Е. В. Тулякова, Э. В. Рахманов, Е. В. Луковская, О. А. Федорова^а, А. А. Абрамов, А. В. Хорошутин, А. А. Бобылева, А. В. Анисимов

СИНТЕЗ,

КОМПЛЕКСООБРАЗОВАНИЕ И ЭКСТРАКЦИОННАЯ СПОСОБНОСТЬ НОВЫХ ПРОИЗВОДНЫХ ДИТИА-13(16)-КРАУН-4(5)-ЭФИРОВ

Предложены различные методы синтеза функциональных производных дитиа-13(16)-краун-4(5)-эфиров. С использованием метода ЯМР 1 Н изучено комплексообразование полученных соединений с ионами Ag^+ и Pb^{2+} . Радиометрическим методом исследована экстрагирующая способность замещенных дитиа-13(16)-краун-4(5)-эфиров по отношению к ионам Ag^+ , Cd^{2+} из водных растворов в присутствии анионов разной степени жесткости с определением содержания металла.

Ключевые слова: дитиа-13(16)-краун-4(5)-эфиры, ионы Ag^+ , Pb^{2+} , Cd^{2+} , комплексообразование, синтез, спектроскопия ЯМР 1 Н, экстракция.

Особое место в ряду краун-эфиров и их гетероаналогов занимают сернистые макроциклы из-за их уникальной способности служить в качестве лигандов для селективного комплексообразования с ионами тяжелых и переходных металлов. Такие свойства этих соединений обеспечивают возможность моделирования биологических процессов, связанных с транспортом ионных частиц и молекул в живых организмах, создания эффективных ион-селективных электродов, селективных экстрагентов, уникальных рецепторов, входящих в состав фотохромных систем [1, 2]. Введение в молекулу краун-эфиров заместителей различной природы может существенно изменять их активность и селективность при комплексообразовании с различными катионами металлов. Так, например, наличие электронодонорных заместителей, содержащих длинноцепочечные алкильные группы, улучшает селективность и придает липофильность молекуле краун-эфира, что, в свою очередь, способствует повышению скорости переноса ионов металлов через жидкие мембраны [3].

Существует лишь небольшое число методов дальнейшего превращения функциональных групп в макроциклических соединениях серы, в которых целевые соединения, как правило, получают с очень небольшим выходом и велика вероятность побочных реакций [4–6]. Настоящая работа посвящена разработке различных способов трансформации 1,4-диокса-7,11-дитиациклотридекан-9-ола (4) и 1,4,7-триокса-10,14-дитиациклогексан-12-ола (5), изучению комплексообразующих и экстракционных свойств полученных производных.

Хотя ранее сообщалось, что соединения 4, 5 могут быть получены из

1,3-димеркаптопропанола-2 и α , ω -дихлоридов три- и тетраэтиленгликолей [7, 8] в условиях высокого разбавления, мы предложили несколько другую схему синтеза. Преимущество предложенной схемы заключается в следующем: отказ от использования мало доступного 1,3-димеркаптопропанола-2, сочетание метода высокого разбавления с темплатным методом, что позволяет увеличить выход оксатиакраун-эфиров. Синтез макроциклических соединений 4, 5 осуществляли при взаимодействии 2,3-дибромпропанола (1) с дитиолами 2, 3. Соединение 1 в щелочной среде образует оксиран, который в результате нуклеофильной атаки тиолят-ионами 2, 3 раскрывается с менее затрудненной стороны, что, в свою очередь, приводит к образованию симметричных 13(16)-членных краун-эфиров.

Br

$$A = Br$$
 $A = 0; 3, 5 n = 1$

Li₂CO₃, EtOH - H₂O

 $A = 0; 3, 5 n = 1$

Li₂CO₃, EtOH - H₂O

 $A = 0; 3, 5 n = 1$

Получение гидроксизамещенных макроциклов 4, 5 представляло удобную возможность их дальнейшего превращения в соединения с карбонильной группой путем селективного окисления, что до сих пор не было осуществлено для серосодержащих макроциклических лигандов [9].

