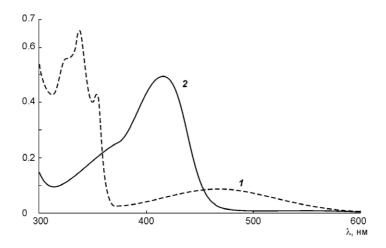
Д. Г. Кротко, К. В. Федотов, А. И. Толмачев

СИНТЕЗ И СПЕКТРАЛЬНЫЕ СВОЙСТВА ЦИАНИНОВЫХ КРАСИТЕЛЕЙ НА ОСНОВЕ СИСТЕМЫ ИНДЕНО[2,1-b]ХРОМЕНА

Исходя из продуктов формилирования и винилформилирования индено[2,1-b]хромена синтезирован ряд новых симметричных и несимметричных полиметиновых красителей с остатком индено[2,1-b]хромена в качестве концевой группы. Показано, что полученные несимметричные красители имеют две полосы поглощения в видимой области, положение, интенсивность и форма которых зависят от природы второй концевой группы.

Ключевые слова: винилформилирование, псевдоазулены, цианиновые красители.


Псевдоазулены — π -изоэлектронные аналоги азулена, которые формально получаются заменой фрагмента СН=СН в семичленном кольце азулена на гетероатом O, S или группу NR [1, 2]. Эти системы сохраняют ароматический характер и обладают физическими и химическими свойствами, во многом аналогичными азулену. Псевдоазулены представляют значительный интерес для синтеза и исследования полиметиновых красителей, поскольку они имеют собственные полосы поглощения в видимой области [3–5], их флуоресценция отвечает редкому типу переходов $S^2 - S^0$ [2, 6–9] и некоторые из них проявляют нелинейно-оптические свойства [10].

Полиметиновые красители, содержащие в качестве концевых групп остатки псевдоазуленов, до настоящего времени систематически исследованы не были. Сведения в этой области, по сути, исчерпываются двумя работами, в которых описаны катионоидные полиметиновые красители симметричного [11] и несимметричного [12] строения – производные 2,4-дифенилиндено[2,1-*b*]пирана. Кроме того, известен симметричный монометинцианин, содержащий остаток индено[2,1-*b*]хромена [13].

Задача настоящей работы заключалась в синтезе новых цианиновых красителей, имеющих остаток псевдоазулена в качестве концевой группы, и изучении их спектральных свойств. Для исследования была выбрана система наиболее доступного псевдоазулена — индено[2,1-*b*]хромена (1) [14]. Имеются сведения о нестабильности перхлората 6H-индено[2,1-*b*]-хромения (2), не позволяющей выделить его в чистом виде [14], а также некоторые данные о соли 2, полученные, однако, при неполном ее протонировании [15].

Сравнение снятых в ДМСО- d_6 спектров ЯМР 1 Н и 13 С инденохромена **1** и полученной при его обработке CF₃COOD соли **3** показывает, что протонирование проходит практически полностью, при этом существенно

изменяются химические сдвиги и характер расщепления сигналов протонов. Так, в частности, химический сдвиг протона H-11 изменяется с 8.22 на 9.25 м. д., что свидетельствует об изменении ароматичности псевдоазуленовой системы на бензопирилиевую. Данный вывод также подтверждается сравнением спектров ЯМР ¹³С протонированной и непротонированной форм: если в соединении 1 самый слабопольный сигнал в спектре находится при 152.2 м. д., то в спектре соли 3 самый слабопольный сигнал — 183.1 м. д. Весьма характерно при протонировании изменяется электронный спектр инденохромена 1 (измерение спектра проводилось в МеСN в присутствии избытка HClO₄): исчезают полосы поглощения с максимумами 466 и 337 нм и возникает новая интенсивная полоса с максимумом 415 нм, которая сходна с полосой поглощения обычных бензопирилиевых солей (рис. 1).

Рис. 1. Сравнение спектров поглощения инденохромена ${\bf 1a}~(1)$ и соли ${\bf 2}~(2)$

Целевые соединения синтезировали исходя из индено[2,1-*b*]хромен-6-карбальдегида (4) и его винилога — 3-индено[2,1-*b*]хромен-6-ил-2-пропеналя (5). Соединение 4 было получали аналогично работе [13] формилированием инденохромена 1. Для синтеза не описанного ранее альдегида 5 мы использовали известную реакцию винилформилирования [16]: взаимодействие инденохромена 1 с 3-диметиламиноакролеином в среде ацетонитрила в присутствии эквимолярного количества POCl₃ привело к соединению 5 с выходом 96%.

