.00 21.97 (<u>9.74</u>) (9.75)	7.80 7.70	> 300 p.	48 (A), 67 (B)
1e	C ₁₆ H ₁₂ BrClN ₂ O	<u>52.75</u> 52.85	3.23 3.33	21.99 21.97 (9.76) (9.75)	7.81 7.70	> 300 p.	50 (А), 70 (Б)
1f	$C_{16}H_{12}Br_2N_2O$	46.89 47.09	2.83 2.96	39.17 39.16	6.91 6.86	> 300 p.	47 (A), 69 (Б)
1g	$C_{18}H_{15}BrN_2O_3$	55.75 55.83	3.82 3.90	20.67 20.63	7.30 7.23	127–219	48 (A)
5a	$C_{18}H_{16}N_2O_3$	70.01 70.12	5.19 5.23	-	9.12 9.09	263–265	69
5b	$C_{17}H_{14}N_2O$	77.76 77.84	5.32 5.38	-	10.65 10.68	215–217	70
5d	$C_{16}H_{11}CIN_2O$	67.89 67.97	3.88 3.92	12.56 12.54	10.00 9.91	250–253	85
5e	$C_{16}H_{11}CIN_2O$	67.85 67.97	3.87 3.92	12.52 12.54	<u>9.95</u> 9.91	235–237	80
5f	$C_{16}H_{11}BrN_2O$	<u>58.65</u> 58.74	3.29 3.39	24.47 24.42	8.57 8.56	226–229	82
5g	$C_{18}H_{14}N_2O_3$	70.50 70.58	4.57 4.61	-	9.20 9.15	206–208	79
7a	$C_{27}H_{26}BrN_3O_3$	62.27 62.31	4.99 5.04	15.39 15.35	8.16 8.07	249–251	70
7b	C ₂₅ H ₂₁ BrClN ₃ O	60.62 60.68	4.19 4.28	16.16 16.15 (7.19) (7.16)	8.52 8.49	222–225	80
7c	$C_{27}H_{24}BrN_3O_3$	62.48 62.56	4.60 4.67	15.41 15.41	8.12 8.11	255–256	75
8a	$C_{20}H_{18}N_2O_4$	68.49 68.56	5.10 5.18	-	8.10 8.00	237–240	65
8b	$C_{18}H_{13}CIN_2O_2$	66.50 66.57	3.99 4.03	10.96 10.92	8.65 8.63	232–233	68
9a	$C_{18}H_{18}N_2O_3$	69.60 69.66	<u>5.79</u> 5.85	-	9.10 9.03	190–193	60
9b	$C_{17}H_{16}N_2O$	77.19 77.25	6.09 6.10	-	10.62 10.60	191–193	49
9c	$C_{16}H_{13}BrN_2O$	58.26 58.38	3.89 3.98	24.28 24.27	8.60 8.51	202–205	40
9d	C ₁₆ H ₁₃ ClN ₂ O	67.39 67.49	4.56 4.60	12.47 12.45	9.89 9.84	238–240	42

^{*} Растворитель для перекристаллизации: ДМФА (соединения **1a, 5a,d–f, 8a,b, 9a,c,d**); АсОН (соединения **1b,e,g**); АсОН—ДМФА, 3:1 (соединения **1d,f**); 1,4-диоксан (соединения

5g,b); *i*-PrOH (соединение **9b**); Ac₂O (соединение **7a**); ацетон (соединения **7b,c**).