В связи с этим нами было изучено действие на макроцикл 4 различных

систем "мягкого" окисления, не затрагивающих связь C–S–C. Окисление соединения **4** в системе ДМСО–уксусный ангидрид [10] приводит, по данным ЯМР 1 Н и масс-спектрометрии, к сложной смеси продуктов, идентифицировать которые не представлялось возможным.

Наиболее удачным оказалось окисление по Сверну [11], при проведении которого было установлено, что ДМСО, спирт **4** и оксалилхлорид реагируют в хлористом метилене при низких температурах с образованием алкоксисульфониевой соли, при обработке которой триэтиламином образуется 1,4-диокса-7,11-дитиациклотридекан-9-он (**6**) с выходом 40%.

O S OH
$$\frac{\text{DMSO, (COCl}_2)_2}{-70 \text{ °C, NEt}_3}$$
 O S O

Нуклеофильное замещение вторичной гидроксильной группы в спирте 4 на хлор проводили с использованием хлористого тионила в хлористом метилене при комнатной температуре. Данные спектров ЯМР ¹Н и ¹³С полученного соединения свидетельствуют о наличии двух изомеров 7 и 8, которые не удалось разделить методом адсорбционной хроматографии из-за близких значений $R_{\rm f}$. Нуклеофильное замещение в соединении 4 происходит через образование эписульфониевого иона (реакция Аппеля) за счет анхимерного содействия атома серы, находящегося в β-положении к реакционному центру, в соответствии с $S_N i$ -механизмом [12]. По-видимому, наличие контактной ионной пары 4а и, следовательно, отсутствие полной диссоциации связи S-Cl мешает направленному образованию в хлористом метилене только продукта перегруппировки и приводит к получению смеси двух изомеров 7 и 8, в соотношении, по данным спектров ЯМР ¹³С, 6:1, с преобладанием термодинамически более стабильного изомера 7. При кипячении смеси изомерных хлоридов с различными аминами в ацетонитриле образуются продукты реакции, имеющие перегруппированный каркас макроцикла 8. Диполярный апротонный растворитель – ацетонитрил – стабилизирует сольватно-разделенную ионную пару 9а с возможным обменом аниона хлора на амин. Так, например, при проведении реакции с N-аллил-N-(2-фурилметил)амином был выделен с выходом 98% N-(1,4-диокса-7,10-дитиациклододекан-8-илметил)-N-(2-фурилметил)пропен-2-ил-1-амин (9) (несимметричный продукт).

Таблица 1

Спектры ЯМР ¹³С синтезированных соединений

Соеди- нение	Химические сдвиги, δ, м. д.*							
	<u>C</u> H ₂ O	<u>C</u> HO	SCH ₂ CH ₂ O	CHCH ₂ S	<u>C</u> =O	R		
4	69.95; 72.62	71.29	32.91	39.71	-	-		
5	70.06; 70.57; 72.51	69.80	31.33	38.69	_	-		
7	70.09; 71.87	63.26	33.61	41.23	_	-		
8	70.29; 70.48; 73.50; 74.35	46.33 (CH ₂ CHS)	31.47; 35.93	47.41; 48.25 (CH <u>C</u> H ₂ R)	_	-		
9	70.33; 70.42; 72.96; 73.82	44.59 (CH ₂ CHS)	31.04; 35.91	37.56	_	44.59 (Fur <u>C</u> H ₂); 57.23, 57.36 (C ₍₁₃₎ , C _(1")); 108.55, 109.88 (C _(3') , C _(4')); 117.47 (C _(3")); 135.77 (C _(2")); 141.65 (C _(5')); 152.47 (C _(2'))		
10	70.26; 71.61	72.46	33.44	37.59	_	79.23 (<u>C</u> H ₂ -C ₆ H ₅); 127.49 (<i>p</i> -C ₆ H ₅); 127.95, 128.20 (<i>o</i> -, <i>m</i> -C ₆ H ₅); 138.55 (<i>ipso</i> -C ₆ H ₅)		
11	70.09; 71.56	74.77	33.22	36.29	169.81	116.46 ($C_{(8')}$); 119.14, 122.56 ($C_{(3')}$, $C_{(4a')}$); 124.34, 127.61, 131.19 ($C_{(5')}$, $C_{(6)}$, $C_{(7')}$); 141.43 ($C_{(4')}$); 153.42 ($C_{(8a')}$); 161.18 ($C_{(2')}$)		
12	70.90; 73.21	75.00	33.24	37.05	162.15	128.73 (C _(4′)); 133.48, 134.00 (C _(3′) , C _(5′)); 135.05 (C _(2′))		
13	71.55; 72.06; 74.61	72.10	31.98	36.93	167.21	119.64 (C _(2')); 129.61, 130.33 (<i>o</i> -, <i>m</i> -C ₆ H ₅); 131.70 (<i>p</i> -C ₆ H ₅); 135.92 (<i>ipso</i> -C ₆ H ₅); 146.06 (C ₍₃₎)		
14	71.16; 71.66 74.40	72.56	31.50	36.52	162.31	$128.98 (C_{(4')}); 134.00, 134.45 (C_{(3')}, C_{(5')}); 134.92 (C_{(2')})$		

