СИНТЕЗ

7-АМИНО-2-АРИЛ-4-(N-АРИЛКАРБАМОИЛ)-5-ФЕНИЛ-3,4-ДИГИДРОИМИДАЗО[1,5-*b*]ПИРИДАЗИНОВ

Ключевые слова: амиды β-ароилакриловых кислот, дигидроимидазо[1,5-*b*]пирида-зины, 4-фенил-1,2-диаминоимидазол, циклоконденсация.

Ранее нами показано, что взаимодействие β-ароилакриловых кислот **1** с 4-фенил-1,2-диаминоимидазолом (**2**) в спиртах приводит к образованию внутренних солей **3**. Факт выделения внутренних солей подтверждает первичность стадии гетарилирования еноновых систем в их реакциях с 1,2-диаминоазолами [1]. Циклизацию бетаинов **3** удалось осуществить при кипячении в ДМФА в присутствиии каталитических количеств HCl. Одна-ко взаимодействие сопровождается декарбоксилированием и дегидрирова-нием, что приводит к образованию исключительно гетероароматических производных имидазопиридазина **4** [2].

1 X = OH, 5 X = NHR; 6 a-d Ar = Ph, a R = Ph, b R = p-MeC₆H₄, c R = p-BrC₆H₄, d R = o-ClC₆H₄; e, f Ar = p-MeC₆H₄; e R = p-MeC₆H₄; f R = p-BrC₆H₄

Нами изучены реакции N-ариламидов β -ароилакриловых кислот **5a**–**f** с диамином **2**. Мы обнаружили, что продуктами такого взаимодействия при кипячении исходных реагентов в этаноле являются прозводные дигид-роимидазо[1,5-b]пиридазина **6a**–**f**.

В спектрах ЯМР ¹Н синтезированных соединений проявляются сигна-лы протонов системы ABX дигидропиридазинового цикла: дублет дубле-тов и дублет протонов A и B метиленовой группы, дублет метинового протона, а также однопротонный синглет протона амидной группы в обла-сти 9.73–10.51 м. д., двухпротонный синглет аминогруппы имидазольного цикла и мультиплеты ароматических протонов, свидетельствующие о сохранении арильных ядер. Образование имидазопиридазинов 6а–f также включает, по-видимому, стадию α-гетарилирования амидов 5 атомом С-5 имидазольного цикла с последующей циклоконденсацией, хотя выделить продукты присоединения не удается. Дигидроимидазопиридазины 6а–f являются достаточно стабильными и не испытывают дегидрирования при хранении на воздухе либо при кипячении в протонсодержащих раство-рителях.

Спектры ЯМР 1 Н снимали на спектрометре Varian Mercury VX-200 (200 М Γ ц) в ДМСО- d_{6} , внутренний стандарт ТМС. ИК спектры получали на приборе Specord IR-75 в KBr.

7-Амино-2,5-дифенил-4-(N-фенилкарбамоил)-3,4-дигидроимидазо[1,5-b]пиридида-зин (ба). Смесь 0.5 г (2 ммоль) N-фениламида β-бензоилакриловой кислоты **5a**, 0.35 г (2 ммоль) диамина **2** в 20 мл этанола кипятят до исчезновения (ТСХ) исходного амида (~1 ч 30 мин). После охлаждения до комнатной температуры выпавший осадок отфильтро-вывают и перекристаллизовывают из этанола. Получают 0.65 г (80%) соединения **6a** с т. пл. 217–218 °C. ИК спектр, v, см⁻¹: 1630 (С=N), 1687 (С=O), 3290, 3427 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д (J, Γ ц): 3.09 (1H, д. д, J_{3a3b} = 18.0, J_{3a4} = 8.0, H-3a); 3.41 (1H, д, J_{3a3b} = 18.0, H-3b); 4.56 (1H, д, J_{3a4} = 8.0, H-4); 6.09 (2H, уш. c, NH₂); 7.02–8.00 (15H, м, Ar); 10.37 (1H, уш. c, NH). Найдено, %: N 17.21. C₂₅H₂₁N₅O. Вычислено, %: N 17.18.

Соединения 6b–f получают аналогично, при этом продолжительность кипячения варьировалась от 30 мин (соединение **6c**) до 2 ч (соединение **6f**).

7-Амино-2,5-дифенил-4-[N-(n-метилфенил)карбамоил]-**3,4-дигидроимидазо[1,5-b]-пиридидазин (6b)**. Выход 75%, т. пл. 218–219 °C (ЕtOH). ИК спектр, v, см⁻¹: 1627 (С=N), 1680 (С=O), 3276, 3403 (NH, NH₂). Спектр ЯМР ¹H, δ , м. д (J, Γ ц): 2.19 (3H, c, CH₃), 3.07 (1H, д. д, J_{3a3b} = 17.4, J_{3a4} = 7.2, H-3a); 3.43 (1H, д, J_{3a3b} = 17.4, H-3b); 4.53 (1H, д, J_{3a4} = 7.2, H-4); 6.08 (2H, уш. c, NH₂), 7.01–7.51 (11H, м, Ar); 7.68 (2H, д, J = 8.0, o-Ar); 8.00 (2H, д, J = 8.0, o-Ar); 10.26 (1H, уш. c, NH). Найдено, %: N 16.66. $C_{26}H_{23}N_5O$. Вычислено, %: N 16.62.