в Аг-незамещенном изохинохиназолине $\mathbf{5c}$ легко восстанавливается $\mathrm{NaBH_4}$ в метаноле, поэтому логично было предположить, что скорость этой реакции в изохинохиназолинах $\mathbf{5a-g}$ будет определятся соотношением двух таутомерных форм \mathbf{A} и \mathbf{B} . И действительно, время, необходимое для превращения $\mathbf{5a,b,d,e}$ в соответствующие 6,6a,7,12-тетрагидро-5H-изохино[2,3-a]хиназолин-5-оны $\mathbf{9a-d}$, уменьшалось в случае $\mathbf{5a,b}$ (содержание формы \mathbf{B} меньше (или отсутствует), чем у $\mathbf{5c}$) и увеличивалось в случае $\mathbf{5d,e}$ (содержание формы \mathbf{B} больше, чем у $\mathbf{5c}$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе Руе Unicam SP3-300 (таблетки KBr). Спектры ЯМР 1 Н получены на приборе Varian Mercury 400 (400 МГц) в ДМСО- d_6 , внутренний стандарт ТМС, УФ спектры — на спектрофотометре Specord M400. Температуры плавления синтезированных соединений определены на нагревательном приборе типа Boetius и не подвергались коррекции. Контроль за ходом реакций и чистотой полученных соединений осуществлялся с помощью ТСХ на пластинках Silufol UV-254.

Гидробромид 2,3-диметокси-7,12-дигидро-5H-изохино[2,3-а]хиназолин-5-она (1а). Раствор 2.1 г (10 ммоль) о-БМФА и 2.11 г (10 ммоль) метил 2-амино-4,5-диметоксибензоата (2а) в 15 мл 2-пропанола нагревают 1 ч. Охлаждают, выпавший осадок отфильтровывают и промывают 2-пропанолом. Твердое вещество представляет собой смесь метил-2-{[2-(цианометил)бензил]амино}-4,5-диметоксибензоата (3а) и 2-[4,5-диметокси-2-(метоксикарбонил)фенил]-1,4-дигидро-3(2H)-изохинолиниминийбромида (4а) в соотношении 1 : 2. Смесь соединений 3а и 4а растворяют при нагревании в диметилформамиде и кипятят 3 мин. Охлаждают, выпавший осадок отфильтровывают и промывают диметилформамидом и спиртом.

Гидробромиды 2,3-R,R 1 -7,12-дигидро-5H-изохино[2,3-a]хиназолин-5-онов 1b-g. А. Гидробромиды изохинохиназолинов 1b-f получают по методике, приведенной в работе [1], нагреванием смесей эквивалентных количеств o-БМФА и антраниловых кислот 2b-f в 2-пропаноле. Гидробромид метил 5-оксо-7,12-дигидро-5H-изохино[2,3-a]хиназолин-2-карбоксилата (1g) получают при использовании диметил-2-аминотерефталата (2g).

Б. Смесь 2.1 г (10 ммоль) *о*-БМФА и 10 ммоль антраниловой кислоты **2b–f** нагревают на масляной бане при температуре 130–150 °C в течение 4 ч. После охлаждения сплав растирают с 5 мл ацетона. Осадок отфильтровывают, промывают ацетоном и получают гидробромиды изохинохиназолинов **1b–f**.

2,3-R,R¹-**7,12-Дигидро-5Н-изохино**[**2,3-a]хиназолин-5-оны 5a,b,d**–**g**. К суспензиям солей изохинохиназолинов **1a,b,d**–**g** в 10 мл 2-пропанола прибавляют 1.5 мл Et_3N и кипятят 10 мин. Растворитель и избыток Et_3N упаривают, к остатку прибавляют 50 мл воды. Осадок отфильтровывают, тщательно промывают водой, спиртом и получают изохинохиназолины **5a,b,d**–**g**.

Гидробромиды 7-{[4-(диметиламино)фенил]метилиден}-2,3-R,R¹-7,12-дигидро-5Н-изохино[2,3-a]хиназолин-5-онов 7a-c. Смесь 2.57 ммоль гидробромида изохинохиназолина 1a,e,g и 0.38 г (2.57 ммоль) n-диметиламинобензальдегида в 10 мл уксусного ангидрида кипятят 30 мин (для 1a) или 10 мин (1e) и 3 мин (1g). Охлаждают, выпавший осадок отфильтровывают и промывают ацетоном. УФ спектр (МеОН), λ_{max} , нм (ϵ 10⁻³): соединение 7a – 204 (276.93), 232 (249.02), 265 (152.41), 328 (74.34), 415 (159.34); соединение 7b – 205 (247.41), 242 (157.96), 328 (66.61), 423 (85.64); соединение 7c – 250 (155.52), 320 (55.73), 423 (102.38).