^{*} Спектры снимали в CDCl₃ (соединения **4**, **5**, **7–11**) и ацетоне-d₆ (соединения **12–14**).

Простой эфир **10** был получен с выходом 37% из спирта **4** и бензил-хлорида в ДМФА в присутствии гидрида натрия. Взаимодействием соединений **4** и **5** с карбоновыми кислотами в присутствии дициклогексил-карбодиимида (DCCI) были получены сложные эфиры **11–14**.

Для изучения комплексообразующей способности оксатиакраун-эфиров 11-14 были проанализированы спектры ЯМР 1 Н этих соединений в присутствии катионов Ag(I) и Pb(II). Изменения химических сдвигов протонов соединений 11-14 при комплексообразовании с данными катионами в CD₃CN представлены в табл. 2.

Наиболее ярко выражены в спектрах изменения химических сдвигов протонов при третичных атомах углерода, входящих в состав фрагментов оксатиакраун-соединений 11–14. Сдвиги сигналов ароматических протонов в производном коричной кислоты 13, не имеющей гетероароматического атома, способного координировать катион металла, производных тиофенов 12, 14 и кумарина 11 близки по своим значениям. Это указывает на то, что гетероциклическая часть молекулы, скорее всего,

Таблица 2 Изменения химических сдвигов протонов ($\Delta\delta*$) соединений 11–14 при добавлении AgClO₄ и Pb(ClO₄)₂ **

Co-	Ка-	Δδ, м. д.								
еди- не- ние	тион М	Η-α	Η-β,β'	Н-ү,ү'	Η-δ,δ'	Η-ω,ω'	Η-ε,ε'		R	
11	Ag(I)	-0.23	0.19	0.10	0.00	0.02		0.03	0.02	0.00
	Pb(II)	-0.32	0.44	0.41, 0.65	0.34	0.04	-	0.04	0.03	0.03
12	Ag(I)	-0.15	0.09	0.12	0.06	0.00		0.01	0.02	0.01
	Pb(II)	-0.21	0.25	0.12, 0.23	0.18	0.18	-	0.02	0.04	- 0.06
13	Ag(I)	0.03	-	0.23	0.00	0.07	0.07	0.02	0.01	0.02
	Pb(II)	0.20	0.02, 0.38	0.4	0.33	0.36	0.36	0.02	0.04	0.00
14	Ag(I)	0.03	_	0.18	0.06	0.06	0.66	0.02	0.04	0.03
	Pb(II)	0.21	0.03, 0.39	1.39, 0.77	0.36	0.36	0.36	0.04	0.07	0.04

^{*} $\Delta\delta = \delta_{\text{компл}} - \delta_{\text{лиг}}$. ** В растворе CD₃CN, 25 °C, $c_{\text{лиг}} = 10^{-3}$ моль/л; $c_{\text{компл}} = 10^{-3}$ моль/л.

