И. Б. Дзвинчук

СИНТЕЗ

5-(1H-БЕНЗИМИДАЗОЛ-2-ИЛ)-1H-ПИРАЗОЛО[3,4-b]ПИРИДИНОВ n-(ДИМЕТИЛАМИНО)БЕНЗАЛЬДЕГИДНОЙ МОДИФИКАЦИЕЙ РЕАКЦИИ ГАНЧА

Взаимодействием *n*-(диметиламино)бензальдегида с 5-амино-3-метил-1-фенилпиразолом и 2-RCOCH₂-1H-бензимидазолами получены 5-(1H-бензимидазол-2-ил)-1H-пиразоло-[3,4-*b*]пиридины. Превращение включает образование по схеме реакции Ганча соединений, содержащих 1,4-дигидропиридиновый цикл, и завершается их ароматизацией в результате либо отщепления N,N-диметиланилина, либо окисления. Отщеплению способствует уксусная кислота, окислению – нитросоединения.

Ключевые слова: альдегиды, бензимидазолы, пиразоло[3,4-*b*]пиридины, пиразолы, реакция Ганча, ароматизация, селективность.

Синтез замещенных пиридинов по реакции Ганча (циклоконденсация альдегида с ацетоуксусным эфиром и аммиаком с последующим окислением образовавшихся 1,4-дигидропиридинов) широко используется в разнообразных модификациях в практике органического синтеза [1-4]. Кипячение в уксусной кислоте n-(диметиламино)бензальдегида (1), димедона и ацетата аммония приводит к продукту, содержащему пиридиновый цикл, без применения окислителя: реакция протекает через производное акридина с 10-[*n*-(диметиламино)фенил]-9,10-дигидропиридиновым фрагментом и завершается ароматизацией последнего в результате отщепления N,N-диметиланилина [5]. Если в подобных соединениях акридина 1,4-дигидропиридиновый фрагмент имеет при атоме С-10 фенильный, 4-метокси- либо 4-гидроксифенильный заместитель, то аналогичное отщепление бензола, анизола либо фенола, соответственно, происходит только при нагревании с минеральными кислотами [6]. Представлялось целесообразным использовать обнаруженную легкость отщепления N,N-диметиланилина для получения новых соединений с незамещенным пиридиновым циклом. Действительно, по сравнению с известными методами синтеза такой подход имеет определенные преимущества: одностадийность процесса и простота его осуществления, доступность, устойчивость при хранении и легкость дозировки исходного альдегида 1, высокая растворимость образующегося N,N-диметиланилина, облегчающая выделение целевых продуктов из реакционных смесей.

В настоящей работе изучены возможности указанного нового подхода на примерах трехкомпонентных реакций альдегида **1**, 5-амино-3-метил-1-фенилпиразола **(2)** и 2-R-COCH₂-замещенных 1H-бензимидазолов **3a**–g.

3–7 а R = Me, **b** R = Ph, **c** R = 4-MeOC₆H₄, **d** R = 3,4,5-(MeO)₃C₆H₂, **e** R = 4-BrC₆H₄, **f** R = 2-фурил, **g** R = 4-O₂NC₆H₄

Применение аминопиразолов типа **2** в синтезе пиразолопиридинов уже упоминалось другими авторами [7–9]. Карбонильные компоненты типа **3** использованы в реакции Ганча впервые, что позволило синтезировать ранее не известные бензимидазолилзамещенные пиразолопиридины.

Найдено, что взаимодействие реагентов **1**, **2** и **3a**–**f** при кипячении в уксусной кислоте (метод A) не останавливается на образовании содержащих 1,4-дигидропиридиновый цикл соединений **4a**–**f**, а сопровождается ароматизацией последних, протекающей, вероятно, через С-протониро-

ванные формы 5a-f, которые легко отщепляют N,N-диметиланилин и превращаются в конечные продукты — 4-незамещенные 5-(1H-бензимидазол-2-ил)-1H-пиразоло[3,4-b]пиридины 6a-f с выходами 69-95% (табл. 1). Процесс протекает гладко и в случае соединения 3f, имеющего фурильный заместитель, который может быть неустойчивым в кислой среде. Ароматизация, обусловленная окислением (возможно, кислородом воздуха), сохраняющая (диметиламино)фенильный заместитель и приводящая к пиразоло[3,4-b]пиридинам 7a-f, реализуется (по данным TCX) в незначительной степени. Напротив, в случае бензимидазола 3g (R = 4- $O_2NC_6H_4$) в условиях метода A преобладает процесс окисления и основным продуктом является пиразоло[3,4-b]пиридин 7g (выход 50%).

