М. С. Новиков, А. А. Озеров

АЦИКЛИЧЕСКИЕ АНАЛОГИ ПИРИМИДИНОВЫХ НУКЛЕОЗИДОВ. СИНТЕЗ 1-(2-ГИДРОКСИЭТОКСИМЕТИЛ)-И 1-(4-ГИДРОКСИБУТИЛ)-5-АМИНОПРОИЗВОДНЫХ УРАЦИЛА

С целью поиска новых противовирусных агентов на основе ациклических аналогов пиримидиновых нуклеозидов осуществлен синтез 1-(2-гидроксиэтоксиметил)- и 1-(4-гидроксибутил) производных урацила, имеющих разнообразные ароматические и гетероциклические аминосодержащие заместители в положении 5 пиримидинового пикла.

Ациклические аналоги нуклеозидов обладают широким спектром биологической активности. Среди них обнаружены высокоэффективные противовирусные агенты, нашедшие применение в клинической практике. 9-(2-Гидроксиэтоксиметил) гуанин (ацикловир) остается до настоящего времени одним из самых активных противогерпетических лекарственных средств 11, 21. Ero разветвленный аналог 9-(1,3-дигидрокси-2пропоксиметил) гуанин (ганцикловир) продемонстрировал высокую эффективность при цитомегаловирусной инфекции [3, 4]. Соответствующий карбоцепной аналог ганцикловира 9-[4-гидрокси-3-(гидроксиметил)бутил Ігуанин (пенцикловир) обладает сходным с ацикловиром спектром и уровнем противовирусного действия [5]. Известен ряд пиримидиновых ациклонуклеозидов, проявивших выраженную противовирусную активность. 1-(1,3-Дигидрокси-2-пропоксиметил) цитозин (I) обнаружил высокую активность в отношении вируса Эпштейна-Барра и цитомегаловирусов іп 1-(2-Гидроксиэтоксиметил)-6-(фенилтио) тимин многочисленные производные эффективно и селективно ингибировали вирус иммунодефицита человека типа 1 in vitro [7, 8]. 5-Замещенные производные пиримидиновых ациклонуклеозидов, например 5-бензил-1-(1,3-дигидрокси-2-пропоксиметил) урацил (III) и его аналоги, имеющие дополнительные заместители в ароматическом ядре, проявили выраженные ингибиторные свойства в отношении уридинфосфорилазы и усиливали противоопухолевое действие 2'-дезокси-5-фторуридина [9-11]. Недавно описаны синтез и ингибиторные свойства в отношении уридинфосфорилазы 1-(2-гидроксиэтоксиметил) -5-(фенилтио) - (IV) и -5-(фенилселено) урацилов (V) [12].

III $X = CH_2$, $R = CH_2OH$; IV, VR = H; IVX = S; VX = Se

В настоящей работе представлен синтез новых ациклических аналогов уридина, содержащих в составе боковой цепи атом кислорода, и карбоцепных аналогов, полученных на основе 5-аминозамещенных производных урацила и представляющих интерес в качестве потенциальных ингибиторов клеточных и вирусспецифических ферментов. Исходные 5-(фениламино)-(VI), 5-(о-толиламино)- (VII), 5-(м-толиламино)- (VIII) и 5-(п-толиламино) урацил (IX) были получены по предложенной нами ранее методике [13]. Синтез 5-(N-морфолино)- (X), 5-(N-пиперидино)- (XI) и 5-(циклогексиламино) урацила (XII) осуществлен кипячением 5-бромурацила в избытке соответствующего амина [14].

Последующее алкилирование 5-аминозамещенных урацилов VI—XI 4-хлор- или 4-бромбутилацетатом в ДМФА при $80...85\,^{\circ}$ С в присутствии эквимолярного количества карбоната калия привело к смеси соответствующих N^1 -моно- и N^1,N^3 -дизамещенных продуктов алкилирования, которые разделяли методом препаративной хроматографии, как это описано для урацила и тимина [15]. Выход целевых 1-(4-ацетоксибутил) замещенных (XIII—XVIII) составил 14...15% (табл. 1); при этом в случае алкилирования производных урацила, имеющих в положении 5 заместители с третичным атомом азота (N-морфолино- и N-пиперидинопроизводные X и XI), наблюдается существенное (в среднем на 20%) увеличение выхода продуктов N^1 -монозамещения по сравнению с фениламино- (VI) и