не принимает участие в координации с катионом металла. Для комплексов с катионами серебра наибольшие изменения наблюдаются для химических сдвигов протонов метиленовых групп, связанных с атомами серы. Для комплексов с катионами свинца изменения положения сигналов протонов метиленовых групп, связанных как с атомами серы, так и кислорода, близки. Отрицательные значения сдвигов протона у третичного атома углерода краун-эфира позволяют предположить, что соединения 11, 12 при комплексообразовании образуют "сэндвичевые" структуры состава 2 лиганда — 1 катион металла. Видимо, в димерном комплексе α-протоны располагаются вблизи оксикарбонильной группировки, что может приводить к анизотропному эффекту и смещению в область высоких полей. В случае соединений, содержащих фрагмент 16-краун-5-эфира 13, 14, размер полости краун-эфира позволяет катиону металла располагаться внутри полости макроцикла и образуется комплекс состава 1 лиганд — 1 катион металла.

Коэффициенты распределения С	Cd(II)*
------------------------------	---------

		Состав водной фазы				
Экстр- агент	<i>с</i> экстрагента, моль/л**	$c_{Cd(II)} = 2.0 \times 10^{-4} \text{ моль/л} / 3 \text{ моль/л HNO}_3$	3.84×10^{-3} моль/л LiPi	1 × 10 ⁻⁴ моль/л LiPi		
4	3×10^{-3}	3.0×10^{-2}	4.0×10^{-3}	4.0×10^{-3}		
10	1.1×10^{-3}	6.0×10^{-3}	5.0×10^{-3}	3.0×10^{-3}		

^{*} $c_{\text{Cd(II)}} = 10^{-5} - 10^{-4}$ моль/л.

Для исследования экстракционной способности синтезированных 13-краун-4-эфиров 4, 10 нами были использованы "мягкие" катионы Ag(I) и Cd(II). Экстракцию проводили из растворов азотной кислоты и пикрата лития (LiPi) (табл. 3 и 4). Из полученных данных видно, что макроциклические соединения 4, 10 преимущественно извлекают катион серебра из пикратных растворов. Кадмий, в отличие от серебра, экстрагируется плохо. Относительно небольшие значения коэффициентов распределения для экстрагентов 4, 10, по-видимому, связаны как с электронно-акцепторными свойствами радикала OPh и уменьшением эффективного заряда в полости макроцикла в соединении 10, так и с неспособностью иона Cd(II) к дополнительным химическим взаимодействиям, в связи с заполненным 4d подуровнем.

Таким образом, в настоящей работе продемонстрированы способы дальнейшего превращения гидроксильной группы в оксатиа-13(16)-краун-4(5)-эфирах, в частности показана возможность селективного окисления гидроксильной группы в оксатиакраун-эфирах, не затрагивающего каркаса макроцикла, а также проведена оценка экстрагирующей и комплексообразующей способностей некоторых из полученных производных.

Таблица 4 Коэффициенты распределения Ag(I) *

		Состав водной фазы					
Экстр- агент	c экстрагента, моль/л**	$c_{Ag(I)} = 1.0 \times 10^{-3}$ моль/л / 3 моль/л HNO ₃	$c_{\text{Ag(I)}} = 2.0 \times 10^{-4}$ моль/л / 3 моль/л HNO ₃	3.84 × 10 ⁻³ моль/л LiPi			
4	3.0×10^{-3}	4.3×10^{-2}	6.0×10^{-2}	3.0×10^{-2}			
10	1.1×10^{-3}	4.5×10^{-1}	3.3×10^{-1}	1.0×10^{-1}			

^{*} $c_{\text{Ag(I)}} = 10^{-5} - 10^{-3}$ моль/л.

^{**} Измерена в CH₂Cl₂ (соединение **4**) и CHCl₃ (соединение **10**).

