УДОБНЫЙ МЕТОД СИНТЕЗА 2-ТРИФТОРМЕТИЛ-1,3-ОКСАТИОЛАН-5-ОНОВ

Ключевые слова: 2-бром-2-хлор-1,1,1-трифторэтан, дитионит натрия, тиол, 2-три-фторметил-1,3-оксатиолан-5-он.

Производные 1,3-оксатиолан-5-она проявляют широкий спектр биоло-гической активности [1, 2]. До настоящего времен отсутствовал удобный метод синтеза 2-трифторметил-1,3-оксатиолан-5-онов **3** — потенциальных синтонов для получения фторированных аналогов биологически активных соединений. Единственный представитель этого ряда — 2-трифторметил-1,3-оксатиолан-5-он (**3a**) был получен [2] с низким выходом из трифтор-ацетальдегида.

Мы разработали простой и эффективный метод получения соединений 3 из коммерчески доступных исходных соединений.

2-Бром-1,1,1-трифтор-2-хлорэтан (1) в условиях генерирования ради-калов CF₃CHCl [3] реагирует с эфирами тиогликолевой и тиомолочной кислот с образованием неизвестных ранее сульфидов 2.

$$CF_{3}CHBrCl \qquad \frac{HSCHRCOOR^{1}}{Na_{2}S_{2}O_{4}/NaHCO_{3}DMF}$$

$$CF_{3}CHCISCHRCOOR^{1} \qquad \frac{ZnCl_{2}}{-R^{1}Cl} \qquad CF_{3} \qquad S$$

$$3a,b$$

2 a R = H, $R^1 = Et$, **b** $R = R^1 = Me$; **3 a** R = H, **b** R = Me

Полученные на первой стадии сульфиды **2** при нагревании в присут-ствии каталитических количеств безводного хлорида цинка с высокими выходами образуют целевые соединения **3**. Следует отметить стереоселек-тивный характер этой реакции. Гетероциклизация смеси (1:1) диастерео-изомеров **2b** приводит к преобладанию (2:1) одного из стереоизомеров, вероятно, менее стерически затрудненного E-изомера **3b**.

Спектры ЯМР 1 Н и 19 F зарегистрированы на приборе Varian VXR-300 (300 и 282 МГц соответственно) в CDCl₃, внутренний стандарт ТМС и FCCl₃ соответственно.

Этиловый эфир [(2,2,2-трифтор-1-хлорэтил)тио]уксусной кислоты (2а). К смеси 54.6 г (85%, 0.267 моль) дитионита натрия, 22.5 г (0.267 моль) гидрокарбоната натрия и 28 мл (0.255 моль) этилового эфира тиогликолевой кислоты в 200 мл ДМФА при температуре 35–40 °C и перемешивании прибавляют в течение 30 мин по каплям 40 мл (0.380 моль) соединения 1. Реакционную смесь выдерживают 3 ч 30 мин при 40–45 °C, выливают на воду, экстрагируют эфиром, экстракт промывают водой, сушат безводным сульфатом натрия, фильтруют, фильтрат перегоняют. Получают 48 г (80%) соединения 2а с т. кип. 78–80 °C (12 мм рт. ст.). Спектр ЯМР 1 Н, δ , м. д. (J, Γ п): 1.31 (3H, т, $^{3}J_{HH}$ = 7.2, OCH₂CH₃); 3.52 (1H, д, $^{2}J_{HH}$ = 15.9, AB, SCH₂); 3.61 (1H, д, $^{2}J_{HH}$ = 15.9, AB, SCH₂); 4.24 (2H, к, $^{3}J_{HH}$ = 7.2, OCH₂CH₃); 5.51 (1H, к, $^{3}J_{HF}$ = 6.6, CF₃CH). Спектр ЯМР 19 F, δ , м. д. (J, Γ п): -72.80 (3F, д, $^{3}J_{HF}$ = 6.6, CF₃CH). Найдено, %: Cl 15.33; S 13.39. C₆H₈ClF₃O₂S. Вычислено, %: Cl 14.98; S 13.55.