7-Амино-2,5-дифенил-4-[N-(n-бромфенил)**карбамоил]-3,4-дигидроимидазо[1,5-b]-пиридидазин (6c).** Выход 80%, т. пл. 242 °C (ЕtOH). ИК спектр, v, см $^{-1}$: 1625 (C=N), 1669 (C=O), 3330, 3430 (NH, NH $_2$). Спектр ЯМР 1 H, δ , м. д (J, Γ u): 3.06 (1H, д. д, J_{3a3b} = 17.5, J_{3a4} = 7.7, H-3a); 3.43 (1H, д, J_{3a3b} = 17.5, H-3b); 4.53 (1H, д, J_{3a4} = 7.7, H-4); 6.10 (2H, уш. c, NH $_2$); 7.15–7.51 (11H, м, Ar); 7.67 (2H, д, J = 8.0, o-Ar); 8.00 (2H, д, J = 8.0, o-Ar); 10.51 (1H, уш. c, NH). Найдено, %: N 14.45. C_{25} H $_{20}$ BrN $_5$ O. Вычислено, %: N 14.40.

7-Амино-2,5-дифенил-4-[N-(o-хлорфенил)карбамоил]-3,4-дигидроимидазо[1,5-b]-пиридидазин (6d). Выход 78%, т. пл. 212–213 °C (ЕtOH). ИК спектр, v, см $^{-1}$: 1640 (C=N), 1693 (C=O), 3283, 3343, 3423 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д. (J, Γ и): 3.07 (1H, д. д, J_{3a3b} = 17.4, J_{3a4} = 8.0, H-3a); 3.43 (1H, д, J_{3a3b} = 17.4, H-3b); 4.76 (1H, д, J_{3a4} = 8.0, H-4); 6.11 (2H, уш. c, NH₂); 7.15–7.51 (11H, м, Ar); 7.74 (2H, д, J = 8.0, o-Ar); 8.02 (2H, д, J = 8.0, o-Ar); 9.73 (1H, уш. c, NH). Найдено, %: N 15.81. C_{25} H₂₀ClN₅O. Вычислено, %: N 15.85.

7-Амино-2-(n-метилфенил)-4-[N-(n-метилфенил)жарбамоил]-5-фенил-3,4-дигидро-имидазо[1,5-b]пиридидазин (6e). Выход 75%, т. пл. 235–236 °C (ЕtOH). ИК спектр, v, см $^{-1}$: 1627 (C=N), 1666 (C=O), 3303, 3336, 3433 (NH, NH $_2$). Спектр ЯМР 1 H, δ , м. д (J, Ги): 2.19 (3H, c, CH $_3$), 2.34 (3H, c, CH $_3$), 3.03 (1H, д. д, J_{3a3b} = 16.7, J_{3a4} = 6.9, H-3a); 3.27 (1H, д, J_{3a3b} = 16.7, H-3b); 4.51 (1H, д, J_{3a4} = 6.9, H-4); 6.04 (2H, уш. c, NH $_2$), 7.04 (2H, д, J = 8.0, o-Ar), 7.16 (2H, д, J = 8.0, o-Ar), 7.23–7.39 (5H, м, C $_6$ H $_5$); 7.67 (2H, д, J = 8.0, o-Ar); 7.90 (2H, д, J = 8.0, o-Ar); 10.23 (1H, уш. c, NH). Найдено, %: N 16.12. С $_{27}$ H $_{25}$ N $_5$ O. Вычислено, %: N 16.08.

7-Амино-2-(*n*-метилфенил)-4-[N-(*n*-бромфенил)карбамоил]-5-фенил-3,4-дигидро-имидазо[1,5-*b*]пиридидазин (6f). Выход 71%, т. пл. 240–241 °C (ЕtOH). ИК спектр, v, см⁻¹: 1629 (С=N), 1689 (С=O), 3300, 3370, 3423 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д. (J, Ги): 2.34 (3H, c, CH₃), 3.05 (1H, д. д, J_{3a3b} = 17.6, J_{3a4} = 7.8, H-3a); 3.33 (1H, д, J_{3a3b} = 17.6, H-3b); 4.51 (1H, д, J_{3a4} = 7.8, H-4); 6.06 (2H, уш. c, NH₂), 7.04 (2H, д, J = 8.0, o-Ar), 7.16–7.45 (9H, м, Ar), 7.65 (2H, д, J = 8.0, o-Ar), 7.90 (2H, д, J = 8.0, o-Ar), 10.49 (1H, уш. c, NH). Найдено, %: N 14.06. C₂₆H₂₂BrN₅O. Вычислено, %: N 14.00.

СПИСОК ЛИТЕРАТУРЫ

- 1. H. H. Колос, Б. В. Папонов, В. Д. Орлов, Вестник ХНУ, **549** (химия), 41 (2002).
- 2. N. Kolos, T. Beryozkina, V. Orlov, Heterocycles, 60, 2115 (2003).

Н. Н. Колос, Т. В. Березкина

Харьковский государственный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: kolos@univer.kharkov.ua

XΓC. – 2005. – № 11. – C. 1698

Поступило в редакцию 07.04.2005
