А. И. Маркосян, Р. А. Куроян, С. В. Диланян

СИНТЕЗ ТРИАЗОЛОВ И ТЕТРАЗОЛОВ, КОНДЕНСИРОВАННЫХ СО СПИРО(БЕНЗО[h]-ХИНАЗОЛИН-5,1'-ЦИКЛОГЕКСАНОМ)

Конденсацией 3-R-4-оксо-2-тиоксо-1,2,3,4,5,6-гексагидроспиро (бензо [h] хиназолин-5,1'-циклогексанов) с 2-этаноламином, 3-пропаноламином и гидразингидратом синтезированы соответствующие 2-этаноламино-, 2-пропаноламино- и 2-гидразинопроизводные. Исходя из 2-гидразинобензо [h] хиназолинов, в зависимости от наличия заместителя в положении 3, получены триазолы и тетразолы, а- или b-конденсированные с бензо [h] хиназолинами.

Ключевые слова: бензо[h]хиназолины, гидразины, триазол, тетразол, конденсация.

Недавно нами было сообщено о синтезе триазолов и тетразолов, конденсированных с бензо [h] хиназолинами по связи с, которые проявляют анксиолитические свойства [1]. Другие производные бензо [h] хиназолина, спиросочлененные с циклогексановым циклом, проявляют противоопухолевую активность [2]. В продолжение указанных работ в настоящем сообщении приводятся данные о синтезе триазолов и тетразолов, а- или b-конденсированных с бензо [h] хиназолинами.

Кипячение 3-R-4-оксо-2-тиоксо-1,2,3,4,5,6-гексагидроспиро (бензо [h]-хиназолин-5,1'-циклогексанов) (1а—с) в избытке β -аминоэтанола и γ -аминопропанола приводит к 2-(β -оксиэтиламино)- и 2-(γ -оксипропиламино)-3-R-4-оксо-3,4,5,6-тетрагидроспиро (бензо [h] хиназолин-5,1'-циклогексанам) 2а—d и 3а—d соответственно.

Взаимодействием с гидразингидратом соединений 1a—d синтезированы их 2-гидразинозамещенные 4a—d.

2-Гидразино-4-оксо-3,4,5,6-тетрагидроспиро (бензо [h]хиназолин-5,1'-циклопентан) конденсируется с ортомуравьиным эфиром с образованием 6-оксо-1H-7,8-дигидроспиро (бензо [h]триазоло [3,4-b]хиназолин-7,1'-циклопентана) [3]. Его спиросочлененный с циклогексановым кольцом аналог 4а реагирует подобным образом с ортомуравьиным эфиром или нитритом натрия в кислой среде, образуя 6-оксо-1H-7,8-дигидроспиро (бензо [h]триазоло [3,4-b]хиназолин-7,1'-циклогексан) (5) или 6-оксо-1H-7,8-дигидроспиро (бензо [h]тетразоло [5,4-b]хиназолин-7,1'-циклогексан) (6) соответственно. В случае соединений 4b—d, содержащих в положении 3 заместители, получаются 4-замещенные 5-оксо-4,5,6,7-тетрагидроспиро (бензо [h]триазоло [4,3-a]хиназолин-6,1'-циклогексаноны) 7a—d и 4-замещенные 5-оксо-4,5,6,7-тетрагидроспиро (бензо [h]тетразоло [4,5-a]хиназолин-6,1'-циклогексаноны) 8a—c, в которых азолы конденсированы по связи а с бензо [h]хиназолиновым циклом.

Характеристики $2-(\beta$ -оксиэтиламино)- и $2-(\gamma$ -оксипропиламино)-3-R-4-оксо-3,4,5,6-тетрагидроспиро (бензо [h]хиназолин-5,1'-циклогексанов) $2a-d^*$ и 3a-d

