С. А. Ямашкин, Е. А. Орешкина, И. С. Романова, М. А. Юровская^а

СИНТЕ3

ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ПИРРОЛО[3,2-g]ХИНОЛИНОВ ИЗ 6-АМИНО-1,2,3-ТРИМЕТИЛ-7-МЕТОКСИИНДОЛА

Изучена сравнительная реакционная способность 1,2,3-триметил- и 6-амино-2,3-диметил-7-метоксииндолов в реакциях с ацетилацетоном, дибензоилметаном, ацето- и трифторацетоуксусными эфирами. Разработаны способы получения некоторых функционально замещенных пирроло[3,2-g]хинолинов.

Ключевые слова: 6-амино-1,2,3-триметил-7-метоксииндол, ацетилацетон, ацетоуксусный эфир, дибензоилметан, функционально замещенные пирроло[3,2-g]хинолины, трифторацетоуксусный эфир.

Енамины, полученные из 6-амино-2,3-диметил-7-метоксииндола (1a) и дикарбонильных соединений в условиях кислотной или термической циклизации, превращаются в соответствующие пирроло[3,2-g]хинолины [1]. Продолжая исследования в этом направлении, мы изучили поведение 6-амино-1,2,3-триметил-7-метоксииндола (1b) в реакциях с теми же β-дикарбонильными соединениями, а также с трифторацетоуксусным эфиром.

Результат взаимодействия аминоиндола **1b** с ацетилацетоном зависит от продолжительности процесса. Так, при кипячении соединения **1b** в избытке ацетилацетона в течение 1 ч в основном образуется енаминокетон **2a**, содержащий следы пирролохинолина **3a**. Более длительное кипячение (3 ч) приводит исключительно к продукту **3a**. Неожиданно оказалось, что в результате непродолжительного (1 ч 30 мин) выдерживания аминоиндола **1b** с дибензоилметаном при 180–185 °C сразу образуется соответствующий пирролохинолин **3b** с примесью лишь следов енаминокетона **2b**.

Me
$$H_2N$$
 OMe
 R
 H_2C
 O
 R^2
 OMe
 R
 R^2
 OMe
 R
 Me
 R^2
 OMe
 R
 Me
 R^2
 OMe
 R
 Me
 R^2
 OMe
 R
 OMe
 R
 OMe
 R
 OMe
 R
 OMe
 R
 OMe
 R
 OMe
 R

1a R = H; 1b, 2a-c, 3a R = Me; 2a, 3a R¹ = R² = Me; 2b, 3b R¹ = R² = Ph; 2c R¹ = Me, R² = OEt

Следует отметить, что в тех же условиях неметилированный аминоиндол 1a как с ацетилацетоном, так и с дибензоилметаном образует только продукты первичной конденсации — соответствующие енаминокетоны типа 2 (R = H) [1].

В спектрах ЯМР 1 Н енаминокетонов 2a,b (табл. 1) имеются синглетные сигналы протонов метоксильной и трех метильных групп индольного фрагмента, винильного протона и протона группы NH заместителя в положении 6, а также два сигнала в форме дублетов протонов H-4 и H-5. Нахождение сигнала протона группы NH в слабом поле (12.27 для соединения 2a и 13.15 м. д. для соединения 2b) указывает на то, что ее протон хелатирован [2]. В рассматриваемых спектрах присутствуют также сигналы протонов заместителей R^1 и R^2 : два синглета метильных групп в случае соединения 2a или мультиплетный сигнал десяти протонов двух фенильных заместителей соединения 2b.

Для масс-спектров енаминокетонов **2a,b** характерны пики молекулярных ионов (28 и 32% соответственно), а также пики 43* (для соединения **2a**) или 105 (для **2b**) максимальной интенсивности (100%), свидетельствующие о легком отщеплении ацетильной или бензоильной группы соответственно. Это хорошо согласуется с известными литературными данными [3].

УФ спектры соединений 2a,b и их аналогов, полученных ранее из аминоиндола 1a [1], практически одинаковы, что также подтверждает их строение.

Соединения 2a,b циклизуются в соответствующие пирролохинолины 3a,b при 140–180 °C или в трифторуксусной кислоте без нагревания, в отличие от их не метилированных по атому азота индольного фрагмента аналогов [1], которые превращаются в пирролохинолины только при нагревании в трифторуксусной кислоте. Строение соединений 3a,b подтверждают данные спектров ЯМР 1 Н. Так, в спектре пирролохинолина 3a имеются синглетные сигналы протонов групп 1-, 2-, 3-, 5-, 7-CH $_3$, 9-OCH $_3$, а также протонов H-4 и H-6. Спектр соединения 3b отличается отсутствием сигналов протонов групп 5- и 7-CH $_3$ и наличием сигналов протонов фенильных заместителей (две ABC-системы), причем сигналы протонов 7-C $_6H_5$ проявляются в более слабом поле, чем 5-C $_6H_5$, особенно o-протонов (сдвиг на 0.7 м. д.). Это, по-видимому, связано с влиянием близко расположенного атома азота пиридинового цикла.