Конденсацией альдегида **5** с инденохроменом **1** в среде уксусного ангидрида в присутствии HClO₄ синтезирован триметинцианин симметричного строения **6** (отметим, что ввиду низкой стабильности соли индено[2,1-*b*]хромения **3** [14] не представлялось возможным получить цианин **6** в одну стадию конденсацией этой соли с солью дианила малонового диальдегида, как это было сделано в случае симметричного триметинцианина на основе ядра 2,4-дифенилиндено[2,1-*b*]пирана [11]). Для сравнения спектральных характеристик конденсацией в тех же условиях альдегида **4** с инденохроменом **1** был получен симметричный монометинцианин **7** [13].

OHC

4, 5

$$Ac_2O$$
HClO₄

4, 5

 ClO_4

6, 7

4, 7 $n = 0$; 5, 6 $n = 1$

Взаимодействием инденохромена 1 с 4-диметиламинобензальдегидом был синтезирован стирил 8.

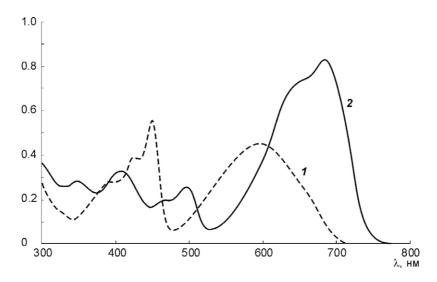
При проведении реакции альдегидов **4** и **5** с ониевыми солями **9а-**g, имеющими активную метильную группу, с высокими выходами были получены соответствующие несимметричные цианины **10а-**g и **11а-**g.

$$4, 5 + \text{Het}^{+}\text{Me}$$

$$X^{-}$$

$$9a-g$$

$$X$$


$$10a-g, 11a-g$$

Het
$$^+$$
 , X^- a $\stackrel{\text{Het}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}}{\stackrel{\text{Het}}}{\stackrel{\text{Het}}}}{\stackrel$

В видимой части спектров поглощения растворов симметричных красителей 6, 7 в MeCN наблюдается по одной полосе, расположенной при 714 и 802 нм соответственно. Из сопоставления максимумов погло-щения соединений 6 и 7 следует, что виниленовый сдвиг длинноволновой полосы для них составляет 88 нм, что несколько меньше обычного значения (100 нм). Это, по-видимому, обусловлено некоторыми стери-ческими затруднениями, имеющимися в молекуле монометинцианина 7, которые должны приводить к батохромному сдвигу его полосы погло-щения [17]. Такое предположение подтверждается моделированием моле-кулы соединения 7 методом молекулярной механики.

В электронных спектрах несимметричных красителей 10, 11 имеются две полосы поглощения в видимой области (табл. 1).

При этом соотношение интенсивностей длинноволновой и коротковолновой полос сильно зависит от природы Het (рис. 2).

Puc. 2. Спектры поглощения соединений **10b** (*1*) и **10c** (*2*)

Так, при электронодонорных Het (**a** и **b**) наблюдаются две полосы близкой интенсивности, а в случае менее электронодонорных Het (**c**-**g**) длинноволновая полоса имеет значительно большую интенсивность, чем коротковолновая. Эти особенности можно объяснить большей электронной асимметрией соединений **10a,b** и **11a,b**, чем соединений **10c**-**g** и **11c**-**g**, приводящей к большей локализации

Таблица 1 Спектры поглощения растворов соединений 6, 8, 10, 11 в MeCN*

Соеди-	$\begin{array}{c} \lambda_1 \\ (\lg \epsilon_l) \end{array}$	$\lambda_2 \ (\lg \epsilon_2)$	ϵ_2/ϵ_1	Соеди- нение	$\begin{array}{c} \lambda_1 \\ (\lg \epsilon_l) \end{array}$	$\lambda_2 \ (\lg \epsilon_2)$	ϵ_2/ϵ_1
6	802 (464)	-	-	10g	710 (4.63)	522 (3.88)	0.179
7	714	-	_	11a	625 (4.39) 599 (4.41)	496 (4.39)	0.951
8	670 (4.45)	474 (4.29)	0.690	11b	653 (4.51)	502 (4.42)	0.809
10a	587 (4.35)	447 (4.48)	1.343	11c	760 (4.82) 707 (4.80)	546 (4.17)	0.221
10b	596 (4.36)	449 (4.44)	1.220	11d	778 (4.27) 717 (4.35)	-	_
10c	683 (4.62)	495 (4.11)	0.308	11e	795 (4.84)	565 (3.99)	0.140
10d	694 (4.56)	_	_	11f	802 (5.05)	551 (3.95)	0.079
10e	719 (4.75)	515 (4.02)	0.185	11g	787 (4.71) 730 (4.73)	-	-
10f	707 (4.81)	501 (4.01)	0.159		()		

^{*} λ – длина волны максимума полосы поглощения, нм, ϵ – экстинкция.