VI, XIII, XIX, XXVI, XXXII $R^1=Ph;$ VII, XIV, XX, XXVII, XXXII $R^1=o$ -MeC₆H₄; VIII, XV, XXI, XXVIII, XXXIV $R^1=m$ -MeC₆H₄; IX, XVI, XXII, XXIX, XXXV $R^1=p$ -MeC₆H₄; XII, XXV, XXXVIII $R^1=C_6H_{13};$ VI—IX, XII—XVI, XIX—XXII, XXV—XXIX, XXXII—XXXV, XXXVIII $R^2=H;$ X, XVII, XXIII, XXX, XXXVI $R^1,R^2=N$ -морфолино; XI, XVIII, XXIV, XXXI, XXXVI $R^1,R^2=N$ -пиперидино; XIII—XVIII $R^3=Me;$ XIX—XXV $R^3=Ph;$ XIII—XVIII, XXVI—XXXI $R^3=N$ 0

Характеристики промежуточных 1-(4-ацетоксибутил)- (XIII—XVIII), 1-(2-бензоилоксиэтоксиметил)- (XIX—XXI, XXIII—XXV) и 1-(2-ацетоксиэтоксиметил) производных (XXII) 5-аминозамещенных урацилов

Соеди- нение	Брутго- формула		Найдено, % Вычислено,		<i>T</i> _{ПЛ} , ℃	Rf⁵	Выход, %
		С	Н	N			
хш	C ₁₆ H ₁₉ N ₃ O ₄	60,93 60,55	6,36 6,04	13,00 13,24	125127	0,63	34,8
XIV	C ₁₇ H ₂₁ N ₃ O ₄	61,88 61,61	6,79 6,39	12,31 12,68	113116	0,64	26,7
XV	C ₁₇ H ₂₁ N ₃ O ₄	61,95 61,61	6,77 6,39	12,30 12,68	9396	0,65	20,7
XVI	C17H21N3O4	61,96 61,61	5,98 6,39	12,34 12,68	114119	0,61	14,2
XVII	C ₁₄ H ₂₁ N ₃ O ₅	54,44 54,01	7,02 6,80	13,23 13,50	154156	0,39	40,2
xvIII	C15H23N3O4	58,34 58,24	7,73 7,49	13,24 13,58	108111	0,31	44,7
XIX	C20H19N3O5	62,62 62,99	5,32 5,02	10,71 11,02	9598	0,72	80,0
XX	C ₂₁ H ₂₁ N ₃ O ₅	63,57 63,79	5,69 5,35	10,38 10,63	126128	0,77	64,0
XXI	C ₂₁ H ₂₁ N ₃ O ₅	64,05 63,79	5,68 5,35	10,26 10,63	123125	0,76	71,2
XXII	C ₁₆ H ₁₉ N ₃ O ₅	57,21 57,65	6,04 5,75	12,89 12,61	146149	0,64	55,4
XXIII* ²	C ₁₈ H ₂₂ CiN ₃ O ₆	52,79 52,50	5,71 5,38	10,11 10,20	208213	0,28	93,4
XXIV*2	C ₁₉ H ₂₄ ClN ₃ O ₅	56,03 55,68	5,60 5,90	10,02 10,25	205211	0,49	95,2
XXV* ²	C20H25ClN3O5	57,12 56,80	6,22 5,96	9,60 9,94	183186	0,61	87,4

В системе А.

толуидиноурацилами (VII—IX). В идентичных условиях алкилирование 5-(циклогексиламино) урацила (XII) привело исключительно к смолообразным продуктам.

Использование более мягких условий алкилирования силилированных аминопроизводных урацила VI—XII α-галоидэфирами по методу Гилберта— Джонса обеспечивает значительно более высокие селективность и выход (55...95%) продуктов N¹-монозамещения. В качестве алкилирующих агентов были использованы как 2-бензоилоксиэтоксиметилхлорид, полученный по реакции Анри из параформальдегида и монобензоата этиленгликоля. так и 2-ацетоксиэтоксиметилбромид, полученный in situ в результате взаимодействия 1,3-диоксолана с эквимолярным количеством ацетилбромида [16]. Алкилирование триметилсилильных производных 5-(N-пиперидино) - (X), 5-(N-морфолино) - (XI) и 5-(циклогексиламино) урацила (XII) при комнатной температуре в безводном хлороформе протекает с выходами, близкими к количественным. Соответствующие 1-(2-бензоилоксиэтоксиметил) замещенные XXIII—XXV легко кристаллизуются в виде гидрохлоридов из реакционной массы при ее обработке 95% этанолом. В противоположность этому при алкилировании триметилсилилпроизводных 5-(фениламино)-(VI), 5-(о-толиламино)- (VII), 5-(м-толиламино)- (VIII) и 5-(п-толилами-

^{*2} Соединения XXIII, XXIV и XXV получены в виде гидрохлоридов.