Установлено, что взаимодействие реагентов 1, 2 и 3a-g при добавлении нитробензола (окислителя) сдвигается в сторону образования продуктов типа 7. Так, при соотношении нитробензол : 1:2:3, равном 5:1:1:1

Таблица 1 Характеристика синтезированных соединений

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
		С	Н	N	ŕ	(метод)
6a	$C_{21}H_{17}N_5$	74.24 74.32	4.98 5.05	20.48 20.63	276.5–278	95 (A)
6b	$C_{26}H_{19}N_5$	77.53 77.79	4.95 4.77	17.28 17.44	313–315	80 (A)
6c	$C_{27}H_{21}N_5O$	75.02 75.16	<u>4.78</u> 4.91	16.07 16.23	276–278	89 (A)
6d	$C_{29}H_{25}N_5O_3$	70.68 70.86	<u>5.32</u> 5.13	14.09 14.25	262.5–264	85 (A)
6e	$C_{26}H_{18}BrN_5$	64.87 65.01	3.95 3.78	14.43 14.58	330–331.5	95 (A)
6f	$C_{23}H_{15}N_5O$	73.48 73.64	4.21 4.38	17.56 17.89	251–252.5	69 (A)
7a	$C_{29}H_{26}N_6$	75.81 75.96	<u>5.54</u> 5.71	18.39 18.33	>350	52 (Б); 46 (В)
7b	$C_{29}H_{28}N_6$	78.29 78.44	<u>5.57</u> 5.42	16.04 16.14	>350	75 (Б)
7c	$C_{35}H_{30}N_6O$	76.23 76.34	5.36 5.49	15.18 15.26	>350	58 (Б); 48 (В)
7 d	$C_{37}H_{34}N_6O_3$	<u>72.46</u> 72.77	<u>5.47</u> 5.61	13.62 13.76	291–292.5	66 (Б)
7e	$C_{34}H_{27}BrN_6$	68.08 68.12	4.63 4.54	13.94 14.02	>350	82 (Б); 76 (В)
7f	$C_{32}H_{26}N_6O$	75.11 75.27	<u>5.22</u> 5.13	16.37 16.46	>350	56 (Б); 29 (В)
7g	$C_{34}H_{27}N_7O_2$	72.06 72.20	4.66 4.81	17.21 17.33	328.5–330	50 (А); 71 (Б); 69 (В)

(метод Б), такое направление превращения становится преимущественным и выходы продуктов $7\mathbf{a}$ — \mathbf{g} составляют 52—82%. Уменьшение в опытах с 580

соединениями **3**а,**c**,**e**–**g** количества окислителя в пять раз (метод В) приводит к снижению выхода, особенно заметному в случае соединения **7f** (с 56 до 29%).

Судя по приведенным результатам, образованию соединений $7\mathbf{a}$ — \mathbf{g} способствует усиление электроноакцепторных свойств заместителей \mathbf{R} . Вероятно, склонность интермедиатов $\mathbf{4}$ к окислению повышается с ростом кислотности атома водорода в γ -положении 1,4-дигидропиридинового фрагмента, однако лучший выход нитрофенилзамещенного продукта $7\mathbf{g}$ (71%), хотя и выше, чем без использования нитробензола (50%), меньше выходов бромфенил- и даже фенилзамещенных $7\mathbf{e}$ и $7\mathbf{b}$ (82 и 75%). Следовательно, исходное соединение $3\mathbf{g}$ (возможно, из-за высокой окисляющей способности собственной нитрогруппы) заметно расходуется на процесс окисления даже в присутствии нитробензола.

Состав и строение синтезированных пиразоло[3,4-b] пиридинов типа 6 и 7 подтверждается результатами элементного анализа (см. табл. 1) и данными спектров ЯМР 1 Н (табл. 2). Однотипность строения соединений **6a–f** следует из того, что химические сдвиги сигналов одинаково расположенных протонов их бициклических фрагментов имеют очень небольшие различия, вполне закономерно связанные с изменением природы заместителя R. То же относится и к соединениям 7a-g.

В спектрах ЯМР ¹Н соединений типа **6** имеется отчетливый **с**инглетный сигнал протона Н-4 в слабом поле (8.63–8.76 м. д.), отсутствующий в спектрах соединений типа **7**. Сигналы *о-*, *м-* и *n-*протонов N-фенильного заместителя проявляются в спектрах раздельно, в порядке усиления поля, причем *о-*протоны – в довольно слабом поле (8.34–8.42 м. д.), что связано с мощным дезэкранирующим влиянием атомов азота пиридинового и пиразольного колец.