Таблица 2 **Характеристики соединений 6, 8, 10, 11**

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл., °С	Выход,
нение	формула	С	Н	Hal	N(S)	1.11., C	%
3b	C ₃₅ H ₂₁ ClO ₆	73.54 73.37	3.67 3.69	6.09 6.19	-	276–278	68
4	C ₂₅ H ₂₀ CINO ₅	66.52 66.74	4.54 4.48	7.89 7.88	3.02 3.11	219–220	54
5a	C ₂₇ H ₂₀ INOS	60.83 60.79	3.84 3.78	23.89 23.79	2.60 2.63 (5.83) (6.01)	179–181	62
5b	C ₂₉ H ₂₄ BF ₄ NO	71.02 71.18	4.95 4.94	15.68 15.53	3.01 2.86	272–274	71
5e	C ₃₅ H ₂₃ BF ₄ O ₂	74.85 74.75	4.09 4.12	13.33 13.51	-	292–293	65
5d	C ₃₅ H ₂₃ ClO ₆	73.12 73.11	3.89 4.03	6.15 6.17	-	223–225	40
5e	C ₃₅ H ₂₃ ClO ₅ S	71.21 71.12	3.98 3.92	5.97 6.00	(5.40) (5.42)	>300	70
5f	C ₃₃ H ₂₁ ClO ₆	72.15 72.20	3.88 3.86	6.53 6.46	_	>300	79
5g	C ₃₁ H ₂₂ BF ₄ NO	72.78 72.82	4.50 4.34	14.73 14.86	2.87 2.74	258–260	81
6a	C ₂₉ H ₂₂ INOS	62.31 62.26	3.89 3.96	22.58 22.68	2.60 2.50 (5.69) (5.73)	123–125	68
6b	C ₃₁ H ₂₆ BF ₄ NO	72.12 72.25	<u>5.12</u> 5.09	14.69 14.75	2.81 2.72	193–194	76
6c	C ₃₇ H ₂₅ BF ₄ O ₂	75.53 75.53	4.30 4.28	12.68 12.91	-	265–267	68
6d	C ₃₇ H ₂₅ ClO ₆	73.68 73.94	4.15 4.19	5.90 5.90	-	205–206	44
6e	C ₃₇ H ₂₅ ClO ₅ S	72.13 72.01	4.14 4.08	5.90 5.74	(5.18) (5.20)	284–285	83
6f	C ₃₅ H ₂₃ ClO ₆	73.04 73.11	4.11 4.03	6.12 6.17	-	309–310	85
6 g	C ₃₃ H ₂₄ BF ₄ NO	73.90 73.76	4.64 4.50	14.11 14.14	2.75 2.61	270–273	84

электронной плотности на ядре индено[2,1-b]хромена. У красителей 10a, в и 11a, в коротковолновая полоса сходна с полиметиновой, а более широкая длинноволновая — с псевдоазуленовой. В случае же слабоэлектронодонорных Het (c-g) длинноволновая полоса приобретает характерную полиметиновую форму. При переходе от карбоцианинов к дикарбоцианинам несимметричного строения наблюдается батохромное смещение максимумов обеих полос поглощения. Виниленовый сдвиг

коротковолновой полосы для всех несимметричных красителей составляет \sim 50 нм, а аналогичный сдвиг длинноволновой полосы зависит от электронодонорности Het. В случае более электронодонорных Het (\mathbf{a},\mathbf{b}) он меньше и составляет 40–60 нм, а в случае менее электронодонорных Het он больше и составляет 75–95 нм, что приближается к виниленовому сдвигу, обычному для симметричных полиметиновых красителей. При этом с уменьшением электронодонорности гетероостатка $(\mathbf{c}-\mathbf{g})$ наблюдается тенденция к увеличению виниленового сдвига.

Сравнение спектров поглощения несимметричных красителей на основе ядра индено[2,1-*b*]хромена со спектрами поглощения красителей на основе ядра индено[2,1-*b*]пирана приводит к выводу, что в положениях максимумов, формах и интенсивностях полос поглощения этих красителей имеются сходные закономерности [12]. Однако, если введение *орто*фениленового фрагмента в систему 2-метил-4,6-дифенилпирилия симметричных красителей приводит к гипсохромному сдвигу максимума полосы поглощения [11], то введение такого же фрагмента в систему 2-метилбензопирилия аналогичных красителей [18] приводит к небольшому батохромному сдвигу максимума этой полосы.