В масс-спектрах соединений ${\bf 3a,b}$ пики молекулярных ионов имеют максимальную интенсивность, что говорит об устойчивости молекул к электронному удару. Имеются также малоинтенсивные пики ионов $[M-15]^+$ (9%) и $[M-15-28]^+$ (21%), характерные для 7-ОСН $_3$ замещенных индолов [4]. Электронные спектры соединений ${\bf 3a,b}$ хорошо согласуются со спектрами не метилированных по атому азота аналогов (R = H) [1]. Последние при действии диметилсульфата в щелочной среде легко превращаются в пирролохинолины ${\bf 3a,b}$.

^{*} Здесь и далее для пиков ионов указано значение m/z ($I_{\text{отн}}$, %).

Так же легко, как и с дикетонами, аминоиндол **1b** взаимодействует с 1530

ацетоуксусным эфиром. При этом в реакции участвует ацетильная группа и образуется аминокротонат 2с.

Спектр ЯМР 1 Н соединения **2c** содержит характерные сигналы протонов группы $OC_{2}H_{5}$, синглетные сигналы протонов пяти метильных групп, винильного протона и протона группы NH, а также дублетные сигналы H-5 и H-4. Положение сигнала протона группы NH (10.09 м. д.) свидетельствует о том, что он хелатирован [2].

Самыми интенсивными в масс-спектре соединения 2c являются сигнал молекулярного иона (100%) и сигнал иона $[M-46]^+$. Дальнейшая фрагментация аналогична фрагментации продукта циклизации аминокротоната 2c – пирролохинолина 4 (см. ниже), что указывает на образование последнего в условиях масс-спектрометрии.

При кратковременном кипячении (5-10 мин) соединения **2c** в дифениле оно легко циклизуется в пирролохинолин **4**.

Характер спектра ЯМР 1 Н соединения **4** свидетельствует о том, что в ДМСО- d_6 оно существует в равновесии со своим таутомером **5**. По интенсивности сигналов характеристических протонов H-6, 7-CH₃, которые для оксихинолоновой структуры **5** проявляются в более слабом поле, соотношение **4** : **5** равно 3:1. Спектр содержит также два близких по химическому сдвигу синглета протонов H-4 каждого таутомера и четыре сигнала метильных групп, которые для обоих таутомеров совпадают.

Пирролохинолин **4** при действии диметилсульфата в щелочной среде превращается в метилированное по обоим атомам азота соединение **6**. Спектр ЯМР ¹Н пирролохинолона **6** хорошо согласуется со спектром γ-хинолона **4**. В масс-спектре соединения **4** кроме пика молекулярного иона (100%) имеются сигналы фрагментных ионов 255 (58%) и 277 (28%), соответствующие потере молекулярным ионом метильного радикала и далее молекулы СО. По той же схеме протекает распад метилированного по обоим азотам пирролохинолона **6**.

Поведение кротоната 2с в условиях реакции Вильсмайера отличалось

от его поведения неметилированного аналога (R = H) [1]. После 6 ч кипячения соединения 2c с комплексом ДМФА + POCl₃ в хлороформе были получены два пирролохинолина 7 и 8.

$$2c \xrightarrow{DMF + POCl_3}$$

$$EtO_2C \xrightarrow{Me} Me + EtO_2C \xrightarrow{CHO} Me Me$$

$$7 \xrightarrow{Me} Me \xrightarrow{N} Me Me$$

$$8 \xrightarrow{N} Me$$

Строение соединения 7 подтверждает спектр ЯМР ¹Н, который содержит сигналы всех заместителей, а также ароматических протонов Н-4 и Н-5. Распад пирролохинолина 7 под действием электронного удара принципиально не отличается от такового для уже рассмотренных структур 4, 6.

Образование второго продукта реакции **8** обусловлено формилированием в условиях реакции Вильсмайера пирролохинолина **7** по положению **4**. По сравнению со спектром ЯМР ¹Н пирролохинолина **7** в спектре соединения **8** отсутствует сигнал протона H-4 и имеется синглетный сигнал протона группы СНО при 10.60 м. д. Альдегидная группа в положении **4** вызывает смещение сигнала протона H-5 (7.02 м. д. в соединении **7**) в слабое поле (10.04 м. д. в соединении **8**).

Наличие формильной группы в пирролохинолине $\bf 8$ подтверждают и данные ИК спектра, в котором помимо полосы валентных колебаний сложноэфирного карбонила (1711 см $^{-1}$) присутствует интенсивная полоса в области 1665 см $^{-1}$.