но) урацила (IX) образуются 1-(2-бензоилоксиэтоксиметил) производные XIX—XXII. Эти соединения содержат ариламиногруппы в положении 5 и вследствие этого являются значительно более слабыми основаниями и не образуют стабильных гидрохлоридов.

Заключительное удаление ацетильных или бензоильных групп насыщенным при 0 $^{\circ}$ С метанольным раствором аммиака протекает без существенных осложнений и приводит с выходом 52...88% к конечным 1-(4-гидроксибутил)- (XXVI—XXXI) и 1-(2-гидроксиэтоксиметил)замещенным (XXXII—XXXVIII) (табл. 2).

В спектрах ПМР соединений XXVI—XXXI и XXXII—XXXVIII сигнал протона Н⁰ проявляется в виде однопротонного синглета в области 7,23...7,49 м. д. для соединений с ароматическими заместителями и в области 6,58...6,99 м. д. для 5-(N-пиперидино)-, 5-(N-морфолино)- и 5-(пиклогексиламино) производных (табл. 3, 4). Протон экзоциклической аминогруппы в положении 5 для фениламино- и толуидинопроизводных представлен уширенным синглетом в области 5,90...6,56 м. д. При этом в случае о-толуидиновых производных этот сигнал смещен в сильное поле в среднем на 0,5 м. д. по сравнению с соответствующими мета- и пара-изомерами. Химические сдвиги и интегральные интенсивности сигналов протонов ациклических фрагментов синтезированных соединений в целом соответствуют аналогичным параметрам классических пиримидиновых ациклонуклеозидов [17].

Таблица 2

Характеристики целевых 1-(4-гидроксибутил)- (XXVI—XXXI)
и 1-(2-гидроксиэтоксиметил) производных (XXXII—XXXVIII)
5-аминозамещенных урацилов

Соеди-	Брутго- формула	Найдено, % Вычислено, %			<i>T</i> _{ПЛ} , °C	Rf	Выход, %
нение		. с	н	N			
XXVI	C ₁₄ H ₁₇ N ₃ O ₃	61,87 61,08	6,98 6,22	14,19 15,26	159161	0,43	67,2
XXVII	C ₁₅ H ₁₉ N ₃ O ₃	63,34 62,27	6,96 6,62	14,10 14,52	105108	0,47	65,4
xxvIII	C ₁₅ H ₁₉ N ₃ O ₃	$\frac{63,21}{62,27}$	7,23 6,62	14,02 14,52	156158	0,40	73,6
XXIX	C15H19N3O3	$\frac{61,88}{62,27}$	$\frac{7,54}{6,62}$	$\frac{13,78}{14,52}$	146150	0,42	78,7
XXX ·	C ₁₂ H ₁₉ N ₃ O ₄	52,74 53,52	7,91 7,11	16,57 15,60	145148	0,21	81,0
XXXI	C ₁₃ H ₂₁ N ₃ O ₃	58,94 58,41	8,67 7,92	16,92 15,82	9496	0,24	88,0
xxxII	C ₁₃ H ₁₅ N ₃ O ₄	55,68 56,31	5,82 5,45	15,94 15,15	123126	0,56	74,0
хххш	C14H17N3O4	58,36 57,72	6,18 5,88	14,01 14,42	165167	0,56	75,8
XXXIV	C14H17N3O4	58,66 57,72	6,12 5,88	13,98 14,42	122124	0,53	67,9
xxxv	C14H17N3O4	58,59 57,72	5,10 5,88	15,24 14,42	8285	0,60	74,7
XXXVI	C ₁₁ H ₁₇ N ₃ O ₅	47,41 48,70	6,78 6,32	16,36 15,49	169170	0,35	70,7
XXXVII	C12H19N3O4	52,77 53,52	6,52 7,11	16,92 15,60	132135	0,41	52,2
хххуш	C ₁₃ H ₂₁ N ₃ O ₄	<u>56,23</u> 55,11	7,93 7,47	13,94 14,83	154157	0,30	61,6

^{*} В системе Б.