Сигналы группы 3-Ме соединений типа 6 находятся в области 2.64–2.68 м. д., тогда как в соединениях 7 – в более сильном поле (2.02–2.11 м. д.), что, повидимому, обусловлено экранирующим действием находящегося рядом n-(диметиламино)фенильного заместителя, который отклонен от плоскости пиразолопиридинового кольца из-за пространственных помех со стороны 5-бензимидазолильного заместителя и самой группы 3-Me.

Группа 6-Ме соединения **6а** резонирует при 2.99, а соединения **7а** – при 2.37 м. д., т. е. в более сильном поле. Очевидно, что дезэкранирующее влияние бензимидазольного фрагмента в положении 5 на эту группу снижается при стерических помехах в положении 4.

В соединениях **6** и еще в большей степени в соединениях **7** стерические взаимодействия ароматических заместителей пиридинового цикла пиразолопиридиновой системы препятствуют их копланарному расположению с плоскостью последней. В результате атомы водорода заместителя R, расположенные вблизи места сочленения с α-положением пиридинового цикла, резонируют в более сильном поле, чем можно было ожидать. Повидимому, они в большей степени испытывают не дезэкранирование со стороны пиридинового атома азота, а экранирование и стерические помехи

Спектры ЯМР ¹Н синтезированных соединений

Соеди-	δ , м. д. $(J, \Gamma \mathfrak{u})$				
1	2				
6a	2.66 (3H, c, 3-CH ₃); 2.99 (3H, c, 6-CH ₃); 7.26–7.30 (2H, м, H-5',6'); 7.33 (1H, т <i>J</i> = 7.5, H _{Ph} - <i>p</i>); 7.58 (3H, т, <i>J</i> = 7.5, 2H _{Ph} - <i>m</i> , H-7'); 7.73 (1H, д, <i>J</i> = 7.8, H-4') 8.34 (2H, д, <i>J</i> = 8.4, 2H _{Ph} - <i>o</i>); 8.71 (1H, c, H-4); 12.86 (1H, c, NH*)				
6b	2.68 (3H, c, 3-CH ₃); 7.18–7.21 (2H, м, H-5',6'); 7.32–7.36 (4H, м, H _{NPh} - p , 3H _{CPh} - m , p); 7.39–7.42 (1H, м, H-7'); 7.49 (2H, д, J = 7.5, 2H _{CPh} - o); 7.59 (2H, т, J = 7.5, 2H _{NPh} - m); 7.63–7.66 (1H, м, H-4'); 8.36 (2H, д, J = 7.2, 2H _{NPh} - o); 8.73 (1H, c, H-4); 12.39 (1H, c, NH)				
6с	2.64 (3H, c, 3-CH ₃); 3.73 (3H, c, CH ₃ O); 6.87 (2H, π , J = 8.7, 2H _{Ar} - m); 7.19–7.22 (2H, π , H-5',6'); 7.33 (1H, π , J = 7.5, H _{Ph} - σ); 7.42 (2H, π , J = 8.1, 2H _{Ar} - π , H-7'); 7.58 (2H, π , J = 8.1, 2H _{Ph} - π); 7.64–7.67 (1H, π , H-4'); 8.37 (2H, π , J = 8.1, 2H _{Ph} - σ); 8.66 (1H, c, H-4); 12.42 (1H, c, NH)				
