А. Д. Дяченко, С. М. Десенко^а, В. Д. Дяченко

РЕГИОСЕЛЕКТИВНЫЙ СИНТЕЗ И СВОЙСТВА 6-АМИНО-3-КАРБАМОИЛ-5-ЦИАНО-3,4-ДИГИДРО-СПИРОЦИКЛОГЕКСАН-4-ПИРИДИН-2-ТИОЛА И 3-ТИОКАРБАМОИЛ-5-ЦИАНО-4-СПИРОЦИКЛОГЕКСАНПИПЕРИДИН-2,6-ДИОНА

Взаимодействием монотиомалондиамида с циклогексилиденмалононитрилом или циклогексилиденцианоуксусным эфиром в присутствии этилата натрия синтезированы 6-амино-3-карбамоил-5-циано-3,4-дигидроспироциклогексан-4-пиридин-2-тиол и 3-тиокарбамоил-5-циано-4-спироциклогексанпиперидин-2,6-дион. Исследованы их алкилирование и гидролиз.

Ключевые слова: 3,4-дигидроспироциклогексан-4-пиридин-2-тиол, монотиомалондиамид, спироциклогексан-4-пиперидин-2,6-дион, циклогексилиденмалононитрил, циклогексилиденцианоуксусный эфир, алкилирование, гидролиз, реакция Михаэля, региоселективный синтез, циклизация, циклоконденсация.

В отличие от достаточно изученных 4-арилзамещенных 3-цианопиридин-2(1H)-тионов [1], в литературе описано незначительное число их карбамоилзамещенных аналогов [2–6], а спирозамещенные 3-карбамоилпиридин-2-тионы неизвестны. Между тем спирозамещенные гетероциклы представляют интерес для фармакологического изучения [7]. В связи со сказанным выше мы в настоящее время разработали региоселективные методы синтеза 6-амино-3-карбамоил-5-циано-3,4-дигидроспироциклогексан-4-пиридин-2-тиола (1) и 3-тиокарбамоил-5-циано-4-спироциклогексанпиперидин-2,6-диона (2).

Тиол 1 получен с высокими выходами (78–83%) двумя методами: А. Из монотиомалондиамида (3) и циклогексилиденмалононитрила (4) по реакции Михаэля; Б. Циклоконденсацией СН-кислоты 3 с циклогексилиденцианотиоацетамидом (5). Обе реакции, протекающие при 25 °C в абсолютном этаноле и катализируемые EtONa, включают, по-видимому, образование соответствующих промежуточных аддуктов Михаэля 6 и 7, которые, однако, выделить не удалось.

Состав и строение соединения 1 подтверждены результатами элементного анализа, спектральными данными (табл. 1–3) и некоторыми химическими превращениями. Так, при обработке тиола 1 10% водным раствором НС1 уже при комнатной температуре происходит гидролиз енаминового фрагмента и образуется 3-карбамоил-6-оксо-5-циано-4-спироциклогексанпиперидин-2-тион (8), изомерный соединению 2. Взаимодействием тиола 1 с алкилирующими агентами 9 в щелочной среде получены органические сульфиды 10а-f.

9 a
$$X = I$$
, b, d, f $X = CI$, c, e $X = Br$; 9, 10 a, $Y = H$, b $Y = CONHPh$, c $Y = COC_6H_4Me$ -4, d $Y = COOEt$, e $Y = CH = CH_2$, f $Y = COHN$

Отметим, что соединения **10** также подвергаются кислотному гидролизу, который, однако, не останавливается на стадии образования соответствующего оксопроизводного типа **8**. Так, обработкой замещенного дигидропиридина **10a** 10% водным раствором HCl получен 3-карбамоил-5-циано-4-спироциклогексанпиперидин-2,6-дион **(11)**.

10a
$$\xrightarrow{\text{H}_2\text{O/H}^+}$$
 $\xrightarrow{\text{NC}}$ $\xrightarrow{\text{NH}_2}$ $\xrightarrow{\text{NH}_2}$

Второй целевой продукт – дион **2** – синтезирован с выходом 93% конденсацией монотиомалондиамида (**3**) с циклогексилиденцианоуксусным эфиром (**12**) в условиях реакции Михаэля, протекающей, возможно, через гипотетический аддукт **13**.