Параметры спектров ПМР 1-(4-ацетоксибутил)- (XIII—XVIII) и 1-(4-гидроксибутил)производных (XXVI—XXXI) 5-аминозамещенных урацила

Соеди- нение	Химический сдвиг, δ , м. д.							
	R ¹ R ² N	H ⁶ c (1H)	NCH ₂ CH ₂ CH ₂ CH ₂ O	OC(O)R ³ или ОН				
хш	6,34 уш. с (1H); 6,497,15 м (5H)	7,40	1,471,76 м (4H); 3,70 τ (6 Γπ, 2H); 3,95 τ (6 Γπ, 2H)	1,87 c (3H)				
XIV	2,13 c (3H); 5,71 уш. c (1H); 6,557,10 м (4H)	7,17	1,491,81 m (4H); 3,69 τ (6 Γц, 2H); 3,93 τ (6 Γц, 2H)	1,85 c (3H)				
XV	2,10 c (3H); 6,447,09 м (5H)	7,41	1,441,68 m (4H); 3,68 τ (6 Γц, 2H); 3,95 τ (6 Γц, 2H)	1,88 c (3H)				
IVX	2,08 с (3H); 6,44 уш. с (1H); 6,606,95 м (4H)	7,32	1,411,70 м (4H); 3,65 τ (6 Γц, 2H); 3,93 τ (6 Γц, 2H)	1,88 c (3H)				
XVII	2,752,94 м (4H); 3,533,76 м (4H)	6,89	1,461,74 m (4H); 3,65 τ (6 Γц, 2H); 3,94 τ (6 Γц, 2H)	1,88 c (3H)				
xvm	1,301,78 м (6H); 2,622,92 м (4H)	6,80	1,301,78 м (4H); 3,65 τ (6 Γπ, 2H); 3,93 τ (6 Γπ, 2H)	1,87 c (3H)				
XXVI	6,517,17 м (6Н)	7,49	1,271,79 м (4H); 3,283,50 м (4H)	4,56 т (5 Гц, 1Н)				
XXVII	2,12 c (3H); 5,90 уш. c (1H); 6,507,06 м (4H)	7,25	1,321,76 м (4H); 3,323,54 м (4H)	4,59 т (5 Гц, 1Н)				
XXVIII	2,11 с (3H); 6,347,03 м (5H)	7,39	1,321,78 м (4H); 3,293,51 м (4H)	4,58 т (5 Гц, 1Н)				
XXIX	2,12 c (3H); 6,51 уш. c (1H); 6,637,02 м (4H)	7,36	1,321,82 м (4H); 3,323,52 м (4H)	4,64 т (5 Гц, 1Н)				
XXX	2,692,90 м (4H); 3,543,80 м (4H)	6,94	1,281,71 м (4H); 3,233,51 м (4H)	4,51 т (5 Гц, 1Н)				
XXXI	1,281,69 м (6H); 2,622,84 м (4H)	6,88	1,281,69 м (4H); 3,263,52 м (4H)	4,49 т (5 Гц, 1Н)				

Анализ электронной структуры и геометрических параметров 1-(2-гидро-ксиэтоксиметил)-5-(фениламино) урацила (XXXII) в вакууме методами квантовой химии (MNDO) и молекулярной механики свидетельствует об их близости аналогичным характеристикам, определенным как для 1-(2-гидро-ксиэтоксиметил)-6-фенилтиотимина (II), так и для 5-бензилациклоуридина (III), что дает основание ожидать селективного ингибирующего действия синтезированных соединений на различные вирусные и клеточные ферменты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР регистрировали на спектрометре Tesla BS-567 A (100 МГц) в растворах ДМСО-D6, внешний стандарт ГМДС. ТСХ выполняли на пластинах Silufol UV-254, применяя в качестве элюентов этилацетат (А) и смесь хлороформ—метанол (9:1) (Б); проявление в парах иода. Для препаративной хроматографии использовали силикагель L 40/100. ВЭЖХ проводили на приборе Милихром-2. Температуры плавления определяли в стеклянных капиллярах и не корректировали.