6d	2.68 (3H, c, 3-CH ₃); 3.44 (6H, c, 2CH ₃ O- m); 3.65 (3H, c, CH ₃ O- p); 6.81 (2H, c, 2H _{Ar} - o); 7.21–7.24 (2H, M, H-5',6'); 7.34 (1H, τ , J = 7.5, H _{Ph} - p); 7.44–7.47 (1H, M, H-7'); 7.60 (2H, τ , J = 8.1, 2H _{Ph} - m); 7.67–7.70 (1H, M, H-4'); 8.42 (2H, τ , J = 7.5, 2H _{Ph} - o); 8.72 (1H, c, H-4); 12.47 (1H, c, NH)				
6e	2.67 (3H, c, CH ₃); 7.19–7.22 (2H, M, H-5',6'); 7.34 (1H, $_{\rm T}$, $_{\rm J}$ = 7.5, $_{\rm Hph}$ - $_{\rm P}$); 7.38 (2H, $_{\rm J}$, $_{\rm J}$ = 9.0, 2H _{Ar} - $_{\rm M}$); 7.44–7.46 (1H, M, H-7'); 7.53 (2H, $_{\rm J}$, $_{\rm J}$ = 9.0, 2H _{Ar} - $_{\rm M}$); 7.58 (2H, $_{\rm T}$, $_{\rm J}$ = 7.5, 2H _{Ph} - $_{\rm M}$); 7.62–7.66 (1H, M, H-4'); 8.34 (2H, $_{\rm J}$, $_{\rm J}$ = 7.8, 2H _{Ph} - $_{\rm O}$); 8.76 (1H, c, H-4); 12.50 (1H, c, NH)				
6f	2.64 (3H, c, CH ₃); 6.45 (1H, д, J = 3.3, H _{Het} -3); 6.54–6.55 (1H, м, H _{Het} -4); 7.25–7.27 (2H, м, H-5',6'); 7.35 (1H, т, J = 7.5, H _{Ph} - p); 7.53 (1H, д, J = 6.0, H-7'); 7.61 (2H, т, J = 7.8, 2H _{Ph} - m); 7.71 (1H, д, J = 8.7, H-4'); 7.75 (1H, д, J = 0.9, H _{Het} -5); 8.39 (2H, д, J = 8.4, 2H _{Ph} - o); 8.63 (1H, c, H-4); 12.75 (1H, c, NH)				
7a	2.06 (3H, c, 3-CH ₃); 2.37 (3H, c, 6-CH ₃); 2.84 [6H, c, N(CH ₃) ₂]; 6.58 и 7.14 (2 × 2H, два д, J = 9.0, $2H_{Ar}$ - o , $2H_{Ar}$ - m); 7.10–7.13 (2H, м, H-5',6'); 7.34 (1H, т. J = 7.5, H_{Ph} - p); 7.39–7.42 (1H, м, H-4'); 7.55–7.61 (3H, м, $2H_{Ph}$ - m , H-4'); 8.31 (2H, д, J = 7.8, $2H_{Ph}$ - o); 12.45 (1H, c, NH*)				
7b	2.08 (3H, c, 3-CH ₃); 2.85 [6H, c, N(CH ₃) ₂]; 6.60 (2H, д, J = 8.7, 2H _{Ar} - m); 7.05–7.11 (2H, м, H-5',6'); 7.17 (2H, д, J = 8.4, 2H _{Ar} - o); 7.19–7.26 (3H, м, 2H _{CPh} - m , H _{CPh} - p); 7.26–7.29 (1H, м, H-7'); 7.34 (1H, т, J = 7.5, H _{NPh} - p); 7.44–7.49 (3H, м, 2H _{CPh} - o , H-4'); 7.58 (2H, т, J = 7.8, 2H _{NPh} - m); 8.34 (2H, д, J = 7.8, 2H _{NPh} - o); 12.31 (1H, c, NH)				
7c	2.05 (3H, c, 3-CH ₃); 2.84 [6H, c, N(CH ₃) ₂]; 3.67 (3H, c, CH ₃ O), 6.58 (2H, д, $J=8.7, 2H_{4-Ar}$ - m); 6.75 (2H, д, $J=8.7, 2H_{6-Ar}$ - m); 7.07–7.09 (2H, м, H-5',6'); 7.13 (2H, д, $J=8.7, 2H_{4-Ar}$ - o); 7.27–7.31 (1H, м, H-7'); 7.33 (1H, т, $J=7.5, H_{Ph}$ - p); 7.40 (2H, д, $J=8.7, 2H_{6-Ar}$ - o); 7.48–7.50 (1H, м, H-4'); 7.58 (2H, т, $J=7.8, 2H_{Ph}$ - m); 8.34 (2H, д, $J=7.8, 2H_{Ph}$ - 2.6); 12.35 (1H, c, NH)				
7d	2.04 (3H, c, 3-CH ₃); 2.80 [6H, c, N(CH ₃) ₂]; 3.33 (6H, c, 2CH ₃ O- m); 3.57 (3H, c, CH ₃ O- p); 6.56 (2H, μ , μ				