7-Ацетил-2,3-R,R¹-6,12-дигидро-5Н-изохино[2,3-а]хиназолин-5-оны 8а,b. Смесь 0.1 ммоль изохинохиназолина **5а,d** и 0.1 г (0.12 ммоль) безводного ацетата натрия в 10 мл уксусного ангидрида нагревают 3 ч (**5а**) или 1 ч 30 мин (**5d**). Охлаждают и оставляют на ночь. Выпавший осадок отфильтровывают, промывают ацетоном.

2,3-R,R¹-**6,6a,7,12-Тетрагидро-5Н-изохино[2,3-а]хиназолин-5-оны 9а-d**. К суспензии 10 ммоль гидробромида изохинохиназолина **1a,b,d,f** в 50 мл метанола прибавляют небольшими порциями 0.76 г (20 ммоль) NaBH₄. По окончании бурной реакции, в ходе которой происходило растворение исходной соли, смесь кипятят 15 мин. Растворитель отгоняют при пониженном давлении, остаток обрабатывают 20 мл 10% раствора NaOH, твердое вещество отфильтровывают, промывают водой.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Потиха, В. А. Ковтуненко, А. В. Тарасевич, Ж. Ж. Вольф, Ш. Андрэ, *XTC*, 430 (2007).
- В. М. Кисель, В. А. Ковтуненко, А. В. Туров, А. К. Тылтин, Ф. С. Бабичев, ДАН, 306, № 3, 628 (1989).
- 3. В. М. Кисель, В. А. Ковтуненко, А. К. Тылтин, Ф. С. Бабичев, Укр. хим. журн., **56**, 749 (1990).
- 4. В. М. Кисель, В. А. Ковтуненко, А. В. Туров, А. К. Тылтин, Ф. С. Бабичев, *XTC*, 389 (1991). [*Chem. Heterocycl. Comp.*, **27**, 316 (1991)].
- 5. В. М. Кисель, Л. М. Потиха, В. А. Ковтуненко, А. К. Тылтин, В. С. Никитченко, Ф. С. Бабичев, Укр. хим. журн., **58**, 790 (1992).
- 6. В. М. Кисіль, Л. М. Потиха, В. О. Ковтуненко, О. В. Туров, Ф. С. Бабичев, Укр. хим. журн., **59**, 1070 (1993).
- 7. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, *XTC*, 423 (1995). [*Chem. Heterocycl. Comp.*, **31**, 372 (1995)].
- 8. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, *XTC*, 643 (2000). [*Chem. Heterocycl. Comp.*, **36**, 560 (2000)].
- 9. В. М. Кисиль, Л. М. Потиха, А. В. Туров, В. А. Ковтуненко, *XTC*, 1258 (2001). [*Chem. Heterocycl. Comp.*, **37**, 1153 (2001)].
- 10. В. М. Кисиль, Л. М. Потиха, В. А. Ковтуненко, А. В. Туров, *XГС*, 522 (1995). [*Chem. Heterocycl. Comp.*, **31**, 457 (1995)].
- 11. Ф. С. Бабичев, В. К. Патратий, В. А. Ковтуненко, Н. Г. Проданчук, В. Г. Зинченко, В. М. Кисель, *Хим.-фарм. журн.*, **24**, № 5, 32 (1990).
- 12. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, с. 167.
- 13. Ю. М. Воловенко, О. В. Хиля, Т. А. Воловненко, Т. В. Шокол, *XTC*, 350 (2002). [*Chem. Heterocycl. Comp.*, **38**, 314 (2002)].
- 14.S. C. Pakrashi, J. Bhattacharyya, L. F Johnson, H. Budzikiewicz, *Tetrahedron*, 19, 1011 (1963).

Национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 01.12.2005