При гидролизе соединения 2 в кислой среде образуется тиокарбоновая кислота 14, а при алкилировании аллилбромидом 15 в основной среде — тиоэфир (16). Соединение 16 синтезировано также независимым путем из замещенного глутаримида 14 и аллилбромида 15 в присутствии водного раствора КОН. Приведенные данные свидетельствуют о том, что образованию соединения 16 предшествует щелочной гидролиз тиоамидного фрагмента соединения 2, приводящий к аниону тиокарбоновой кислоты, который далее подвергается алкилированию.

Алкилирование тиоамида **2** фенацилбромидом **17** позволило синтезировать новую гетероциклическую систему — 4-бензоил-5-имино-10-спироциклогексан-8-аза-3-тиабицикло[1,3,4]декан-2,7,9-трион (**18**).

Таблица 1 **Характеристики соединений 1, 2, 8, 10а–f, 11, 14, 16, 18**

Соеди- нение Брутто- формула			<u>Найдено, %</u> Вычислено, %	Т. пл., °С	Выход, %	
		C H N				
1	$C_{12}H_{16}N_4OS$	<u>54.40</u> 54.52	<u>5.97</u> 6.10	21.26 21.19	309–311	78
2	$C_{12}H_{15}N_3O_2S$	<u>54.23</u> 54.32	<u>5.77</u> 5.70	15.91 15.84	253–255	93
8	$C_{12}H_{15}N_3O_2S$	54.20 54.32	<u>5.79</u> 5.70	15.97 15.84	230–232	85
10a	$C_{13}H_{18}N_4OS$	<u>55.96</u> 56.09	6.62 6.52	20.01 20.13	216–218	57
10b	$C_{20}H_{23}N_5O_2S$	60.63 60.43	5.76 5.83	17.79 17.62	221–223	71
10c	$C_{21}H_{24}N_4O_2S$	63.56 63.61	6.14 6.10	14.25 14.13	192–194	64
10d	$C_{16}H_{22}N_4O_3S$	<u>54.96</u> 54.84	6.45 6.33	16.12 15.99	174–176	76
10e	$C_{15}H_{20}N_4OS$	59.33 59.18	6.53 6.62	$\frac{18.22}{18.40}$	166–168	52
10f	$C_{17}H_{20}N_6O_2S_2$	50.56 50.48	<u>5.11</u> 4.98	20.71 20.76	213–215	81
11	$C_{12}H_{15}N_3O_3$	58.00 57.82	<u>5.91</u> 6.07	16.75 16.86	258–260	41
14	$C_{12}H_{14}N_2O_3S$	54.39 54.12	5.19 5.30	10.49 10.52	277–278	80
16	$C_{15}H_{18}N_2O_3S$	58.94 58.80	6.05 5.92	9.01 9.14	199–200	54
18	$C_{20}H_{20}N_2O_4S$	62.64 62.48	5.10 5.24	7.33 7.29	255–257	59

Получение продукта **18** указывает на то, что реакция не останавливается на стадии образования тиоэфира типа **16**, а происходит дальнейшая циклизация по Торпу–Циглеру [8] до иминопроизводного **18**. Получить последний можно и алкилированием тиокарбоновой кислоты **14** соединением **17**.

Состав и строение соединения **18** подтверждаются результатами элементного анализа и данными спектральных исследований. Так, в ИК спектре соединения **18** присутствуют характеристические полосы поглощения валентных колебаний имидной, имино- и карбонильных групп (табл. 2). В то же время, полоса валентных колебаний нитрильной группы в этом спектре отсутствует. Особенность спектра ЯМР 1 H – проявление сигнала протона H-4 в довольно слабом поле (δ 6.71 м. д.), что объясняется его дезэкранированием тремя соседними электроноакцепторными группами C=O, C=NH, S-C=O.