^{**} Измерена в CH₂Cl₂ (соединение **4**) и CHCl₃ (соединение **10**). **ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ**

Спектры ЯМР 1 Н регистрировали на спектрометре Varian XR-400 (400 МГц). Использовали 25% растворы образцов в CDCl₃, ацетоне-d₆, CD₃CN, внутренний стандарт ГМДС (δ 0.05 м. д.). Спектры ЯМР 13 С для 30–50% образцов в дейтеросодержащих растворителях регистрировали на спектрометре Varian XR-400 (100 МГц). Изменение химического сдвига 1 Н ($\Delta\delta$) регистрировали в CD₃CN после добавления солей металлов к краун-эфирам в соотношении 1:1. Масс-спектры получали на приборе Finnigan MAT-112S в режиме ЭУ, энергия ионизирующих электронов 70 эВ.

Получение 1,4-диокса-7,11-дитиациклотридекан-9-ола (4) и 1,4,7-триокса-10,14-дитиациклогексадекан-12-ола (5) (общая методика). К кипящему раствору 3.57 г (11 ммоль) карбоната цезия в 500 мл водного спирта, 1 : 1, при перемешивании одновременно прибавляют растворы 2.12 г (10 ммоль) дибромида 1 и 2.26 г (10 ммоль) дитиола 2 или 3 в 50 мл этанола. Реакционную смесь кипятят 50 ч, упаривают, к остатку добавляют разбавленный раствор НСІ до рН 7. Далее смесь экстрагируют этилацетатом. Экстракты сушат CaCl₂, упаривают, остаток хроматографируют на колонке (силикагель, элюент EtOAc-гексан, 3:2).

Соединение 4. Т. пл. 64–65 °С. Выход 67%. Масс-спектр, найдено: m/z 238.3687 [M]⁺. С₉H₁₈O₃S₂. Вычислено: М 238.3694; m/z ($I_{\rm OTH}$, %): 238 [M]⁺ (52), 220 (6), 194 (3), 161 (7), 122 (8), 103 (44), 75 (100), 61 (30), 45 (35). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.79–2.89 (8H, м. H-6,8,10,12); 3.57–3.81 (9H, м. H-2,3,5,13, OH); 4.08 (1H, м. H-9).

Соединение 5. Выход 58%. Масс-спектр, найдено: m/z 282.4218 [M]⁺. $C_{11}H_{22}O_4S_2$. Вычислено: М 282.4220; m/z (I_{OTH} , %): 282 [M]⁺ (44), 264 (9), 191 (6), 130 (9), 103 (52), 75 (100), 45 (56). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.71–3.25 (8H, м, H-9,11,13,15); 3.7 (8H, м, H-2,3,5,6); 3.75–3.89 (4H, м, H-8,16); 4.08 (1H, м, H-12).

1,4-Диокса-7,11-дитиациклотридекан-9-он (6). Раствор 0.064 г (0.504 ммоль) оксалилхлорида в 5 мл сухого дихлорметана охлаждают до -70 °C в токе аргона. Медленно прибавляют по каплям смесь 0.085 г (1.092 ммоль) ДМСО в 5 мл хлористого метилена и перемешивают при -70 °C. Затем прибавляют по каплям раствор 0.100 г (0.42 ммоль) спирта **4** в 2 мл дихлорметана (<-60 °C) и далее перемешивают 30 мин при -70 °C, добавляют 0.212 г (2.1 ммоль) триэтиламина, следя за тем, чтобы температура не поднималась выше -60 °C. Температуру реакционной смеси повышают до комнатной и при перемешивании прибавляют 10 мл воды. Водный раствор экстрагируют двумя порциями дихлорметана. Органическую фазу сушат Na₂SO₄. Растворитель отгоняют в вакууме, а остаток хроматографируют на силикагеле, элюент EtOAc-гексан, 1:4. Выделяют 0.040 г бесцветного масла. Масс-спектр, найдено: m/z 236.3540 [M] $^+$. С₉H₁₆O₃S₂. Вычислено: М 236.3535; m/z ($I_{\text{отн}}$, %): 236 [M] $^+$ (87), 192 (5), 174 (18), 148 (11), 146 (11), 120 (22), 115 (38), 75 (48), 61 (88), 45 (100). Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 2.72 (4H, м, H-6,12); 3.52 (4H, с, H-8,10); 3.68-3.74 (8H, м, H-2,3,5,13).