В масс-спектре соединения **8** кроме пиков 354 [M] $^+$ (100%), 339 [M–15] $^+$ (15%), 311 [M–15–28] $^+$ (15%), характерных и для пирролохинолинов **4**, **6**, имеется пик иона 329 [M–29] $^+$ (14%), соответствующий потере молекулярным ионом группы CHO.

Легкость формилирования по положению 4 в пирролохинолине 7, повидимому, обусловлена электронодонорным влиянием группы NMe, которая несколько повышает не только основность исходного амина 1b, но и способствует созданию достаточной электронной плотности на атоме C-4 для введения формильной группы в условиях реакции Вильсмайера. Действительно, в тех же условиях индивидуальное соединение 7 превращается в 4-формилпроизводное 8, в то время как другие пирролохинолины типа 3 (R = H) не формилируются [1].

На направление реакции аминоиндолов **1а,b** с трифторацетоуксусным эфиром существенное влияние оказывают условия ее проведения. Так, 1532

в отличие от не фторированного аналога, при кипячении в бензоле в присутствии следов ледяной уксусной кислоты реакция идет по сложноэфирной группе и получаются циклические амиды 9a,b, образующиеся также из аминов 1a,b при 10–15 °C в присутствии водоотнимающего средства (в отличие от 5-аминоиндолов, для которых в этих условиях основными продуктами реакции являются аминокротонаты [5]).

 $\mathbf{a} R = H$; $\mathbf{b} R = Me$

Об образовании циклических амидов из 7-аминоиндолов мы уже сообщали ранее [6]. Строение соединений **9a,b** подтверждают данные спектров ЯМР ¹Н, в которых имеются сигналы протонов трех (для соединения **9a)** или четырех (для соединения **9b)** метильных групп, одиночные синглеты протонов Н-1 (для структуры **9a)**, Н-4,8, 5-ОН, два сигнала в форме дублетов метиленовых протонов в области 2.8–3.0 м. д. с КССВ 15 Гц. Неэквивалентность этих протонов, по-видимому, связана с неоднозначным влиянием трифторметильной и гидроксильной групп. Две полосы в области 1661 и 1698 см⁻¹ в ИК спектрах свидетельствуют, вероятно, о наличии для каждого из соединений **9a,b** двух конформеров.

Самыми интенсивными сигналами в масс-спектрах амидов 9a, b являются пики ионов $[M-69]^+$ (100%), которые соответствуют протонированным формам пирролохинолинов с гидроксильными группами в положениях 5 и 7. Последние под действием электронного удара образуются из $[M]^+$ амидов (55% для 9a, 83% для 9b) за счет элиминирования трифторметильного радикала.

В термических (250 °C) или кислотных условиях (CF₃COOH, 20–78 °C) легко протекает ароматизация соединений **9a**,**b** с отщеплением молекулы воды. При этом с хорошими выходами образуются трифторметилзамещенные пирролохинолоны **10a**,**b**.