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	ИК спектр, ν , см $^{-1}$	Спектр ЯМР ¹ Н (CDCl ₃), δ , м. д., КССВ (<i>J</i> , Гц)	Выход, %
		С	н	N			(3)	
2a	C ₁₉ H ₂₃ N ₃ O ₂	70.33 70.13	$\frac{7.26}{7.12}$	13.10 12.91	246-248	1600 (C=C _{apom}), 1660 (C=O), 3200-3420 (NH, OH)	10.40 (1H, ш. c, NH); 7.30—8.15 (4H, м, C ₆ H ₄); 6.25 (1H, м, NH); 4.68 (1H, м, OH); 3.35—3.55 (4H, м, NCH ₂ CH ₂); 2.96 (2H, с, 6-CH ₂); 1.10—2.60 (10H, м, 2'-,3'-,4'-,5'-,6'-CH ₂)	76
2b	C ₂₀ H ₂₅ N ₃ O ₂	70.75 70.78	7.57 7.42	12.55 12.38	182-184	1610 (C=C _{apom}), 1655 (C=O), 3200-3350 (NH, OH)	7.40–8.06 (4H, M, C_6H_4); 6.90 (1H, T, $J = 7$, NH); 4.58 (1H, T, $J = 7$, OH); 3.65 (2H, T, $J = 7$, OCH ₂); 3.55 (2H, T, $J = 7$, NCH ₂); 3.30 (3H, c, NCH ₃); 2.95 (2H, c, 6-CH ₂); 1.10–2.55 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	82
2c	C ₂₅ H ₂₇ N ₃ O ₂	74.22 74.01	6.79 6.99	10.60 10.79	247—250	1610 (C=C _{apom}), 1660 (C=O), 3250-3420 (NH, OH)	7.25-8.15 (9H, M, C ₆ H ₄ , C ₆ H ₅); 5.40 (1H, M, NH); 4.50 (1H, M, OH); 3.40-3.60 (4H, M, NCH ₂ CH ₂); 3.00 (2H, c, 6-CH ₂); 1.00-2.60 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	62
2d	C ₂₆ H ₂₉ N ₃ O ₂	74.60 74.41	7.11 7.24	10.27 10.41	175-177	1600 (C=C _{apom}), 1660 (C=O), 3200- 3430 (NH, OH)	7.40—8.20 (9H, M, C ₆ H ₄ , C ₆ H ₅); 6.68 (1H, M, NH); 5.23 (2H, c, CH ₂ C ₆ H ₅); 4.49 (1H, M, OH); 3.45—3.65 (4H, M, NCH ₂ CH ₂); 3.00 (2H, c, 6-CH ₂); 1.20—2.65 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	96
3a	C ₂₀ H ₂₅ N ₃ O ₂	70.89 70.78	7.56 7.42	12.22 12.38	190-192	1605 (C=C _{apom}), 1650 (C=O), 3200-3430 (NH, OH)	7.20-8.10 (4H, M, C_6H_4); 6.89 (1H, T, $J = 6$, NH); 4.43 (1H, T, $J = 6$, OH); 3.45-3.60 (4H, M, NCH ₂ , OCH ₂); 2.95 (2H, c, 6-CH ₂); 1.10-2.60 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ <u>CH₂</u>)	87
3b	C ₂₁ H ₂₇ N ₃ O ₂	71.24 71.36	7.88 7.70	11.98 11.89	194-195	1600 (C=C _{apom}), 1650 (C=O), 3200-3400 (NH, OH)	7.03-8.23 (4H, M, C ₆ H ₄); 5.37 (1H, M, NH); 3.40-3.90 (4H, M, NCH ₂ OCH ₂); 3.27 (3H, c, NCH ₃); 2.90 (2H, c, 6-CH ₂); 1.00-2.73 (12H, M, 2'-,3'-,4'-,5'-6'-CH ₂ , NCH ₂ CH ₂)	88
3c	C ₂₆ H ₂₉ N ₃ O ₂	74.20 74.01	6.89 6.99	10.59 10.79	264-266	1600 (C=C _{apom}), 1655 (C=O), 3250-3450 (NH, OH)	7.10–8.20 (9H, M, C_6H_4 , C_6H_5); 5.47 (1H, T, $J = 6$, NH); 4.27 (1H, T, $J = 6$, OH); 3.40–3.64 (4H, M, NCH ₂ , OCH ₂); 2.93 (2H, c, 6-CH ₂); 1.00–2.70 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ <u>CH₂</u>)	71
3d	C ₂₇ H ₃₁ N ₃ O ₂	74.98 74.79	7.30 7.48	$\frac{9.85}{10.06}$	138140	1605 (C=C _{apom}), 1650 (C=O), 3180-3330 (NH, OH)	7.20–8.20 (9H, M, C_6H_4 , C_6H_5); 5.20 (2H, c, $CH_2C_6H_5$); 5.03 (1H, T, $J = 6$, NH); 3.66 (2H, T, $J = 6$, OCH ₂), 3.50 (2H, T, $J = 6$, NCH ₂); 3.03 (2H, c, 6-CH ₂); 1.10–2.83 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ CH ₂)	94

Масс-епектр, *m/z* (*I*, %): М⁺ 402(28), 401(100), 359(9), 358(35), 357(16), 345(12), 332(5), 328(5), 314(8), 302(6), 301(29), 77(12).