1,4-Диокса-7,11-дитиа-9-хлорциклотридекан (7) и 1,4-диокса-7,10-дитиа-6-хлорметилциклодекан (8). К раствору 0.19 мл свежеперегнанного $SOCl_2$ в 10 мл сухого хлористого метилена при комнатной температуре прибавляют по каплям раствор 0.307 г (1.29 ммоль) краун-эфира **4** в 5 мл хлористого метилена. Реакционную смесь перемещивают 6 ч, добавляют 1 мл метанола. Растворитель отгоняют, а остаток хроматографируют на силикагеле, элюент ацетон. Выделяют 0.277 г желтого масла. Вещество представляет собой смесь изомерных хлоридов **7** и **8**. Масс-спектр, m/z ($I_{\text{отн}}$, %): 256 [M][†] (100), 220 (25), 196 (11), 161 (41), 135 (39), 99 (67), 61 (35), 45 (49). Спектр ЯМР ¹H (CDCl₃), 8, м. д.: 2.74–2.95 (2H, м, CH₂S); 3.61–4.08 (2H, м, CH₂O); 4.64 (1H, м, CH₂ClClCH₂).

N-(1,4-Диокса-7,10-дитиациклододекан-8-илметил)-N-(2-фурилметил)пропен-2-ил-1-амин (9). Раствор 0.180 г (0.73 ммоль) смеси двух изомерных хлоридов **7**, **8** в 5 мл сухого ацетонитрила добавляют к раствору 0.096 г (0.73 ммоль) аллилфуриламина в 10 мл ацетонитрила, в реакционную смесь вносят 0.116 г (0.73 ммоль) Na₂CO₃. Реакционную смесь кипятят 2 дн, растворитель упаривают, а остаток очищают хроматографией (силикагель, элюент CHCl₃–CH₃OH, 10:1). Выделяют 0.234 г желтого масла. Масс-спектр, найдено: m/z 357.5327 [M] $^+$; C₁₇H₂₇NO₃S₂; вычислено: М 357.533; m/z ($I_{\rm отн}$, %): 389 [M] $^+$ (23), 208 (4), 182 (100), 104 (9), 77 (11). Спектр ЯМР 1 H (CDCl₃), δ , м. д. (J, Γ ц): 2.50–2.81 (8H, м, H-6", 9",11", NCH₂); 3.02 (1H, м, H-8"); 3.17 (2H, д, J = 6.3, H-1); 3.55–3.95 (10H, м, H-2",3",5",12", FurCH₂); 5.10–5.24 (2H, м, H-3); 5.77–5.94 (1H, д. д. т, J = 17, 10.3, 6.3, H-2); 6.22, 6.29 (2H, 2м, H-3',4'); 7.34 (1H, м, H-5').

9-Бензилокси-1,4-диокса-7,11-дитиациклотридекан (10). К 0.024 г (1 ммоль) гидрида натрия, диспергированного в 15 мл ДМФА в атмосфере аргона, в течение 1 ч

медленно добавляют раствор 0.200 г (0.84 ммоль) 13-краун-4-эфира 4 в 10 мл ДМФА. Бензилхлорид 0.106 г (0.84 ммоль) прибавляют по каплям в реакционную смесь, предварительно охлажденную до 0 °С, перемешивают при комнатной температуре 4 ч, выливают в 50 мл воды. Водную фазу экстрагируют тремя порциями хлористого метилена. Вытяжки сушат Na₂SO₄. Растворитель отгоняют, остаток хроматографируют на силикагеле, элюент этилацетат–гексан, 1:3. Выделяют 0.102 г бесцветного масла. Массспектр, найдено: m/z 328.5013 [M] $^+$; C₁₆H₂₄O₃S₂; вычислено: М 328.4920; m/z ($I_{\rm отн}$, %): 328 [M] $^+$ (44), 255 (7), 220 (14), 161 (9), 103 (57), 91 (100), 75 (94), 45 (25). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ п): 2.65, 2.78 (6H, 2м, H-6,12,8a,10a); 2.89 (2H, д. д, J = 13.6, J = 6.3, H-8b,10b); 3.55–3.79 (8H, м, H-2,3,5,13); 3.97 (1H, д. д, J = 12.1, J = 6.0, H-9); 4.72 (2H, с, $C_{\rm H_2}$ Ph); 7.25 (1H, д. д, J = 7.1, p-C₆H₅); 7.31 (2H, τ , J = 7.1, m-C₆H₅); 7.41 (1H, д, J = 7.2, o-C₆H₅).