 $\mathbf{a} R = H; \mathbf{b} R = Me$

Таблица 1 Спектральные характеристики соединений 2–11

Соеди-	Масс-спектр, <i>m/z</i>	УФ спектр		Спектр ЯМР 1 Н, δ , м. д. (J , Γ ц)	
нение	$(I_{ ext{oth}}, \sqrt[6]{o})$	λ_{max}	lg ε	Спектр ямг п, о, м. д. (3, т ц)	
2a	286 [M] ⁺ (29), 271 (16), 243 (6), 229 (24), 214 (31), 188 (22), 43 (100)	234 310	4.80 4.48	1.72 (3H, c, CH ₃ C=); 1.99 (3H, c, CH ₃ CO); 2.10 (3H, c, 3-CH ₃); 2.24 (3H, c, 2-CH ₃); 3.89 (6H, c, 7-OCH ₃ , 1-CH ₃); 5.20 (1H, c, C <u>H</u> CO); 6.55 (1H, д, <i>J</i> = 8, H-5); 6.65 (1H, д, <i>J</i> = 8, H-4); 12.27 (1H, c, NH)	
2b	410 [M] ⁺ (32), 305 (21), 291 (10), 290 (11), 105 (87), 77 (100)	230 300 (пл) 340	4.71 4.17 4.27	2.30 (3H, c, 3-CH ₃); 2.43 (3H, c, 2-CH ₃); 3.76 (3H, c, 1-CH ₃); 3.89 (3H, c, 7-OCH ₃); 6.10 (1H, π , J = 8.0, H-5); 6.11 (1H, c, CHCO); 6.30 (1H, π , J = 8.0, H-4); 7.50–8.00 (10H, π , 2C ₆ H ₅); 13.15 (1H, c, NH)	
2c	316 [M] ⁺ (100), 301 (12), 270 (71), 255 (43), 229 (24), 227 (46), 214 (19), 188 (20)	233 303	4.68 4.41	1.29 (3H, τ , $J = 7.0$, OCH ₂ CH ₃); 1.70 (3H, c , CH ₃ C=); 2.11 (3H, c , 3-CH ₃); 2.25 (3H, c , 2-CH ₃), 3.87 (3H, c , 1-CH ₃); 3.89 (3H, c , 7-OCH ₃); 4.04 (2H, κ , $J = 7.0$, OCH ₂ CH ₃); 4.60 (1H, c , CHCO); 6.55 (1H, π , $J = 8.0$, H-5); 6.65 (1H, π , $J = 8.0$, H-4); 10.09 (1H, c , NH)	
3a	268 [M] ⁺ (100), 253 (9), 225 (21)	211 233 263 345	4.59 4.76 4.67 4.19	2.33 (3H, c, 3-CH ₃); 2.59 (3H, c, 2-CH ₃); 2.61 (3H, c, 5-CH ₃); 2.69 (3H, c, 7-CH ₃); 3.99 (3H, c, 1-CH ₃); 4.02 (3H, c, 9-OCH ₃); 6.84 (1H, c, H-6); 7.05 (1H, c, H-4)	
3b	392 [M] ⁺ (100), 377 (15), 359 (2)	211 250 294 364	4.82 4.92 4.69 4.36	2.39 (3H, c, 3-CH ₃); 2.84 (3H, c, 2-CH ₃); 3.84 (3H, c, 1-CH ₃); 4.01 (3H, c, 9-OCH ₃); 6.80 (1H c, H-4); 7.44 (1H, т, <i>J</i> = 8.0, H-4 _{5-Ph}); 7.54 (3H, т, <i>J</i> = 8.0, H-3 _{5-Ph} , H-4 _{7-Ph}); 7.60 (2H, т, <i>J</i> = 8.0, H-3 _{7-Ph}); 7.67 (2H, д, <i>J</i> = 8.0, H-2 _{5-Ph}); 7.80 (1H, c, H-6); 8.34 (2H, т, <i>J</i> = 8.0, H-2 _{7-Ph})	
4*	270 [M] ⁺ (100), 269 (58), 255 (58), 241 (10), 239 (13), 227 (28), 225 (10)	208 237 263 345	4.10 4.48 4.40 3.89	2.31 (3H, c, 3-CH ₃); 2.40 (3H, c, 2-CH ₃); 2.58 (3H, c, 7-CH ₃); 3.92 (3H, c, 1-CH ₃); 3.98 (3H, c, 9-OCH ₃); 5.90 (1H, c, H-6); 7.17 (1H, c, H-4); 9.28 (1H, c, H-8)	
5*				2.31 (3H, c, 3-CH ₃); 2.40 (3H, c, 2-CH ₃); 2.65 (3H, c, 7-CH ₃); 3.92 (3H, c, 1-CH ₃); 3.98 (3H, c, OCH ₃); 6.60 (1H, c, H-6); 7.00 (1H, c, H-4); 10.45 (1H, c, 5-OH)	