Характеристики 2-(β -оксиэтиламино)- и 2-(γ -оксипропиламино)-3-R-4-оксо-3,4,5,6-тетрагидроспиро(бензо[h]хиназолин-5,1'-циклогексанов) 2a—d* и 3a—d

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	ИК спектр, $ u$, см $^{-1}$	Спектр ЯМР ¹ Н (CDCl ₃), ð , м. д., КССВ (<i>J</i> , Гц)	Выход,
		С	Н	N			nivir ii (CDCi3), O, M. A., KCCB (J, 114)	, ,
2a	C ₁₉ H ₂₃ N ₃ O ₂	70.33 70.13	$\frac{7.26}{7.12}$	13.10 12.91	246-248	1600 (C=C _{apom}), 1660 (C=O), 3200-3420 (NH, OH)	10.40 (1H, ш. с, NH); 7.30—8.15 (4H, м, С ₆ H ₄); 6.25 (1H, м, NH); 4.68 (1H, м, OH); 3.35—3.55 (4H, м, NCH ₂ CH ₂); 2.96 (2H, с, 6-CH ₂); 1.10—2.60 (10H, м, 2'-,3'-,4'-,5'-,6'-CH ₂)	76
2b	C ₂₀ H ₂₅ N ₃ O ₂	70.75 70.78	7.57 7.42	$\frac{12.55}{12.38}$	182-184	1610 (C=C _{apom}), 1655 (C=O), 3200-3350 (NH, OH)	7.40–8.06 (4H, M, C_6H_4); 6.90 (1H, τ , $J=7$, NH); 4.58 (1H, τ , $J=7$, OH); 3.65 (2H, τ , $J=7$, OCH ₂); 3.55 (2H, τ , $J=7$, NCH ₂); 3.30 (3H, c, NCH ₃); 2.95 (2H, c, 6-CH ₂); 1.10–2.55 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	82
2c	C ₂₅ H ₂₇ N ₃ O ₂	74.22 74.01	6.79 6.99	$\frac{10.60}{10.79}$	247—250	1610 (C=C _{apom}), 1660 (C=O), 3250-3420 (NH, OH)	7.25-8.15 (9H, M, C ₆ H ₄ , C ₆ H ₅); 5.40 (1H, M, NH); 4.50 (1H, M, OH); 3.40-3.60 (4H, M, NCH ₂ CH ₂); 3.00 (2H, c, 6-CH ₂); 1.00-2.60 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	62
2d	C ₂₆ H ₂₉ N ₃ O ₂	74.60 74.41	7.11 7.24	10.27 10.41	175—177	1600 (C=C _{apom}), 1660 (C=O), 3200- 3430 (NH, OH)	7.40-8.20 (9H, M, C ₆ H ₄ , C ₆ H ₅); 6.68 (1H, M, NH); 5.23 (2H, c, CH ₂ C ₆ H ₅); 4.49 (1H, M, OH); 3.45-3.65 (4H, M, NCH ₂ CH ₂); 3.00 (2H, c, 6-CH ₂); 1.20-2.65 (10H, M, 2'-,3'-,4'-,5'-,6'-CH ₂)	96
3a	C ₂₀ H ₂₅ N ₃ O ₂	70.89 70.78	7.56 7.42	$\frac{12.22}{12.38}$	190192	1605 (C=C _{apom}), 1650 (C=O), 3200-3430 (NH, OH)	7.20–8.10 (4H, M, C_6H_4); 6.89 (1H, T, $J = 6$, NH); 4.43 (1H, T, $J = 6$, OH); 3.45–3.60 (4H, M, NCH ₂ , OCH ₂); 2.95 (2H, c, 6-CH ₂); 1.10–2.60 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ <u>CH₂</u>)	87
3b	C ₂₁ H ₂₇ N ₃ O ₂	71.24 71.36	7.88 7.70	11.98 11.89	194195	1600 (C=C _{apom}), 1650 (C=O), 3200-3400 (NH, OH)	7.03-8.23 (4H, M, C ₆ H ₄); 5.37 (1H, M, NH); 3.40-3.90 (4H, M, NCH ₂ OCH ₂); 3.27 (3H, c, NCH ₃); 2.90 (2H, c, 6-CH ₂); 1.00-2.73 (12H, M, 2'-,3'-,4'-,5'-6'-CH ₂ , NCH ₂ CH ₂)	88
3c	C ₂₆ H ₂₉ N ₃ O ₂	74.20 74.01	6.89 6.99	10.59 10.79	264-266	1600 (C=C _{apom}), 1655 (C=O), 3250-3450 (NH, OH)	7.10–8.20 (9H, M, C_6H_4 , C_6H_5); 5.47 (1H, T, $J = 6$, NH); 4.27 (1H, T, $J = 6$, OH); 3.40–3.64 (4H, M, NCH ₂ , OCH ₂); 2.93 (2H, c, 6-CH ₂); 1.00–2.70 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ CH ₂)	71
3d	C ₂₇ H ₃₁ N ₃ O ₂	74.98 74.79	7.30 7.48	9.85 10.06	138-140	1605 (C=C _{apom}), 1650 (C=O), 3180-3330 (NH, OH)	7.20–8.20 (9H, M, C_6H_4 , C_6H_5); 5.20 (2H, c, $CH_2C_6H_5$); 5,03 (1H, T, $J = 6$, NH); 3.66 (2H, T, $J = 6$, OCH ₂), 3.50 (2H, T, $J = 6$, NCH ₂); 3.03 (2H, c, 6-CH ₂); 1.10–2.83 (12H, M, 2'-,3'-,4'-,5'-,6'-CH ₂ , NCH ₂ CH ₂)	94