Получение 1,4-диокса-7,11-дитиациклотридекан-9-ил-(2-оксо-2Н-хромен-3-ил)ацетата (11), 1,4-диокса-7,11-дитиациклотридекан-9-илтиофенкарбоксилата (12), 1,4,7-триокса-10,14-дитиациклогексадекан-12-ил-(2Е)-3-фенилакрилата (13), 1,4,7-триокса-10,14-дитиациклогексадекан-12-илтиофен-2-карбоксилата (14) (общая методика). К раствору 0.84 ммоль соединения 4 или 5 в 10 мл СН₂СІ₂ последовательно добавляют 0.173 г (0.84 ммоль) дициклогексилкарбодиимида, 0.012 г (0.01 ммоль) N,N-диметиламинопиридина и 0.084 ммоль соответствующей кислоты. Реакционную смесь перемещивают 2 ч, добавляют 10 мл ЕtOAc и отфильтровывают дициклогексилмочевину. Фильтрат последовательно промывают разбавленным раствором уксусной кислоты, водой, 5% раствором соды, сушат Na₂SO₄. Растворитель отгоняют, остаток хроматографируют на силикагеле, элюент EtOAc-гексан, 1:4.

Соединение 11. Выход 42%. Масс-спектр, найдено: m/z 424.5325 [M]⁺; $C_{20}H_{24}O_{6}S_{2}$; вычислено: М 424.5330; m/z ($I_{\text{отн}}$, %): 424 [M]⁺ (47), 353 (2), 308 (3), 220 (73), 159 (100), 132 (44), 99 (88), 73 (51), 45 (55). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ п): 2.60–2.76 (6H, м, H-8a",10a",6",12"); 2.93 (1H, д. д, J = 14.2, J = 4.0, H-8b",10b"); 3.63 (2H, с, H-2); 3.68–3.82 (8H, м, H-2",3",5",13"); 5.48 (1H, уш. с, H-9"); 7.28, 7.47 (4H, 2м, H-5',6',7',8'); 7.78 (1H, с, H-4').

Соединение 12. Выход 68%. Масс-спектр, найдено: $\emph{m/z}$ 348.5014 [M]⁺; $C_{14}H_{20}O_{4}S_{3}$; вычислено: М 348.5042; $\emph{m/z}$ (\emph{I}_{0TH} ,%): 348 [M]⁺ (3), 272 (2), 220 (15), 161 (20), 150 (74), 111 (100), 103 (60), 82 (74), 61 (42), 41 (43). Спектр ЯМР ¹Н (ацетон-d₆), δ , м. д. (\emph{J} , Γ ц): 2.76 (6H, м, H-8a",10a",6",12"); 3.05 (2H, д. д, \emph{J} = 14.4, \emph{J} = 4.2, H-8b",10b"); 3.65, 3.79 (8H, 2м, H-2",3",5",13"); 5.70 (1H, т. т, \emph{J} = 8.9, \emph{J} = 4.2, H-9"); 7.20 (1H, м, H-4'); 7.80 (2H, м, H-3',5').