1	2
7e	2.08 (3H, c, 3-CH ₃); 2.84 [6H, c, N(CH ₃) ₂]; 6.58 (2H, π , J = 8.7, 2H _{4-Ar} - m); 7.08–7.10 (2H, π , H-5',6'); 7.15 (2H, π , J = 9.0, 2H _{4-Ar} - σ); 7.27–7.30 (1H, π , H-7'); 7.35–7.44 (5H, π , H _{Ph} - p , 4H _{6-Ar}); 7.47–7.50 (1H, π , H-4'); 7.58 (2H, π , J = 7.8, 2H _{Ph} - m); 8.31 (2H, π , J = 7.8, 2H _{Ph} - σ); 12.38 (1H, c, NH)
7 f	2.02 (3H, c, 3-CH ₃); 2.84 [6H, c, N(CH ₃) ₂]; 5.75 (1H, д, J = 3.6, H _{Het} -3); 6.37–6.38 (1H, м, H _{Het} -4); 6.55 и 7.13 (2 × 2H, два д, J = 9.0, 4H _{4-Ar}); 7.14–7.18 (2H, м, H-5',6'); 7.36 (1H, т, J = 7.5, H _{Ph} - p); 7.39–7.41 (1H, м, H-7'); 7.57–7.58 (1H, м, H-4'); 7.61 (2H, т, J = 7.8, 2H _{Ph} - m); 7.67 1H, д, J = 0.9, H _{Het} -5); 8.39 (2H, д, J = 7.8, 2H _{Ph} - m); 12.69 (1H, c, NH)
7g	2.11 (3H, c, 3-CH ₃); 2.84 [6H, c, N(CH ₃) ₂]; 6.60 (2H, д, $J=8.7$, 2H _{4-Ar} - m); 7.07–7.10 (2H, м, H-5',6'); 7.16 (2H, д, $J=9.0$, 2H _{4-Ar} - o); 7.28–7.30 (1H, м, H-7'); 7.36 (1H, т, $J=7.5$, H _{Ph} - p); 7.47–7.50 (1H, м, H-4'); 7.58 (2H, т, $J=7.8$, 2H _{Ph} - m); 7.66 и 8.05 (2 × 2H, два д, $J=8.7$, 4H _{6-Ar}); 8.30 (2H, д, $J=8.1$, 2H _{Ph} - o); 12.46 (1H, c, NH)

^{*} Подвергается дейтерообмену.

бензимидазольного фрагмента. Особенно существенно это проявляется в случае 2-фурильного заместителя: сигнал H_{Het} -3 находится в весьма сильном поле при 6.45 (соединение **6f**) и 5.75 м. д. (соединение **7f**), тогда как сигнал H_{Het} -4 сдвинут в более слабое поле -6.54 (**6f**) и 6.37 м. д. (**7f**).

Сигналы протонов H-4',7' бензимидазольного цикла проявляются раздельно, что свидетельствует о заторможенных миграциях протона между атомами азота. Такое явление типично для бензимидазолов, содержащих объемистый гетероциклический заместитель в положении 2 (см. [10]).

Важная информация получена при изучении эффекта Оверхаузера для соединений 7g и 6b. Подавление сигнала группы 3-Ме первого не отражается на каких-либо других сигналах, в том числе и 4-(диметиламино)фенильного заместителя (вероятно, из-за его отклонения от плоскости пиразолопиридинового фрагмента). Напротив, при подавлении сигнала группы 3-Ме соединения 6b возрастает интегральная интенсивность сигнала Н-4, а подавление последнего сигнала отражается на первом. Эти результаты подтверждают пространственно близкое расположение взаимодействующих ядер в молекуле, т. е. свидетельствуют о взаимодействии реагентов 1-3 по приведенной выше схеме. Исключается реализация второго возможного способа циклоконденсации, при котором альдегид реагирует по аминогруппе пиразола 2 и активной метиленовой группе соединения 3. а замыкание шикла происходит в результате конденсации группы С=О по положению 4 пиразольного кольца. Такой путь превращения привел бы к изомерным продуктам, отличающимся иным расположением заместителей в пиразоло[3,4-b]пиридиновом фрагменте, в частности имеющим в пиридиновом цикле а-незамещенное положение, пространственно удаленное от метильной группы пиразольного кольца.

Таким образом, приведенные примеры эффективного синтеза ранее не известных 4-незамещенных 5-(1H-бензимидазол-2-ил)-1H-пиразоло[3,4-b]-пиридинов типа **6** показывают перспективность применения n-(диметиламино)бензальдегидной модификации реакции Ганча.

Контроль за ходом реакций и чистотой синтезированных соединений проводили методом TCX на пластинках Silufol UV-254 в системе растворителей бензол—этанол, 9 : 1, проявление в УФ свете. Спектры ЯМР 1 Н соединений регистрировали на спектрометрах Varian VXR-300 (300 МГц) и Varian Unity Plus-400 (400 МГц) (NOE-эксперимент) в ДМСО- 4 6, стандарт ТМС. Все соединения перед проведением элементного анализа и спектральных исследований высушивали 5 ч при 145 $^{\circ}$ С.