^{*} Macc-спектр, m/z (I, %): M⁺ 402(28), 401(100), 359(9), 358(35), 357(16), 345(12), 332(5), 328(5), 314(8), 302(6), 301(29), 77(12).

1-4aR=H, bR=Me, cR=Ph, $dR=CH_2Ph$; 7, 8 aR=Me, bR=Ph, $cR=CH_2Ph$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 (в вазелиновом масле), спектры ЯМР ¹Н — на спектрометрах Varian T-60 и Varian Мегсшу-300 в дейтерированных растворителях, внутренний стандарт ТМС или ГМДС. Масс-спектры получены на спектрометре МХ-1321A. ТСХ проведена на пластинках Silufol UV-254, проявитель — пары иода.

Характеристики синтезированных соединений 2, 3 приведены в табл. 1, 7, 8 — в табл. 2.

3-R-2- $(\beta$ -Оксиэтиламино)-4-оксо-3,4,5,6-тетрагидроспиро (бензо [h] хиназолин-5,1'-циклогексаны) (2а—d). Смесь 0.01 моль соединения 1а—d и 20 мл этаноламина кипятят с обратным колодильником 25 ч. Реакционную массу охлаждают, добавляют 50 мл воды, выпавшие кристаллы продукта 2а—d отфильтровывают и перекристаллизовывают из этанола.

3-R-2-(γ -Оксипропиламино)-4-оксо-3,4,5,6-тетрагидроспиро (бензо [h]хиназолин-5,1'-циклогексаны) (3а—d). Получают аналогично соединению 2а—d исходя из производных хиназолина 1а—d и γ -аминопропанола.

3-R-2-Гидразино-4-оксо-3,4,5,6-тетрагидроспиро (бензо[h] хиназолин-5,1'-циклогексаны) (4а—d). Смесь 0.02 моль соединения 1а —d, 30 мл гидразингидрата и 150 мл бутанола

кипятят с обратным холодильником 20 ч. Реакционную массу охлаждают, выпавший осадок продукта 4 отфильтровывают, промывают водой, этанолом и сушат на воздухе.

Соединение 4а. Выход 81%. Т. пл. 292—294 °С. ИК спектр: 1605 (С=С $_{\rm apom}$), 1655 (С=О), 3200 см $^{-1}$ (NH, NH₂). Найдено, %: С 68.70; Н 6.62; N 18.89. С₁₇Н₂₀N₄O. Вычислено, %: С 68.89; Н 6.80; N 18.90.

Соединение 4b. Выход 76%. Т. пл. 203—204 °С. ИК спектр: 1600 (С=С $_{\rm аром}$), 1660 (С=О), 3200 см $^{-1}$ (NH, NH₂). Найдено, %: С 69.80; Н 7.02; N 18.89. С $_{18}$ Н $_{22}$ N $_{4}$ О. Вычислено, %: С 69.65; Н 7.14; N 19.05.