Таким образом, показана возможность синтеза полиметиновых красителей с фрагментом индено[2,1-b]хромена в качестве концевой группы и относительно короткой полиметиновой цепью, поглощающих в ближней ИК области. При этом в спектрах несимметричных красителей имеются две полосы поглощения в видимой области, максимумы поглощения и соотношения интенсивностей которых, сильно зависят от природы второго гетероостатка. Более детально природа полос поглощения полиметиновых красителей на основе системы индено[2,1-b]хромена рассмотрена в работе [19].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на спектрометре Varian Gemini-300 (300 МГц), внутренний стандарт ТМС. Спектры ЯМР 13 С получены на спектрометре Varian Mercury-400 (100 МГц) с использованием J-модуляции (APT). Электронные спектры поглощения записаны на спектрометре Shimadzu UV-3100.

Индено[2,1-*b***]хромен (1)** синтезируют по известной методике [14] из 2-инданона и салицилового альдегида. Спектр ЯМР 1 Н (ДМСО- $_{6}$), $_{6}$, $_{8}$, м. д. (J, $_{7}$ П): 6.33 (1H, c); 7.19 (1H, т, J = 8.4); 7.3–7.6 (5H, м); 7.78 (1H, д, J = 7.5); 7.96 (1H, д, J = 7.5); 8.22 (1H, c, H-11). Спектр ЯМР 13 С (ДМСО- $_{6}$), $_{6}$, м. д.: 97.4 (CH); 116.8 (CH); 120.0 (*unco*); 120.2 (CH); 121.9 (CH); 122.2 (CH); 124.1 (CH); 124.4 (CH); 126.3 (*unco*); 129.2 (CH); 129.9 (CH); 130.1 (*unco*); 131.4 (CH); 141.5 (*unco*); 151.0 (*unco*); 152.2 (*unco*). Электронный спектр поглощения (МеСN), $_{7}$

Трифторацетат 6H-индено[2,1-b]хромения (3). Растворяют 0.218 г (1 ммоль) инденохромена **1** при 20 °C в 15 мл трифторуксусной кислоты. Продукт не выделяют, используя для съемки спектров реакционную смесь. Спектр ЯМР 1 H (CF₃COOD), δ , м. д. (J, Γ u): 7.35 (2H, м); 7.41 (1H, т, J = 6.6); 7.79 (2H, м); 8.06 (2H, м); 8.12 (1H, д, J = 8.4); 9.25 (1H, с, H-11). Спектр ЯМР 13 C (CF₃COOD), δ , м. д. 110.0 (CH); 113.0 (CH); 116.0 (unco); 116.2 (CH); 120.2 (CH); 121.9 (CH); 122.2 (CH); 123.1 (CH); 123.7 (unco); 126.7 (unco); 127.0 (unco); 130.0 (CH); 136.1 (CH); 147.9 (unco); 183.1 (unco). Электронный спектр поглощения (MeCN + избыток HClO₄), λ_{max} , нм (lg ϵ): 415 (4.09).

Индено[2,1-*b***]хромен-6-карбальдегид (4)** получают по методике [13] из 4.36 г (20 ммоль) инденохромена **1** и 3.98 г (26 ммоль) РОСІ₃ в 30 мл ДМФА. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Γ ц): 7.33 (1H, т, *J* = 7.5); 7.47 (1H, т, *J* = 7.5); 7.55 (1H, м); 7.80 (2H, м); 7.98 (1H, д, *J* = 8.1); 8.09 (2H, т, *J* = 9.0); 8.77 (1H, c); 10.37 (1H, c).

3-Индено[2,1-*b*]**хромен-6-ил-2-пропеналь (5).** К охлажденному баней со льдом

раствору 2.57 г (26 ммоль) 3-диметиламино-2-пропеналя в 70 мл MeCN при перемешивании прибавляют по каплям раствор 3.98 г (26 ммоль) POCl₃ в 10 мл MeCN. Полученную смесь перемешивают 15 мин, затем добавляют к ней 4.36 г (20 ммоль) инденохромена 1. Реакционную массу перемешивают 2 ч, затем выдерживают 24 ч при комнатной температуре. Упаривают MeCN в вакууме, остаток растирают холодным 10% раствором NaOH. Осадок отфильтровывают, промывают несколько раз водой и перекристаллизовывают из MeCN. Получают 5.22 г (96%) продукта 5. Спектр ЯМР 1 Н (ДМСО-d₆), δ , м. д. (J, Γ ц): 6.94 (1H, д. д. ^{3}J = 15.6, ^{3}J = 7.8); 7.32 (1H, ^{3}J = 6.3); 7.49 (2H, м); 7.65–7.85 (3H, м); 7.85–8.07 (3H, м); 8.54 (1H, с); 9.68 (1H, д. ^{3}J = 7.8).