6	284 [M] ⁺ 100, 283 (16), 269 (64), 241 (21)	217 238 256 323	4.16 4.37 4.28 3.75	2.32 (3H, c, 3-CH ₃); 2.59 (3H, c, 7-CH ₃); 2.67 (3H, c, 2-CH ₃); 3.97 (6H, c, 1-,8-CH ₃); 3.98 (3H, c, OCH ₃); 6.77 (1H, c, H-6); 6.96 (1H, c, H-4)
7	326 [M] ⁺ (100), 311 (11), 398 (12), 283 (35), 255 (18)			1.37 (3H, τ , $J = 7.0$, OCH ₂ CH ₃); 2.35 (3H, c , 3-CH ₃); 2.70 (3H, c , 2-CH ₃); 2.85 (3H, c , 7-CH ₃); 4.02 (6H, c , 1-CH ₃ , OCH ₃); 4.36 (2H, κ , $J = 7.0$, OCH ₂ CH ₃); 7.02 (1H, c , H-4); 8.65 (1H, c , H-5)
8	354 [M] ⁺ (100), 339 (12), 325 (10), 311 (12)	217 274 364	4.33 4.57 4.05	1.39 (3H, τ , $J = 7.0$, OCH ₂ CH ₃); 2.43 (3H, c, 3-CH ₃); 2.71 (3H, c, 2-CH ₃); 2.89 (3H, c, 7-CH ₃); 4.04 (3H, c, 1-CH ₃); 4.10 (3H, c, OCH ₃); 4.40 (2H, κ , $J = 7.0$, COCH ₂ CH ₃); 10.04 (1H, c, H-5); 10.60 (1H, c, CHO)
9a	328 [M] ⁺ (55), 310 (12), 295 (10), 267 (18), 259 (100)	235 303	4.19 3.74	2.29 (3H, c, 3-CH ₃); 2.39 (3H, c, 2-CH ₃); 2.85 (1H, д, <i>J</i> = 15.0, –С <u>H</u> ₂ CO); 2.92 (1H, д, <i>J</i> = 15.0, –С <u>H</u> ₂ CO); 3.93 (3H, c, OCH ₃); 6.43 (1H, c, OH); 6.79 (1H, c, H-4); 8.40 (1H, c, H-8); 10.65 (1H, c, NH)
9b	342 [M] ⁺) (83), 327 (23), 324 (8), 309 (2), 285 (13), 281 (16), 273 (100)	230 303	4.58 4.04	2.25 (3H, c, 3-CH ₃); 2.39 (3H, c, 2-CH ₃); 2.83 (1H, π, <i>J</i> = 15.0, -C <u>H</u> ₂ CO); 2.97 (1H, π, <i>J</i> = 15.0, -C <u>H</u> ₂ CO); 3.85 (3H, c, 1-CH ₃); 3.90 (3H, c, OCH ₃); 6.74 (1H, c, OH); 6.80 (1H, c, H-4); 8.80 (1H, c, H-8)
10a	310 [M] ⁺ (74), 295 (35), 267 (100)	237 280 352	4.0 4.06 3.58	2.27 (3H, c, 3-CH ₃); 2.43 (3H, c, 2-CH ₃); 3.90 (3H, c, OCH ₃); 6.70 (1H, c, H-4); 6.79 (1H, c, H-6); 9.90 (1H, c, H-8); 11.31 (1H, c, NH)
10b	324 [M] ⁺ (100), 309 (33), 381 (79)	230 278 345	4.51 4.27 3.65	2.32 (3H, c, 3-CH ₃); 2.60 (3H, c, 2-CH ₃); 3.97 (3H, c, 1-CH ₃); 4.02 (3H, c, OCH ₃); 6.80 (1H, c, H-4); 6.90 (1H, c, H-6); 9.42 (1H, c, H-8)
11	338 [M] ⁺ (100), 323 (43), 295 (36)	233 274 370	4.69 4.30 3.74	2.35 (3H, c, 3-CH ₃); 2.68 (3H, c, 2-CH ₃); 4.00 (6H, c, 1-, 8-CH ₃); 4.08 (3H, c, OCH ₃); 6.85 (1H, c, H-6); 7.12 (1H, c, H-4)

^{*} Данные спектра ЯМР 1 Н получены из спектра смеси (3:1) соединений **4** и **5**.

В спектрах ЯМР ¹Н соединений **10а,b** имеются синглетные сигналы протонов трех (для соединения **10a**) и четырех (для соединения **10b**) метильных групп, а также протонов H-1 (для соединения **10a**), H-4, H-6, H-8. Характер распада пирролохинолинов **10a,b** под действием электронного удара аналогичен распаду соединений **4**, **6**: в спектрах присутствуют интенсивные пики ионов $[M]^+$ (74% для **10a**, 100% для **10b**), $[M-5]^+$ (33%) и $[M-15-28]^+$ (100% для **10a**, 79% для **10b**).

 $\label{eq:Tadef} T\,a\, {\rm f}\, \pi\, u\, {\rm ц}\, a \,\, 2$ Физико-химические характеристики полученных соединений

Соеди-	Брутто- формула	В	Найдено, % ычислено, '	%	R _f (си- сте- ма)	Т. пл., °С *	Выход,% (Ме- тод)
		С	Н	M			
2a	$C_{17}H_{22}N_2O_2$	71.48 71.30	7.55 7.74	286 286	0.59 (Γ)	96	73
2b	$C_{27}H_{26}N_2O_2$	78.71 79.00	6.75 6.38	410 410	0.56 (a)	165–166	3
2 c	$C_{18}H_{24}N_2O_3$	67.96 68.33	8.18 7.65	316 316	0.60 (б)	123–124	69
3a	$C_{17}H_{20}N_2O$	75.69 76.09	8.02 7.51	268 268	0.35 (e)	174–175	25 (A), 48 (Б), 59 (B)
3b	$C_{27}H_{24}N_2O$	82.34 82.62	6.50 6.16	392 392	0.75 (a)	184–185	31
4	$C_{16}H_{18}N_2O_2$	70.79 71.09	7.11 6.71	$\frac{270}{270}$	0.80 (ж)	252–253	81
6	$C_{17}H_{20}N_2O_2$	71.47 71.81	7.54 7.09	284 284	0.59 (3)	218–219	49 (A), 59 (Б)
7	$C_{19}H_{22}N_2O_3$	69.66 69.92	6.22 6.79	326 326	0.73 (B)	179–180	20
8	$C_{20}H_{22}N_2O_4$	67.63 67.78	6.60 6.26	354 354	0.54 (B)	204–205	15
9a	$C_{15}H_{15}F_3N_2O_3$	<u>54.76</u> 54.88	4.78 4.61	328 328	0.29 (д)	284	27
9b	$C_{16}H_{17}F_3N_2O_3$	<u>56.00</u> 56.14	<u>5.22</u> 5.01	342 342	0.50 (e)	196–197	34
10a	$C_{15}H_{13}F_3N_2O_2$	<u>57.96</u> 58.07	4.37 4.22	310 310	0.23 (д)	315	60
10b	$C_{16}H_{15}F_3N_2O_2$	<u>59.13</u> 59.26	4.84 4.66	324 324	0.18 (e)	221–222	76
11	C ₁₇ H ₁₇ F ₃ N ₂ O ₂	60.20 60.35	5.28 5.06	338 338	0.84 (a)	169–170	63 (А), 57 (Б)