Таблица 2 Спектральные характеристики соединений 1, 2, 8, 10a-f, 11, 14, 16, 18

Соеди-	ИК спектр, v, см ⁻¹			
нение	NH, NH ₂	C≡N, NHCO	Спектр ЯМР 1 Н, δ , м. д. (J , Γ ц)	
1	3210, 3270, 3330, 3410, 3485	2160, 1680	6.67 и 6.56 (1H и 1H, два уш. с, CONH ₂); 5.38 (2H, уш. с, NH ₂); 3.72 (1H, с, H-3); 1.17–1.58 (10H, м, 5CH ₂)*	
2	3330	2260, 1690	11.11 и 9.78 (1H и 1H, два уш. с, CSNH ₂); 9.22 (1H, уш. с, NH); 4.00 (1H, с, H-5); 3.63 (1H, с, H-3), 1.33–1.59 (10H, м, 5CH ₂)	
8	3310, 3470	2250, 1690, 1660	12.86 (1H, уш. c, NH); 8.18 и 7.45 (1H и 1H, два уш. c, CONH ₂); 5.01 (1H, c, H-5); 4.55 (1H, c, H-3); 1.19–1.82 (10H, м, 5CH ₂)	
10a	3360, 3530	2165, 1683	7.35 и 6.97 (1H и 1H, два уш. с, CONH ₂); 5.76 (2H, уш. с, NH ₂); 3.46 (1H, с, H-3); 2.42 (3H, с, SCH ₃); 1.27–1.62 (10H, м, 5CH ₂)	
10b	3210, 3315, 3375, 3425	2185, 1670	9.89 (1H, c, NH); 7.53 (2H, д, $J = 7.6$, C_6H_5); 7.47 (1H, уш. c, CONH ₂); 7.25 (2H, д. д, $J = 8.0$, C_6H_5); 7.00 (2H, м, C_6H_5 и CONH ₂); 5.97 (2H, уш. c, NH ₂); 3.91 и 3.88 (1H и 1H, два д, $J = 3.9$, SCH ₂); 3.55 (1H, c, H-3); 1.24–1.63 (10H, м, 5CH ₂)	
10c	3300, 3360, 3450	2175, 1695, 1680	7.91 и 7.34 (2H и 2H, два д, $J=8.2$, Ar); 7.47 и 7.02 (1H и 1H, два уш. с, CONH ₂); 5.81 (2H, уш. с, NH ₂); 4.78 и 4.60 (1H и 1H, два д, $J=16.8$, SCH ₂); 3.56 (1H, c, H-3); 2.44 (3H, c, CH ₃); 1.27–1.64 (10H, м, 5CH ₂)	
10d	3210, 3390, 3510	2170, 1740, 1695	7.45 и 7.00 (1H и 1H, два с, CONH ₂); 5.80 (2H, уш. с, NH ₂); 4.08 (2H, к, <i>J</i> = 7.2, OCH ₂); 4.01 и 3.89 (1H и 1H, два д, <i>J</i> = 16.3, SCH ₂); 3.49 (1H, с, H-3); 1.25–1.58 (10H, м, 5CH ₂); 1.21 (3H, т, <i>J</i> = 7.2, CH ₃)	
10e	3340, 3450, 3510	2163, 1680	7.37 и 6.96 (1H и 1H, два с, CONH ₂); 5.82 (3H, м, NH ₂ и CH=); 5.33 и 5.14 (1H и 1H, два д, <i>J</i> = 16.8, <i>J</i> = 9.9, CH ₂); 3.70 (2H, т, <i>J</i> = 7.0, SCH ₂); 3.43 (1H, с, H-3); 1.29–1.60 (10H, м, 5CH ₂)	
10f	3350, 3420	2155, 1660, 1650	12.08 (1H, c, NH); 7.43 (2H, м, H-4 тиазола и CONH ₂); 7.16 (1H, д, $J = 4.0$, H-5 тиазола); 6.94 (1H, уш. c, CONH ₂); 5.89 (2H, уш. c, NH ₂); 4.13 и 4.01 (1H и 1H, два д, $J = 15.2$, SCH ₂); 3.52 (1H, c, H-3); 1.28–1.63 (10H, м, 5CH ₂)	
11	3240, 3450	2250, 1710, 1680	11.50 (1H, уш. c, NH); 8.12 и 7.52 (1H и 1H, два уш. с, CONH ₂); 5.06 (1H, c, H-5); 3.99 (1H, c, H-3); 1.23–1.71 (10H, м, 5CH ₂)	
14	3240	2255, 1730	13.07 (1H, уш. c, SH); 11.61 (1H, уш. c, NH); 4.23 (1H, c, H-3); 3.76 (1H, c, H-5); 1.36–1.51 (10H, м, 5CH ₂)	
16	3210	2265, 1760, 1720, 1710	11.32 (1H, c, NH); 5.87 (1H, м, CH=); 5.35 и 5.19 (1H и 1H, два д, $J = 17.0$, $J = 10.1$, CH ₂); 3.82 (3H, м, SCH ₂ и H-5); 3.63 (1H, c, H-3); 1.38–1.57 (10H, м, 5CH ₂)	
18	3210, 3364	1745, 1710, 1640	11.78 (1H, c, =NH); 11.46 (1H, c, NH); 8.01 (2H, д, C ₆ H ₅); 7.63 (1H, м, C ₆ H ₅); 7.54 (2H, м, C ₆ H ₅); 6.71 (1H, c, SCH); 3.92 (1H, c, H-1); 3.59 (1H, c, H-6); 1.37–1.60 (10H, м, 5CH ₂)	

^{*} Сигнал SH не проявляется, по-видимому, вследствие быстрого дейтерообмена.