Параметры спектров ПМР 1-(2-бензоилоксиэтоксиметил)- (XIX—XXI, XXIII—XXV), 1-(2-ацетоксиэтоксиметил)- (XXII) и 1-(2-гидроксиэтоксиметил)производных (XXXII—XXXVIII) 5-аминозамещенных урацила

Соеди- нение	Химический сдвиг, δ , м. д.							
	R ¹ R ² N	H ⁶ c (1H)	NCH ₂ O c (2H)	осн ₂ сн ₂ о	OC(O)R ³ или ОН			
XIX	6,27 уш. с (1H); 6,557,18 м (5H)	7,30	5,18	3,87 т (5 Гц, 2H); 4,36 т (5 Гц, 2H)	7,188,00 м (5H)			
XX	2,14 с (3H); 6,20 уш. с (1H); 6,687,11 м (4H)	7,24	5,18	3,86 т (5 Гц, 2H); 4,37 т (5 Гц, 2H)	7,307,97 м (5H)			
XXI	2,15 c (3H); 6,407,00 м (5H)	7,32	5,16	3,87 т (5 Гц, 2H); 4,37 т (5 Гц, 2H)	7,387,98 м (5H)			
XXII	2,14 с (3H); 6,55 уш. с (1H); 6,737,03 м (4H)	7,35	5,12	3,48 т (5 Гц, 2H); 4,29 т (5 Гц, 2H)	1,91 c (3H)			
XXIII	2,793,00 м (4H); 3,563,74 м (4H)	7,29	5,10	3,81 т (5 Гц, 2H); 4,33 т (5 Гц, 2H)	7,377,92 м (5H)			
XXVI	1,632,00 м (6H); 3,093,30 м (4H)	8,03	5,12	3,76 т (5 Гц, 2H); 4,35 т (5 Гц, 2H)	7,367,93 м (5H)			
XXV	0,992,11 м (10Н)	8,05	5,18	3,84 т (5 Гц, 2Н); 4,37 т (5 Гц, 2Н)	7,347,95 м (5H)			
XXXII	6,607,22 м (6Н)	7,46	5,10	3,52 c (4H)	4,79 ym. c (1H)			
хххш	2,15 с (3H); 6,02 уш. с (1H); 6,637,08 м (4H)	7,23	5,06	3,50 c (4H)	4,79 уш. с (1Н)			
XXXIV	2,13 c (3H); 6,377,05 м (5H)	7,43	5,06	3,47 c (4H)	4,84 уш. с (1Н)			
XXXV	2,12 c (3H); 6,56 уш. с (1H); 6,677,00 м (4H)	7,35	5,08	3,50 c (4H)	4,78 ym. c (1H)			
XXXVI	2,742,99 м (4H); 3,403,70 м (4H)	6,96	5,06	3,51 c (4H)	4,80 уш. с (1Н)			
XXXVII	1,401,74 м (6H); 2,712,94 м (4H)	6,99	5,10	3,55 c (4H)	4,88 ym. c (1H)			
xxxvm	0,982,08 м (10Н)	6,58	5,03	3,47 c (4H)	4,44 ym. c (1H)			

Соединения VI—IX синтезированы в соответствии с ранее описанным методом [13], X—XII — методом [14].

1-(4-Ацетоксибутил)-5-фениламиноурацил (XIII). Суспензию 3,0 г (14,8 ммоль) 5-фениламиноурацила VI и 2,0 г (14,5 ммоль) карбоната калия в 100 мл безводного ДМФА перемешивают 1 ч при 80...85 °C, добавляют 2,2 мл (15,2 ммоль) 4-бромбутилацетата и перемешивают при той же температуре 8 ч. Охлаждают и фильтруют. Фильтрат упаривают в вакууме, остаток обрабатывают 100 мл кипящего пропанола-2, горячий раствор фильтруют и упаривают в вакууме. Остаток растворяют в 10 мл хлороформа, наносят на колонку с силикагелем (30 × 2,5 см), элюируют хлороформом и после упаривания элюата получают 1,5 г (22,9%) 1,3-бис (4-ацетоксибутил)-5-фениламиноурацила в виде вязкого желтого масла. Элюируют колонку системой хлороформ—пропанол-2 (5:1), элюат упаривают в вакууме, остаток перекристаллизовывают из этилацетата и получают 1,6 г (34,8%) соединения XIII. Белые кристаллы; $T_{\Pi \Pi}$ 125...127 °C.

Соединения XIV—XVIII получают аналогично.