^{*} Растворитель для кристаллизации: гексан (2a,b, 7, 8), петролейный эфир (2c, 9b), бен-зол-петролейный эфир (3a, 10b), этанол (3b, 4, 6, 11), бензол (9a, 10a).

Полностью метилзамещенный по атомам азота пирролохинолон **11**, который легко получается метилированием соединений **10а**,**b**, еще более устойчив к электронному удару. Об этом свидетельствует соотношение интенсивностей молекулярного и фрагментных ионов: $[M]^+$ (100%), $[M-15]^+$ (43%), $[M-15-28]^+$ (36%).

10а,b
$$\frac{\text{Me}_2\text{SO}_4 + \text{KOH}}{\text{ацетон}}$$
 $\frac{\text{CF}_3}{\text{Me}}$ $\frac{\text{Me}}{\text{N}}$ $\frac{\text{Ne}}{\text{N}}$ $\frac{\text{Ne}}{\text{N}}$ $\frac{\text{Ne}}{\text{N}}$ $\frac{\text{Ne}}{\text{N}}$ $\frac{\text{Ne}}{\text{N}}$ $\frac{\text{Ne}}{\text{Ne}}$ $\frac{\text{Ne}}{\text{Ne}}$

УФ и ЯМР 1 Н спектры соединения **11** полностью согласуются с данными спектров для пирролохинолонов **10а**,**b**.

Анализ результатов, полученных в настоящей работе и ранее [1], свидетельствует о том, что метилированный по атому N-1 аминоиндол 1b в реакциях с β-дикарбонильными соединениями, несомненно, активнее, чем его не метилированный по указанному атому азота аналог 1а, что можно объяснить положительным индуктивным влиянием N-метильной группы. Одним из критериев оценки реакционной способности ароматических аминов является величина заряда на атоме азота аминогруппы (первичная конденсация) и углерода в орто-положении к атому С, связанному с группой NH₂ (образование цикла). Мы провели квантово-химические расчеты аминов 1а, в методом АМ1 с использованием пакета программ Hyper Chem.5.0. Полученные результаты показывают, что заряд на атоме азота аминогруппы не метилированного аминоиндола 1а выше, чем на том же атоме метилированного аминоиндола 1ь (0.082 по сравнению с 0.067), что косвенно свидетельствует о повышении основности амина при введении метильной группы по атому N-1. Аналогично, но в меньшей степени, для аминов 1а, в имеется различие в зарядах на *орто*-атоме C-5 (-0.157 для **1a**, -0.160 для **1b**). Достаточно высокая реакционная способность аминогруппы и нуклеофильность атомов углерода бензольного кольца дает возможность использовать аминоиндол 1b для получения замещенных пирроло[3,2-g]хинолинов, причем проводить в довольно мягких условиях как первичную конденсацию, так и последущую циклизацию.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на приборе Bruker DRX-500 (500 МГц) в ДМСО- d_6 относительно ТМС. Масс-спектры получены на масс-спектрометре Finnigan MAT. INCOS-50 с прямым вводом образца в источник ионов при энергии ионизации 70 эВ. Электронные спектры зарегистрированы на спектрофотометре Specord в этаноле. Очистку продуктов реакции проводили методом колоночной хроматографии на Al_2O_3 (нейтральная, I и II ст. акт. по Брокману). Контроль за ходом реакций, чистотой полученных соединений, определение R_f осуществляли с помощью ТСХ на пластинках Silufol UV-254 в системах бензол-этилацетат, 20:1 (а), 9:1 (б), 8:1 (в), 3:1 (г), 3:2 (д), 1:1 (е), этилацетат-метанол, 5:1 (ж), 4:1 (з), хлороформ-петролейный эфир, 2:1 (и).