Соеди-	m/z $(I_{\text{OTH}}, \%)$			
нение	M ⁺	Другие фрагменты		
1	264 (3)	221 (31), 178 (53), 165 (47), 121 (52), 81 (61), 68 (90), 55 (84), 41 (100)		
2	265 (100)	232 (71), 210 (17), 179 (12), 123 (20), 102 (34), 79 (15)		
8	265 (65)	248 (30), 221 (45), 179 (25), 145 (100), 118 (52), 102 (45), 44 (43)		
10a	278 (23)	261 (8), 246 (2), 234 (19), 218 (13), 192 (100), 179 (26), 146 (8), 120 (8), 67 (12), 44 (39)		
10b	397 (9)	293 (31), 263 (47), 218 (77), 190 (30), 177 (19), 135 (15), 120 (26), 93 (100), 65 (53), 39 (74)		
14	266 (100)	233 (28), 206 (10), 195 (25), 141 (15), 122 (35), 79 (15)		
16	306 (11)	291 (100), 265 (12), 194 (18), 180 (4), 138 (10), 123 (18), 86 (18), 41 (29)		
18	_	352 (70), 355 (5), 324 (12), 307 (5), 296 (18), 275 (5), 238 (5), 214 (11), 186 (20), 146 (5), 123 (73), 105 (100), 77 (62)		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н соединений **1**, **2**, **8**, **10a–e**, **11**, **14** регистрировали на приборе Gemini-200 (199 МГц), соединений **10f**, **16**, **18** – на приборе Bruker DR×500 (500 МГц) в ДМСО-d₆, внутренний стандарт Me₄Si. Масс-спектры снимали на спектрометре Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. ИК спектры записывали на приборе ИКС-29 в вазелиновом масле. Контроль за ходом реакции и индивидуальностью полученных веществ осуществляли методом ТСХ на пластинах Silufol UV-254 в системе ацетон–гексан, 3:5, проявитель – пары иода.

- **6-Амино-3-карбамоил-5-циано-3,4-дигидроспироциклогексан-4-пиридин-2-тиол (1).** А. К раствору 0.23 г (10 ммоль) натрия в 20 мл абсолютного этанола прибавляют 1.18 г (10 ммоль) монотиомалондиамида **3**, смесь перемешивают до образования раствора, после чего прибавляют 1.46 г (10 ммоль) циклогексилиденмалононитрила **4** и перемешивают 15 мин. Образовавшийся желтый осадок продукта **1** отфильтровывают, промывают этанолом и гексаном.
- Б. По описанной выше методике, используя вместо соединения 4 1.8 г (10 ммоль) циклогексилиденцианотиоацетамида 5, получают продукт 1, температура плавления, спектр ЯМР 1 Н и R_f которого совпадают с таковыми для образца, полученного по методу А.
- **3-Тиокарбамоил-5-циано-4-спироциклогексанпиперидин-2,6-дион (2)** получают аналогично соединению **1** из эквимолярных количеств (по 10 ммоль) соединений **3** и **12**. Реакционную смесь выдерживают 1 сут при 20 °C и отфильтровывают соединение **2**.
- **3-Карбамоил-6-оксо-5-циано-4-спироциклогексанпиперидин-2-тион (8).** К суспензии 1.32 г (5 ммоль) тиола **1** в 10 мл этанола при перемешивании добавляют по каплям 10% водный раствор HCl до pH 5. Полученную смесь выдерживают 1 сут при комнатной температуре и отфильтровывают светло-желтые кристаллы соединения **8**.
- 6-Амино-3-карбамоил-2-метилтио-5-циано-3,4-дигидроспироциклогексан-4-пиридин (10а), 6-амино-3-карбамоил-2-фенилкарбамоилметилтио-5-циано-3,4-дигидроспироциклогексан-4-пиридин (10b), 6-амино-3-карбамоил-2-(4-метилбензоилметилтио)-5-циано-3,4-дигидроспироциклогексан-4-пиридин (10c), 6-амино-3-карбамоил-5-циано-2-этоксикарбонилметилтио-3,4-дигидроспироциклогексан-4-пиридин (10d), 2-аллилтио-6-амино-3-карбамоил-5-циано-3,4-дигидроспироциклогексан-4-пиридин (10e) и

