О. Е. Петрова, М. А. Курыкин, Е. И. Мысов

ВЗАИМОДЕЙСТВИЕ ПОЛИФТОРИРОВАННЫХ β-ДИИМИНОВ С КЕТОНАМИ – НОВЫЙ МЕТОД СИНТЕЗА ФТОРСОДЕРЖАЩИХ ПИРИДИНОВ

Реакцией полифторированных β-дииминов с кетонами синтезированы полифторированные пиридины.

Ключевые слова: кетоны, полифторированные дигидропиримидины, полифторированные β -диимины, полифторированные пиридины, конденсация.

Среди гетероциклических соединений особое место занимают шестичленные азагетероциклы — пиридины и пиримидины. Лекарственные препараты, в основе которых лежит структура азагетероциклов, охватывают практически все области фармакологии. Фторсодержащие пиридины и пиримидины [1–4] вызывают интерес, так как введение фтора в молекулу, как правило, усиливает физиологическую активность соединений [5], а также повышает устойчивость лекарственных препаратов к окислению кислородом воздуха [6]. Для синтеза фторсодержащих пиридинов обычно используются 1,3-бифункциональные фторированные строительные блоки. В качестве фторсодержащих 1,3-бифункциональных соединений могут выступать β-дикетоны [7–10], β-алкоксивинилкетоны [10, 11], β-аминовинилкетоны [12] и т. д.

Ранее нами сообщалось об использовании 2-амино-4-иминоперфторалк-2-енов (1), азааналогов β-дикетонов, которые оказались удобными предшественниками в синтезе фторсодержащих пиримидинов [13, 14].

В данной работе нами впервые предложено использовать полифторированные β -диимины 1 в качестве исходных соединений для получения фторсодержащих пиридинов. В литературе описан единственный пример взаимодействия нефторированных β -дииминов с кетонами. При этом конденсация осуществляется только в присутствии хлорида алюминия и завершается образованием дигидропиримидинов [15].

Нами найдено, что иминоенамины 1 при 90-180 °C реагируют с метилалкилкетонами и ацетофеноном в отсутствие катализаторов и образуют полифторированные пиридины.

Установлено, что реакция протекает по схеме, включающей образование дигидропиримидинов, которые впоследствии элиминируют аммиак, давая полифторированные пиридины. Контроль за ходом реакции осуществлялся с помощью спектроскопии ЯМР 19 F.

Фторированный β -диимин 1a, взаимодействуя с ацетоном, по-видимому, первоначально образует аддукт A, который в выбранных нами условиях циклизуется с потерей воды в дигидропиримидины 2 и 3.

$$F_{3}C \xrightarrow{F} CF_{3} + Me_{2}CO \xrightarrow{F} F_{3}C \xrightarrow{F} CF_{3} \xrightarrow{-NH_{3}} A$$

$$F_{3}C \xrightarrow{F} CF_{3} + F_{3}C \xrightarrow{N} F_{3}C \xrightarrow{N$$

Присутствие и превращения 1,2- и 2,5-дигидропиримидинов 2 и 3 фиксировались методом спектроскопии ЯМР ¹⁹ F. В ходе реакции сигналы винильного атома фтора дигидропиримидина 2 в виде гептета (б 94.0 м. д., $J = 15 \, \Gamma$ ц) и атома фтора группы СFH дигидропиримидина 4 в виде дублета гептетов (δ 106.0 м. д., J = 46 и J = 8 Γ ц) медленно трансформируются в мультиплет (б 57.0 м. д.) пиридина 4. Образование дигидропиримидинов 2 и 3 подтверждено также данными масс-спектрометрии; в масс-спектрах реакционной смеси после предварительного разделения на хроматографической капиллярной колонке обнаружены молекулярные ионы М соединений 2 и 3.

2

По данным спектра ЯМР ¹⁹F, конденсация несимметричного β -диимина **1b** с ацетоном осуществляется за большее время и приводит к образованию смеси изомерных пиридинов **5** и **6** в соотношении 75:25, %. Пиридины **5** и **6**, как и в предыдущем случае, образуются из соответствующих дигидропиримидинов **7–9**. Это подтверждается наличием в спектре ЯМР ¹⁹F реакционной массы сигналов α -атомов фтора соединений **7**, **8** в виде мультиплетов при 92.0 и 93.5 м. д., а также группы СFH дигидропиримидина **9** в виде дублета мультиплетов (δ 104.0 м. д., J = 47 Гц). В дальнейшем сигналы α -атомов фтора всех дигидропиримидинов трансформируются в мультиплет (δ 54.1 м. д.), соответствующий пиридину **5**, и мультиплет (δ 53.8 м. д.), соответствующий пиридину **6**. Синтезированные пиридины **5** и **6** были получены в виде смеси; выделить индивидуальные соединения нам не удалось.

Нами изучено взаимодействие иминоенамина **1a** с метилэтилкетоном, в котором возможно протекание реакции как по метильной, так и по метиленовой группе, и показано, что реализуются оба эти направления.