Физико-химические и спектральные характеристики полученных соединений при-

ведены в табл. 1, 2.

- (*Z*)-4-(1,2,3-Триметил-7-метокси-1H-индол-6-иламино)пент-3-ен-2-он (2а). Смесь 0.44 г (2.16 ммоль) аминоиндола 1b и 3 мл ацетилацетона кипятят 30 мин. По окончании реакции избыток ацетилацетона удаляют в вакууме. Остаток растворяют в смеси бензола с петролейным эфиром, раствор концентрируют упариванием, охлаждают, выпавший осадок соединения 2а отфильтровывают. Для очистки от следов соединения 3а полученный осадок растворяют в бензоле и фильтруют через слой (2 см) Al₂O₃. Выход чистого соединения 2а 0.45 г.
- (*Z*)-3-(1,2,3-Триметил-7-метокси-1H-индол-6-иламино)-1,3-дифенилпроп-2-ен-1-он (**2b**) и 1,2,3-триметил-9-метокси-5,7-дифенил-1H-пирроло[3,2-g]хинолин (**3b**). А. Смесь 0.3 г (1.47 ммоль) аминоиндола **1b** и 0.66 г (2.94 ммоль) дибензоилметана выдерживают 1 ч 30 мин при 180–185 °C. Продукты реакции **2b** и **3b** выделяют препаративной хроматографией на толстом слое Al_2O_3 в системе "3". Получают 0.019 г соединения **2b** и 0.18 г соединения **3b**.
- Б. К раствору 0.068 г (0.18 ммоль) 2,3-диметил-9-метокси-5,7-дифенил-1Н-пирроло-[3,2-g]хинолина [1] в ацетоне прибавляют пятикратный избыток диметилсульфата и гидроксида калия. Смесь кипятят 4 ч, затем ацетон отгоняют, к остатку добавляют 30 мл воды. Выпавший осадок отфильтровывают, промывают многократно водой, сушат на воздухе. Получают 0.03 г соединения **3b**.
- Этиловый эфир (*Z*)-3-(1,2,3-триметил-7-метокси-1H-индол-6-иламино)кротоновой кислоты (2c). Кипятят 5 ч с насадкой Дина—Старка смесь 1.3 г (6.37 ммоль) аминоиндола 1b и 0.83 г (6.38 ммоль) ацетоуксусного эфира в 200 мл абсолютного бензола, содержащего следы ледяной уксусной кислоты. По окончании реакции бензол отгоняют, остаток растворяют в смеси петролейный эфир бензол, раствор фильтруют через слой (3—4 см) Al₂O₃. После упаривания раствора получают 1.4 г соединения 2c.
- **1,2,3,5,7-Пентаметил-9-метокси-1H-пирроло**[**3,2-g**]хинолин (**3a**). А. По методике синтеза соединения **2a** кипячением в течение 3 ч смеси $0.70 \, \Gamma$ (3.43 ммоль) аминоиндола **1b** и 3 мл ацетилацетона получают $0.23 \, \Gamma$ соединения **3a**.
- Б. Раствор 0.1 г (0.35 ммоль) енаминокетона **2а** в десятикратном избытке трифторуксусной кислоты кипятят 20 мин. Охлажденную реакционную смесь выливают в 10–12% водный аммиак со льдом, выпавший осадок отфильтровывают, промывают многократно водой, сушат на воздухе. Получают 0.045 г соединения **3a**.
- В. Метилированием аналогично синтезу соединения **3b** (но в течение 3 ч 30 мин) из 0.045 г (0.18 ммоль) 2,3,5,7-тетраметил-9-метокси-1H-пирроло[3,2-g]хинолина получают 0.08 г соелинения **3a**.
- **1,2,3,7-Тетраметил-9-метокси-5,8-дигидро-1H-пирроло[3,2-g]хинолин-5-он (4).** Смесь $0.2 \ \Gamma$ ($0.63 \ \text{ммоль}$) аминокротоната **2c** и 5 мл дифенила кипятят $5-10 \ \text{мин}$. Горячий раствор разбавляют петролейным эфиром, осадок отфильтровывают, промывают многократно горячим гексаном. Получают $0.14 \ \Gamma$ пирролохинолона **4**.
- **1,2,3,7,8-Пентаметил-9-метокси-5,8-дигидро-1Н-пирроло[3,2-g]хинолин-5-он (6).** А. Метилированием 0.17 г (0.625 ммоль) пирролохинолина **4** в течение 5 ч по методике синтеза соединения **3b** получают 0.086 г соединения **6**.
- Б. Аналогично метилированием 0.123 г (0.48 ммоль) 2,3,7-триметил-9-метокси-5,8-дигидро-1Н-пирроло[3,2-g]хинолин-5-она, синтезированного ранее [1], в течение 6 ч 30 мин получают 0.08 г пирролохинолона 6.
- Этиловый эфир 1,2,3,7-тетраметил-9-метокси-1H-пирроло[3,2-g]хинолин-6-карбоновой кислоты (7) и этиловый эфир 1,2,3,7-тетраметил-9-метокси-4-формил-1H-пирроло[3,2-g]хинолин-6-карбоновой кислоты (8). К раствору 0.38 г (1.2 ммоль) соединения 2с в 40 мл хлороформа добавляют реактив Вильсмайера, приготовленный из 1.5 мл (165.9 ммоль) ДМФА и 1 мл (10.6 ммоль) РОСІ₃. Реакционную смесь кипятят 7 ч, далее отгоняют хлороформ, к остатку приливают 2–3 мл этанола, а затем 20 мл водного раствора КОН до рН 9. Выпавший осадок отфильтровывают и многократно промывают водой до нейтральной реакции. Из промытого осадка препаративной ТСХ на пластинках с незакрепленным толстым слоем Al_2O_3 в системе "в" выделяют 0.052 г соединения 7 и 0.065 г соединения 8.
- **5-Гидрокси-2,3-диметил-9-метокси-5-трифторметил-5,6,7,8-тетрагидро-1Н-пирроло-** [**3,2-g**]**хинолин-7-он (9а).** По методике синтеза соединения **2c** смесь 0.55 г (2.89 ммоль) аминоиндола **1a** и 0.54 г (2.90 ммоль) этилового эфира (трифторацето)уксусной кислоты кипятят 17 ч. Далее объем реакционной смеси доводят отгонкой бензола до 20 мл.