1-(2-Бензоилоксиэтоксиметил)-5-фениламиноурацил (XIX). Смесь 2,0 г (9,84 ммоль) 5-фениламиноурацила VI, 50 мл гексаметилдисилазана, 1 мл ДМФА и 0,5 мл триметилхлорсилана кипятят с защитой от влаги воздуха 8 ч до образования прозрачного раствора. Избыток гексаме-

тилдисилазана упаривают в вакууме, остаток растворяют в 20 мл метиленхлорида, добавляют 2,2 г (10,2 ммоль) 2-бензоилоксиэтоксиметилхлорида и перемешивают при комнатной температуре в течение суток. К реакционной смеси добавляют 10 мл пропанола-2, 20 мл $\rm H_2O$ и $\rm 5$ мл $\rm NH_4OH$, органический слой отделяют, сушат MgSO4, фильтруют и упаривают. Остаток перекристаллизовывают из смеси этилацетат—гексан (1:1) и получают 3,0 г ($\rm 80\%$) XIX. Светло-желтые кристаллы; $T_{\rm III}$ 95...98 °C.

Соединения XX и XXI синтезируют аналогично методу, описанному для XIX.

1-(2-Ацетилоксиэтоксиметил)-5-(n-толиламино) урацил (XXII). Смесь 2,0 г (9,21 ммоль) 5-(n-толиламино) урацила IX, 50 мл гексаметилдисилазана и 0,5 мл триметилхлорсилана кипятят с защитой от влаги воздуха 8 ч до образования прозрачного раствора. Избыток гексаметилдисилазана упаривают в вакууме, остаток растворяют в 30 мл хлороформа. К охлажденным до -20 °C 0,8 мл (11,45 ммоль) 1,3-диоксолана добавляют 0,8 г (10,82 ммоль) свежеперегнанного ацетил-бромида, смесь выдерживают при комнатной температуре 1 ч, разбавляют 5 мл хлороформа и полученный раствор добавляют к раствору триметилсилилироизводного IX. Реакционную смесь перемешивают при комнатной температуре в течение суток, затем добавляют 10 мл пропанола-2, 20 мл H₂O и 5 мл NH₄OH, органический слой отделяют, сущат MgSO₄, фильтруют и упаривают. Остаток растворяют в минимальном объеме хлороформа, наносят на колонку с силикагелем (25 × 2,5 см), элюируют сначала хлороформом, затем смесью хлороформ—пропанол-2 (9:1). Элюат, содержащий целевой продукт, упаривают и перекристаллизовывают из пропанола-2 и получают 1,7 г (55,4%) XXII. Светло-желтые кристаллы; $T_{\rm IM}$ 146...149 °C.

Гидрохлорид 1-(2-бензоилоксиэтоксиметил)-5-(N-морфолино) урацила (XXIII). Смесь 2,0 г (10,1 ммоль) 5-(N-морфолино) урацила X, 50 мл гексаметилдисилазана и 0,5 мл триметил-хлорсилана кипятят с защитой от влаги воздуха 8 ч до образования прозрачного раствора. Избыток гексаметилдисилазана упаривают в вакууме, остаток растворяют в 25 мл безводного хлороформа, добавляют 2,2 г (10,2 ммоль) 2-бензоилоксиэтоксиметилхлорида и перемешивают при комнатной температуре в течение суток. К реакционной смеси добавляют 5 мл 95% этанола, выдерживают при -5 °C в течение суток, выделившийся светло-розовый кристаллический продукт отфильтровывают, промывают 10 мл диэтилового эфира и получают 3,9 г (93,4%) XXIV; $T_{\text{пл}}$ 208...211 °C (разл.).

Соединения XXIV и XXV синтезируют аналогично методу, описанному для XXIII.

1-(4-Гидроксибутил)-5-фениламиноурацил (XXVI). Выдерживают 1,0 г (3,15 ммоль) 1-(4-ацетоксибутил)-5-фениламиноурацила XIII и 25 мл насыщенного при 0 °С метанольного раствора аммиака в герметично закрытом сосуде при комнатной температуре в течение суток, растворитель упаривают в вакууме, остаток дважды растирают с 15 мл диэтилового эфира, перекристаллизовывают из смеси этилацетат—метанол (1:1) и получают 0,6 г (67,2%) XXVI в виде белого кристаллического вещества; $T_{\Pi\Pi}$ 159...161 °С.