6-амино-3-карбамоил-2-[(тиазол-2-илкарбамоил)метилтио]-5-циано-3,4-дигидроспиро-циклогексан-4-пиридин (10f). К раствору 1.32 г (5 ммоль) тиола **1** в 10 мл ДМФА при 20 °С и перемешивании последовательно прибавляют 2.8 мл (5 ммоль) 10% водного раствора КОН и 5 ммоль галогенида **9**. Реакционную смесь перемешивают 2 ч. Образовавшийся осадок продукта **10** отфильтровывают, промывают 40% водным этанолом и гексаном.

- **3-Карбамоил-5-циано-4-спироциклогексанпиперидин-2,6-дион (11).** Смесь 20 мл этанола, 1.39 г (5 ммоль) соединения **10а** и 2.74 мл (7.5 ммоль) 10% водного раствора HCl кипятят с обратным холодильником 1 ч и выдерживают при комнатной температуре 12 ч. Образовавшийся осадок продукта **11** отфильтровывают, промывают этанолом и гексаном.
- **3-Тиокарбокси-5-циано-4-спироциклогексанпиперидин-2,6-дион (14)** получают из 1.32 г (5 ммоль) диона **2** аналогично тиону **8**. Продукт **14** отфильтровывают и промывают этанолом и гексаном.
- **3-Аллилтиокарбонил-5-циано-4-спироциклогексанпиперидин-2,6-дион (16).** А. К суспензии 1.32 г (5 ммоль) соединения **2** в 10 мл ДМФА при перемешивании прибавляют 2.8 мл (5 ммоль) 10% водного раствора КОН. После образования гомогенной смеси к ней прибавляют 0.42 мл (5 ммоль) аллилбромида **15**, реакционную массу перемешивают 4 ч и выдерживают 1 сут при комнатной температуре. Образовавшийся осадок продукта **16** отфильтровывают, промывают этанолом, гексаном и перекристаллизовывают из ЕtOH.
- Б. По методу A, используя вместо соединения **2** 1.33 г (5 ммоль) тиокислоты **14**, получают продукт **16**, хроматографические данные, температура плавления, спектр ЯМР 1 Н и R_f которого совпадают с таковыми для образца, полученного по методу A.
- **4-Бензоил-5-имино-10-спироциклогексан-8-аза-3-тиабицикло[1,3,4]декан-2,7,9-трион (18).** А. К суспензии 1.32 г (5 ммоль) соединения **2** в 10 мл ДМФА при перемешивании последовательно прибавляют 2.8 мл (5 ммоль) 10% водного раствора КОН и 1 г (5 ммоль) фенацилбромида **17**. Реакционную смесь перемешивают 4 ч и выдерживают 1 сут при комнатной температуре. Образовавшийся осадок продукта **18** отфильтровывают, промывают этанолом, гексаном и перекристаллизовывают из ледяной АсОН.
- Б. Используя вместо соединения **2** 1.33 г (5 ммоль) тиокислоты **14**, получают продукт **18**, идентичный образцу, полученному по методу A (т. пл., спектр ЯМР 1 H, R_{f}).

СПИСОК ЛИТЕРАТУРЫ

- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, Sulfur Reports, 13, 1 (1992).
- 2. W. Schaper, Synthesis, 861 (1985).
- 3. Л. А. Родиновская, А. М. Шестопалов, В. Н. Нестеров, *XГС*, 1376 (1996).
- 4. А. Краузе, Г. Дубурс, ХГС, 506 (1999).
- 5. A. Krause, J. Popelis, G. Duburs, *Heterocycl. Commun.*, 3, 515 (1997).
- 6. А. А. Краузе, А. Румлер, Ф. Хаген, Х.-И. Еньш, И. Г. Штурм, Г. Я. Дубур, *ХГС*, 75 (1992).
- 7. В. В. Кузнецов, *Хим.-фарм. журн.*, **25**, 61 (1991).
- 8. Внутримолекулярное взаимодействие нитрильной и С-H, О-H и S-H-групп, под ред. Ф. С. Бабичева, Наукова думка, Киев, 1985.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd_lug@online.lg.ua

Поступило в редакцию 18.12.2001

^а Харьковский национальный университет им. В. Н. Каразина, Харьков 61070, Украина