Перхлорат 6-[3-индено[2,1-*b***]хромен-6-ил-2-пропенилиден]-6H-индено[2,1-***b***]хромения (6). Смесь 0.272 г (1 ммоль) альдегида 5** и 0.218 г (1 ммоль) инденохромена **1** в 10 мл уксусного ангидрида нагревают до кипения, затем охлаждают, прибавляют 0.1 мл 70% HClO₄ и кипятят **5** мин. Выпавший после охлаждения осадок отфильтровывают, промывают эфиром и перекристаллизовывают из 2-нитропропана.

Перхлорат 6-[1-(4-диметиламинофенил)метилиден]-6H-индено[2,1-*b*]хромения (8). Аналогично перхлорату 6 из 0.436 г (2 ммоль) инденохромена 1 и 0.298 г (2 ммоль) 4-диметиламинобензальдегида получают продукт 8, который перекристаллизовывают из 2-нитропропана.

Цианины 10а-g, **11а-g** (общая методика). Смесь 1 ммоль альдегида **4** или **5** и 1 ммоль соли **9а-g** в 10 мл уксусного ангидрида кипятят с обратным холодильником 5 мин. После охлаждения выпадает осадок продукта **10** или **11**, который отфильтровывают, промывают эфиром и перекристаллизовывают из 2-нитропропана.

СПИСОК ЛИТЕРАТУРЫ

- 1. H.-J. Timpe, A. V. El'tsov, Adv. Heterocycl. Chem., 33, 185 (1983).
- 2. Ю. Н. Поршнев, В. А. Чуркина, М. И. Черкашин, *Успехи химии*, **56**, 95 (1987).
- 3. A. Graness, J. Kleinschmidt, W. Triebel, A. Olszowski, H. J. Timpe, *J. Prakt. Chem.*, 323, 716 (1981).
- 4. A. Olszowski, J. Lipinski, H. J. Timpe, J. Mol. Struct., 53, 251 (1979).
- A. Olszowski, Mol. Spectrosc. Dense Phases, Proc. 12th Eur. Congr. Mol. Spectrosc., 437 (1976)
- 6. D. Tittelbach-Helmrich, R. P. Steer, Chem. Phys., 197, No. 1, 99 (1995).
- 7. A. J. W. G. Visser, T. Kulinski, A. Van Hoek, J. Mol. Struct., 175, 111 (1988).
- 8. A. Olszowski, S. E. Bucher, U. P. Wild, Chem. Phys., 120, No. 1, 139 (1988).
- 9. A. Olszowski, Chem. Phys. Lett., 73, No. 2, 256 (1980).
- M. Samoc, J. Swiatkiewicz, A. Samoc, B. Luther-Davies, A. Olszowski, Acta Phys. Polonica, A, 88, 411 (1995).
- 11. К. В. Федотов, Н. Н. Романов, А. И. Толмачев, ХГС, 605 (1991).
- 12. К. В. Федотов, Н. Н. Романов, А. И. Толмачев, ХГС, 1165 (1991).
- 13. W. Treibs, W. Schroth, *Liebigs Ann. Chem.*, **642**, 82 (1961).
- 14. G. V. Boyd, Chem. Ind. (London), 1244 (1957).
- 15. G. V. Boyd, A. W. Ellis, J. Chem. Soc., B, 349 (1966).
- G. T. Lee, J. C. Jr. Amedio, R. Underwood, K. Prasad, O. Repič, J. Org. Chem., 57, 3250 (1992).
- 17. A. И. Киприанов, Г. Г. Дядюша, Ф. А. Михайленко, *Успехи химии*, **35**, 823 (1966).
- 18. М. А. Кудинова, В. В. Курдюков, А. А. Ищенко, А. И. Толмачев, ХТС, 339 (1992).
- 19. D. G. Krotko, K. V. Fedotov, A. D. Kachkovski, A. I. Tolmachev, *Dyes and Pigments*, **64**, No. 1, 79 (2005).

Институт органической химии НАН Украины, Киев 02094 e-mail: iochkiev@ukrpack.net

e-mail: til@bigmir.net

Поступило в редакцию 11.06.2003 После доработки 23.09.2004