Соединение 4с. Выход 72%. Т. пл. 230—233 °С. R_f 0.55 (этилацетат—гексан, 4 : 1). ИК спектр: 1605 (С=С_{аром}), 1660 (С=О), 3210 см⁻¹ (NH, NH₂). Найдено, %: С 74.11; Н 6.35; N 15.23. С₂₃Н₂₄N₄O. Вычислено, %: С 74.17; Н 6.49; N 15.04.

Соединение 4d. Выход 95%. Т. пл. 196—197 °С. R_f 0.59 (этилацетат—гексан, 3 : 2). ИК спектр: 1600 (С=Саром, 1655 (С=О), 3200 см $^{-1}$ (NH, NH₂). Найдено, %: С 74.71; Н 6.92; N 14.69. С₂₄Н₂₆N₄O. Вычислено, %: С 74.58; Н 6.78; N 14.50.

6-Оксо-1H-7,8-дигидроспиро (бензо [h] триазоло [3,4-b] хиназолин-7,1'-циклогексан) (5). Смесь 3 г (0.01 моль) соединения 4а, 30 мл ортомуравьиного эфира и 30 мл бутанола кипятят с обратным холодильником 6 ч. Реакционную массу охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из бутанола. Получают 2.6 г (86%) продукта 5. Т. пл. 363—365 °С. R_f 0.56 (хлороформ—ацетон, 6:5). Спектр ЯМР 1 Н (пиридин-ds): 8.93 (1H, c, 4-CH); 7.30—8.53 (4H, м, C₆H₄); 3.13 (2H, c, 8-CH₂); 1.20—3.00 м. д. (10H, м, 2'-,3'-,4'-,5'-,6'-CH₂). Найдено, %: С 70.72; Н 6.07; N 18.16. С₁₈Н₁₈N₄O. Вычислено, %: С 70.57; Н 5.92; N 18.29.

4-R-5-Оксо-6,7-дигидрноспиро (бензо [h]триазоло [4,3-a]хиназолин-6,1'-циклогексаны) (7а—с). Получают аналогично соединению 5 исходя из производных хиназолинона 4b—d.

6-Оксо-1H-7,8-дигидроспиро (бензо [h] тетразоло [5,4-b] хиназолин-7,1'-циклогексан) (6). К смеси 3 г (0.01 моль) соединения 4а и 60 мл ледяной уксусной кислоты при перемешивании по каплям добавляют раствор 1 г (0.014 моль) азотистокислого натра в 10 мл воды. Перемешивание продолжают при комнатной температуре 30 мин. Выпавший осадок отфильтровывают, промывают водой и перекристаллизовывают из бутанола. Получают 2 г (65%) продукта 6. Т. пл. 227—229 °С. R_f 0.45 (хлороформ—ацетон—пиридин, 6:5:1). Спектр ЯМР 1 H (пиридин-d5): 7.00—8.40 (4H, м, C6H4); 3.00 (2H, c, 8-CH2); 1.03—2.83 (10H, м, 2'-,3'-,4'-,5'-,6'-CH2). Найдено, %: С 66.57; H 5.68; N 22.65. С17H17N5O. Вычислено, %: С 66.43; H 5.58; N 22.79.

4-R-5-Оксо-6,7-дигидроспиро (бензо [h] тетразоло [1,5-a] хиназолин-6,1'-циклогексаны) (8а—с). Получают аналогично соединению 6 исходя из производных хиназолина 4b—d соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. И. Маркосян, Р. А. Куроян, М. Г. Оганисян, И. А. Джагацпанян, А. Б. Асрян, С. Г. Зигильян, *Хим.-фарм. журн.*, **30**, № 8, 10 (1996).
- А. И. Маркосян, С. В. Диланян, Р. А. Куроян, А. А. Чачоян, Б. Т. Гарибджанян, Хим.-фарм. журн., 29, №4, 32 (1995).
- 3. А. И. Маркосян, Р. А. Куроян, С. В. Диланян, А. III. Оганисян, М. С. Алексанян, А. А. Карапетян, Ю. Т. Стручков, *XГС*, № 1, 105 (1999).

Институт тонкой органической химии им. А. Л. Мнджояна НАН Республики Армения, Ереван 375014 Поступило в редакцию 24.04.98 После доработки 03.03.99