Метиловый эфир [2-(1-хлор-2,2,2-трифторэтил)тио]пропионовой кислоты (2b) получают аналогично соединению **2a** в виде смеси диастереоизомеров (1:1). Выход 72%, т. кип. 80–82 °C (12 мм рт. ст.). Спектр ЯМР 1 Н, δ , м. д. (J, Γ п): 1.54 (3H, д, $^3J_{\rm HH}$ = 7.3, С $\underline{\rm H}_3$ СН) и 1.57 (3H, д, $^3J_{\rm HH}$ = 7.3, С $\underline{\rm H}_3$ СН): 3.75 (1H, к, $^3J_{\rm HH}$ = 7.3, С $\underline{\rm H}$ СН3) и 3.78 (1H, к, $^3J_{\rm HH}$ = 7.3, С $\underline{\rm H}$ СН3); 3.79 (3H, с, ОС $\underline{\rm H}_3$); 5.47 (1H, к, $^3J_{\rm HF}$ = 6.7, С $\underline{\rm H}$ СF3) и 5.58 (1H, к, $^3J_{\rm HF}$ = 6.7, С $\underline{\rm H}$ СF3). Спектр ЯМР 19 F, δ , м. д. (J, Γ п): -72.86 (3F, два д, $^3J_{\rm HF}$ = 6.7, С $\underline{\rm H}_3$ СН) и -73.63 (3F, д, $^3J_{\rm HF}$ = 6.7, С $\underline{\rm H}_3$ СН). Найдено, %: Cl 15.24; S 13.41. С $_6$ H8CIF3O2S. Вычислено, %: Cl 14.98; S 13.55.

2-Трифторметил-1,3-оксатиолан-5-он (**3a**). Смесь 25 г (0.106 моль) сульфида **2a** и 3 г (22 ммоль) безводного хлорида цинка нагревают 45 мин при температуре 160–170 °C. Реак-ционную смесь экстрагируют кипящим гексаном (4 × 20 мл), выпавшие после охлаждения кристаллы отфильтровывают. Получают 15.6 г (86%) соединения **3a** с т. пл. 61–62 °C (т. пл. 62–63 °C [2]). Спектр ЯМР ¹H, δ , м. д. (J, Γ п): 3.63 (1H, дк, $^2J_{HH}$ = 16.2, AB, $^5J_{HF}$ = 1.2, SC \underline{H}_2); 3.81 (1H, д, $^2J_{HH}$ = 16.2, AB, SC \underline{H}_2); 5.60 (1H, к, $^3J_{HF}$ = 5.7, CF₃C \underline{H}). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ п): –78.96 (3F, дк, $^3J_{HF}$ = 5.7, $^5J_{HF}$ = 1.2, C \underline{F}_3 CH).

4-Метил-2-трифторметил-1,3-оксатиолан-5-он (3b) получают аналогично соедине-нию **3a** в виде смеси (*E*)- и (*Z*)-стереоизомеров в соотношении 2:1. Выход 81%, т. кип. 68–70 °C (15 мм рт. ст.). Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): *E*-изомер – 1.69 (3H, д, $^{3}J_{\rm HH}$ = 7.2, CHCH₃); 4.05 (1H, к, $^{3}J_{\rm HH}$ = 7.2, CHCH₃); 5.59 (1H, к, $^{3}J_{\rm HF}$ = 5.2, CHCF₃); *Z*-изомер – 1.62 (3H, д, $^{3}J_{\rm HH}$ = 6.8, CHCH₃); 5.51 (1H, к, $^{3}J_{\rm HF}$ = 5.7, CHCF₃). Спектр ЯМР 19 F, δ , м. д. (*J*, Γ ц): *E*-изомер – 79.74 (3F, д, $^{3}J_{\rm HF}$ = 5.2, CH₂CH); *Z*-изомер – 79.68 (3F, д, $^{3}J_{\rm HF}$ = 5.7, CH₂CH). Найдено, %: F 30.44; S 17.13. C₅H₅F₃O₂S. Вычислено, %: F 30.62; S 17.22.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Gouault, J.-C. Pommelet, T. Lequex, Synlett, 996 (2002).
- 2. E. V. Krumkalns, US Pat. 4282030; Chem. Abstr., 95, 163901 (1981).
- 3. H. Plenkiewicz, W. Dmowski, M. Lipinski, J. Fluorine Chem., 111, 227 (2001).

Ю. М. Пустовит, А. Н. Алексеенко, А. И. Субота $^{\rm a}$, А. А. Толмачев $^{\rm a}$

Институт органической химии НАН Украины, Киев 02660 e-mail: ypus@email.com

Поступило в редакцию 03.11.2005

^аООО НПП Енамин,

Kueв 02042, Украина e-mail: <u>dov@fosfor.kiev.ua</u>

XΓC. – 2006. – № 2. – C. 308