5-(1H-Бензимидазол-2-ил)-3,6-диметил-1-фенил-1H-пиразоло[3,4-*b*]пиридин (6а). А. Смесь 0.149 г (1 ммоль) альдегида 1, 0.173 г (1 ммоль) аминопиразола 2, 0.174 г (1 ммоль) 2-ацетонилбензимидазола (3а) и 2 мл ледяной уксусной кислоты выдерживают при 120 °С в течение 2 ч. Добавляют 1 мл воды и нагревают при перемешивании до начала кристаллизации. Остывшую смесь фильтруют, осадок продукта 6а промывают смесью 2-пропанол—вода, 1 : 1. Выход 0.324 г (95%). Продукт перекристаллизовывают из смеси пиридин—вода, 2 : 1.

Аналогично получают соединения **6b–f**, **7g** из соединений **1**, **2** и **3b–g** соответственно. Продукт **6f** перекристаллизовывают из смеси пиридин–вода, 1:1, а **7g** – из смеси диметилформамид–вода, 5:1.

5-(1H-Бензимидазол-2-ил)-3,6-диметил-4-[4-(диметиламино)фенил]-1-фенил-1H-пиразоло[3,4-*b*]пиридин (7а). Б. Смесь 0.149 г (1 ммоль) альдегида 1, 0.173 г (1 ммоль) аминопиразола 2, 0.174 г (1 ммоль) 2-ацетонилбензимидазола (3а), 0.5 мл (5 ммоль) нитробензола и 1 мл ледяной уксусной кислоты выдерживают при 120 °С в течение 1.5 ч, затем добавляют 1 мл воды, 1 мл 2-пропанола и кипятят при перемешивании до начала кристаллизации. Остывшую смесь фильтруют, осадок продукта 7а промывают 2-пропанолом. Выход 0.238 г (52%). Продукт перекристаллизовывают из диметилформамида.

Аналогично получают соединения **7b–g**, соответственно, из реагентов **1**, **2**, **3b–g** и нитробензола. Для выделения продукта **7d** реакционную смесь разбавляют 5 мл воды, упаривают досуха, остаток кипятят с 4 мл ацетона и после охлаждения отфильтровывают соединение **7d**, которое перекристаллизовывают из смеси пиридин—вода, 2:1. Соединение **7e** очищают кристаллизацией из смеси диметилформамид—уксусная кислота, 3:1.

В. По приведенному выше методу, но при соотношении нитробензол : 1:2:3, равном 1:1:1:1, синтезируют соединения 7a,c,e-g.

Автор выражает искреннюю благодарность В. В. Половинко – специалисту по ЯМР фирмы "УкрОргСинтез" (г. Киев) – за выполнение NOE-эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- К. В. Вацуро, Г. Л. Мищенко, Именные реакции в органической химии, Химия, Москва, 1976, 133.
- 2. A. Sausins, G. Dubur, *Heterocycles*, 27, 269 (1988).
- 3. В. В. Кастрон, Р. О. Витолиня, Г. Я. Дубур, *Хим.-фарм. журн.*, 14 (1990).
- 4. Ф. Э. Саусиныц, Г. Я. Дубур, *XГС*, 435 (1992). [Chem. Heterocycl. Comp., **28**, 363 (1992)].
- И. Б. Дзвинчук, Н. А. Толмачева, XTC, 554 (2001). [Chem. Heterocycl. Comp., 37, 506 (2001)].
- 6. A. H. Пырко, *ЖОрХ*, **38**, 1875 (2002).
- 7. A. Hormaza, J. Heterocycl. Chem., 35, 575 (1998).
- 8. В. Д. Орлов, Х. Кирога, Н. Н. Колос, *XTC*, 1247 (1987). [Chem. Heterocycl. Comp., 23, 997 (1987)].
- 9. H. Dorn, A. Zubek, Chem. Ber., 101, 3265 (1968).
- 10. И. Б. Дзвинчук, М. О. Лозинский, *XTC*, 206 (2005). [*Chem. Heterocycl. Comp.*, **41**, 177 (2005)].

 Институт органической химии НАН Украины,
 Поступило 16.06.2006

 Киев 02094
 После доработки 20.11.2006

 e-mail: Rostov@bpci.kiev.ua
 После доработки 20.11.2006

584