Выпавший осадок амида **9a** отфильтровывают и промывают многократно бензолом. Выход 0.9 г.

- **5-Гидрокси-1,2,3-триметил-9-метокси-5-трифторметил-5,6,7,8-тетрагидро-1H-пир-роло[3,2-g]хинолин-7-он (9b)** получают аналогично синтезу соединения **9a** из 1.13 г (5.54 ммоль) аминоиндола **1b** за 10 ч с выходом 0.65 г.
- **2,3-Диметил-9-метокси-5-трифторметил-7,8-дигидро-1H-пирроло[3,2-g]хинолин-7-он (10а)**. Кипятят 0.9 г (2.7 ммоль) амида **9а** в десятикратном избытке трифторуксусной кислоты 2 ч. Охлажденную реакционную смесь выливают в водный 10–12% аммиак со льдом, осадок отфильтровывают, многократно промывают водой, сушат на воздухе, получают 0.5 г пирролохинолона **10a**.
- **1,2,3-Триметил-9-метокси-5-трифторметил-7,8-дигидро-1H-пирроло[3,2-g]хинолин-7-он (10b)** получают аналогично синтезу соединения **10a** из $0.25 \, \Gamma \, (0.73 \, \text{ммоль})$ амида **9b** за $1 \, \text{ч c}$ выходом $0.18 \, \Gamma$.
- **1,2,3,8-Тетраметил-9-метокси-5-трифторметил-7,8-дигидро-1Н-пирроло[3,2-g]хинолин-7-он (11).** А. Метилированием (см. синтез соединения **3b**, способ Б) 0.13 г (0.42 ммоль) пирролохинолина **10a** в течение 4 ч получают 0.089 г соединения **11**.
- Б. Аналогично метилированием $0.08 \, \Gamma \, (0.25 \, \text{ммоль})$ пирролохинолина **10b** в течение 3 ч получают $0.047 \, \Gamma$ пирролохинолона **11**.

СПИСОК ЛИТЕРАТУРЫ

- 1. C. A. Ямашкин, Н. Я. Кучеренко, М. А. Юровская, *XTC*, 75 (1997).
- 2. С. А. Ямашкин, М. А. Юровская, ХГС, 1336 (1999).
- 3. П. А. Шарбатян, С. А. Ямашкин, А. Н. Кост, Л. Г. Юдин, ХГС, 73 (1977).
- 4. П. Б. Терентьев, Р. А. Хмельницкий, О. А. Соловьев, Л. Г. Юдин, А. Н. Кост, Е. Я. Зинченко, *ХГС*, 1070 (1978).
- С. А. Ямашкин, Г. А. Романова, М. А. Юровская, Вестн. МГУ, Сер. 2, Химия, 45, 6 (2004).
- 6. С. А. Ямашкин, Г. А. Романова, И. С. Романова, М. А. Юровская, *XГС*, 1202 (2003).

Мордовский государственный педагогический институт, Саранск 430007, Россия e-mail: mgpi@si.moris.ru Поступило в редакцию 25.03.2004 После доработки 01.10.2004

^аМосковский государственный университет им. М.И.Ломоносова, Москва 11989, Россия e-mail: yumar@org.chem.msu.ru