Соединения XXVII—XXXV синтезируют аналогично методу, описанному для XXVI.

1-(2-Гидроксиэтоксиметил)-5-(N-морфолино) урацил (XXXVI). Смесь 1,5 г (3,6 ммоль) гидрохлорида 1-(2-бензоилоксиэтоксиметил)-5-(N-морфолино) урацила XXIII и 25 мл насыщенного при 0 °C метанольного раствора аммиака выдерживают в герметично закрытом сосуде при комнатной температуре в течение суток, растворитель упаривают в вакууме, остаток промывают диэтиловым эфиром (2×15 мл), экстрагируют 50 мл кипящего пропанола-2, горячий экстракт фильтруют, выдерживают при -5 °C в течение суток, выделившийся белый кристаллический осадок отфильтровывают, промывают 10 мл диэтилового эфира и получают 0,7 г (70,7%) XXXVI; $T_{\Pi\Pi}$ 169...170 °C.

Соединения XXXVII и XXVIII синтезируют аналогично методу, описанному для XXVI.

СПИСОК ЛИТЕРАТУРЫ

- Elion G. B., Furman P. A., Fyfe J. A., de Miranda P., Beauchamp L., Schaeffer H. J. // Proc. Nat. Acad. Sci. USA. — 1977. — Vol. 74. — P. 5716.
- Schaeffer H. J., Beauchamp L., de Miranda P., Elion G. B., Bauer D. J., Collins P. // Nature. 1978. — Vol. 272. — P. 583.
- Tocci M. J., Livelli T. J., Perry H. C. // Antimicrob. Agents Chemother. 1984. Vol. 25. P. 247.
- Biron K. K., Stanat S. C., Sorrell J. B., Fyfe J. A., Keller P. M., Lambe C. U., Nelson D. J. // Proc. Nat. Acad. Sci. USA. — 1985. — Vol. 82. — P. 2473.

- Boyd M. R., Bacon T. H., Sutton D., Cole M. // Antimicrob. Agents Chemother. 1987. Vol. 31. — P. 1238.
- Beauchamp L. M., Serling B. L., Kelsey J. E., Biron K. K., Collins P., Selway J., Lin J.-C., Schaeffer H. J. // J. Med. Chem. — 1988. — Vol. 31. — P. 144.
- Miyasaka T., Tanaka H., Baba M., Hayakawa H., Walker R. T., Balzarini J., De Clercq E. // J. Med. Chem. — 1989. — Vol. 32. — P. 2507.
- 8. Tanaka H., Takashima H., Ubasawa M., Sekiya K., Nitta I., Baba M., Shigeta S., Walker R. T., De Clercq E., Miyasaka T. // J. Med. Chem. 1992. Vol. 35. P. 4713.
- Chu M. Y. W., Naguib F. N. M., Iltzsch M. H., El Kouni M. H., Chu S. H., Cha S., Calabresi P. // Cancer Res. — 1984. — Vol. 44. — P. 1852.
- Park K. S., El Kouni M. H., Krenitsky T. A., Chu S. H., Cha S. // Biochem. Pharmacol. 1986. — Vol. 35. — P. 3853.
- 11. Lin T.-S., Liu M.-C. // J. Med. Chem. 1985. Vol. 28. P. 971.
- Goudgaon N. M., Naguib F. N. M., El Kouni M. H., Schinazi R. F. // J. Med. Chem. 1993. Vol. 36. — P. 4250.
- 13. Озеров А. А., Новиков М. С., Брель А. К., Солодунова Г. Н. // ХГС. 1998. № 5. С. 691.
- 14. Phillips A. P. // J. Amer. Chem. Soc. 1951. Vol. 73. P. 1061.
- 15. Baker B. R., Jackson G. D. F., Chhedda G. // J. Pharm. Sci. 1965. Vol. 54. P. 1617.
- Matsumoto H., Kaneko C., Yamada K., Takeuchi T., Mori T., Mizuno Y. // Chem. Pharm. Bull. — 1980. — Vol. 36. — P. 1153.
- 17. Abrams H. M., Ho L., Chu S. H. // J. Heterocycl. Chem. 1981. Vol. 18. P. 947.

НИИ фармакологии при Волгоградской медицинской академии, Волгоград 400066, Россия e-mail: ozerov@vlink.ru

Поступило в редакцию 18.07.97 После переработки 18.12.97