Соединение 13. Выход 85%. Масс-спектр, найдено: m/z 412.5655 [M]⁺; $C_{20}H_{28}O_{5}S_{2}$; вычислено: М 412.5653; m/z ($I_{0тн}$,%): 412 [M]⁺ (2), 264 (38), 205 (14), 148 (18), 131 (79), 117 (72), 104 (58), 103 (100), 89 (48), 72 (49), 61 (60), 56 (42). Спектр ЯМР ¹Н (ацетон-d₆), δ , м. д. (J, Γ _{II}): 2.58, 2.86 (6H, 2м, H-9',11a',13a',14'); 3.28 (2H, д. д. J = 14.0, J = 3.9, H-116',136'); 3.60 (8H, м, H-2',3',5',6'); 3.75, 3,81 (4H, 2м, H-8',16'); 5.36 (1H, т. т, J = 8.1, J = 4.0, H-12'); 6.55 (2H, д. J = 16, H-2); 7.42, 7.70 (6H, 2м, J - J

Соединение 14. Выход 65%. Масс-спектр, найдено: m/z 392.5572 [M]⁺. $C_{16}H_{24}O_{5}S_{3}$; вычислено: М 392.5568; m/z (I_{OTH} ,%): 392 [M]⁺ (14), 264 (20), 205 (7), 130 (23), 111 (100), 03 (52), 89 (17), 73 (22), 61 (23), 45 (43). Спектр ЯМР ¹Н (ацетон-d₆), δ , м. д. (J, Γ ц): 2.54–3.02 (6H, м, H-11a",13a", 9",15"); 3.31 (2H, д. д, J = 14.4, J = 4.0, H-11b",13b"); 3.6 (8H, м, H-2",3",5",6"); 3.68–3.87 (4H, м, H-8",6"); 5.42 (1H, т. т, J = 8.06, J = 3.91, H-12"); 7.19 (1H, м, H-4'); 7.81 (2H, м, H-3',5').

Экстракция катионов Ag(I), Cd(II). Определение коэффициентов распределения Cd(II) и Ag(I) проводили радиометрически на γ -сцинтилляционном счетчике "Треугольник" с твердым кристаллическим сцинцилляционным детектором NaY с TI (активатор), используя изотопы 110m Ag ($T_{1/2} = 270$ дн) и 115m Cd ($T_{1/2} = 43.3$ дн). Образцы для регистрации активности выдерживали приблизительно 25 дн от момента приготовления до начала регистрации.

Работа выполнена при финансовой поддержке INTAS (Grant 03-514696).

СПИСОК ЛИТЕРАТУРЫ

1. Ю. А. Золотов, А. А. Формановский, И. В. Плетнев, *Макроциклические соединения в* 242

- аналитической химии, Наука, Москва, 1993.
- B. Valer, Molecular Fluorescence: Principles and Applications, Wiley-Intersci. Publ., New York, 2001, p. 273.
- 3. M. Oue, K. Akama, K. Kimura, M. Tanaka, T. Shono, *J. Chem. Soc.*, *Perkin Trans. 1*, 1675 (1989).
- 4. S. Karabösek, K. Serbest, N. Er. M. Karabösek, J. Heterocycl. Chem., 40, 639 (2003).
- 5. N. R. Champness, D. W. Bruce, M. Schwuder, New J. Chem., 23, 671 (1999).
- 6. V. Guyon, A. Guy, J. Toos, M. Zemaire, M. Praye, Tetrahedron Lett., 51, 4065 (1995).
- 7. А. Ю. Назаренко, В. Н. Калинин, П. И. Михалюк, В. В. Сухан, В. М. Тимошенко, *Журн. неорган. химии*, **38**, 1580 (1999).
- 8. J. S. Bradshaw, K. E. Krakowiak, R. M. Izatt, J. Heterocycl. Chem., 27, 347 (1990).
- 9. N. Dann, A. Chies, B. Gates, J. Org. Chem., 26, 1991 (1961).
- 10. H.-J. Liu, H.-K. Hune, G. L. Mhele, D. Weinbera, Can. J. Chem., 56, 1368 (1978).
- 11. Л. Титце, Т. Айхер, Препаративная органическая химия, Мир, Москва, 1999, с. 118.
- 12. P. Comba, An. Fath, B. Nuber, A. Peter, J. Org. Chem., 62, 8459 (1996).

Московскиий государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: tulyakova@petrol.chem.msu.ru

^аИнститут химической физики им. Н. Н. Семенова РАН, Москва 117421 e-mail: fedorova@photonics.ru Поступило в редакцию 02.11.2004