Реакция **1а** с метилэтилкетоном приводит к образованию смеси 6-этили 2,3-диметилпиридинов **10** и **11**. При первоначальной циклизации соединения **1а** с кетоном образуются 1,2-дигидропиримидин (**12**) и два диастереомера 2,5-дигидропиримидина **13** и **14**. В спектре ЯМР ¹⁹F сигналы пиримидинов проявляются в виде гептета ($J = 15 \, \Gamma$ ц) при δ 96 м. д. для **12** и двух дублетов гептетов для **13** и **14** при δ 103 и 104 м. д. (с повторяющимися КССВ 46 и 7 Γ ц). Дальнейшее превращение пиримидинов **12–14** в пиридины **10**, **11** осуществляется за счет элиминирования аммиака. Строение полученных пиридинов подтверждено данными ЯМР и массспектров. Так, в спектре ЯМР ¹⁹F присутствуют сигналы атомов фтора групп СF пиридинов **10** в виде квартета квартетов дуплетов (53.6 м. д.) и

11 в виде квартета квартетов (52.2 м. д.). В спектре ЯМР ¹Н наблюдаются сигналы метильных групп в виде синглетов пиридина 11 и два сигнала, принадлежащие этильной группе соединения 10, в виде триплета и квартета. Кроме того, методом масс-спектрометрии после предварительного хроматографического разделения на капиллярной колонке зафиксированы молекулярные ионы синтезированных пиридинов.

Пиридины 10 и 11 выделены в виде смеси, и разделить их на индивидуальные соединения не удалось.

При взаимодействии β -диимина **1a** с ацетофеноном в аналогичных условиях был выделен пиридин **15**, появлению которого также предшествует образование ряда соответствующих дигидропиримидинов **16–18**. Сигналы атомов фтора групп СF последних наблюдаются в спектре ЯМР ¹⁹F реакционной смеси: для соединения **16** – мультиплет при δ 91.0 м. д., для пиримидинов **17** и **18** – два дуплета мультиплетов (J = 46 Γ ц в каждом случае) при δ 106.0 и 108.0 м. д. Несимметричный иминоенамин **1b** реагирует с ацетофеном, образуя смесь изомерных пиридинов **19** и **20**. Однако зафиксировать промежуточные дигидропиримидины **21–24** методом ЯМР ¹⁹F не удалось. Строение полученных пиридинов было подтверждено данными ЯМР и масс-спектров.

Варьируя условия реакции и соотношение исходных реагентов, мы нашли, что оптимальные выходы пиридинов 4, 5, 10, 11 достигаются при использовании двойного избытка кетона, а пиридинов 15, 19 и 20 — при проведении реакции с использованием растворителя (диоксана или диглима).

Все выделенные полифторированные пиридины – жидкости с характерным запахом, светло-желтого цвета, нерастворимые в воде. Исключение составляет пиридин **15**, который является твердым веществом.

Таким образом, предложен новый метод получения полифторированных пиридинов на основе доступных фторсодержащих иминоенаминов [16].

Таблица 1 Характеристики соединений 4–6, 10, 11, 15, 19, 20

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. кип., °С (мм рт. ст.)	Время кипя-	Выход,
		С	Н	F	N	(mm p1. 01.)	чения, ч	%
4	C ₈ H ₄ F ₇ N	38.69 38.87	1.85 1.62	53.64 53.85	1	46–48 (13)	48	47.6
5, 6	C ₉ H ₄ F ₉ N	36.23 36.36	1.52 1.35	57.05 57.58	-	48–50 (15)	60	64.0
10, 11	C ₉ H ₆ F ₇ N	41.62 41.38	2.43 2.30	50.56 50.96	-	60–63 (14)	25	70.0
15	C ₁₃ H ₆ F ₇ N	50.56 50.48	1.84 1.94	-	<u>4.47</u> 4.53	_*	22	62.8
19, 20	C ₁₄ H ₆ F ₉ N	47.11 46.80	2.06 1.67	_	3.92 3.90	125–127 (14)	31	61.0

^{*} Т. пл. 65–67 °С; т. возг. 140–142 °С (23 мм рт. ст.).

Таблица 2 Спектральные характеристики соединений 4–6, 10, 11, 15, 19, 20

Соеди-	Масс-спектр,	Спектр ЯМР, δ , м. д. (J , Γ ц)				
нение	m/z $(I_{\text{OTH}}, \%)$	¹⁹ F	1H			
4	247 [M] ⁺ (100), 228 [C ₈ H ₄ F ₆ N] (60), 227 [C ₈ H ₃ F ₆ N] (83), 178 [C ₇ H ₄ F ₄ N] (19), 177 [C ₇ H ₃ F ₄ N] (53), 158 [C ₇ H ₃ F ₃ N] (46), 69 [CF ₃] (12)	-12 (3F, д, J = 12.5, CF3c), -10 (3F, д, J = 16.5, CF3a), 57.0 (1F, р. м, Fb)	2.6 (3H, c, CH ₃), 7.6 (1H, д, <i>J</i> _(F-H) = 4.4)			
5	297 [M] ⁺ (68), 278 [C ₉ H ₄ F ₈ N] (22), 277 [C ₉ H ₃ F ₈ N] (18), 228 [C ₈ H ₄ F ₆ N](100), 208 [C ₈ H ₃ F ₅ N] (15), 69 [CF ₃] (20)	$-13.0 \text{ (3F, } \pi, J = 12.0, \text{ CF}_3^{\text{a}}),$ $7.0 \text{ (3F, } \pi, J = 6.0, \text{ CF}_3^{\text{d}}),$ $38.8 \text{ (2F, } \pi, J = 23.0, \text{CF}_2^{\text{c}}),$ $53.8 \text{ (1F, } \text{M, } \text{F}^{\text{b}})$	2.8 (3H, c, CH ₃), 7.85 (1H, д, $J_{(F-H)} = 4.4$)			
6		$-10.5 ext{ (3F, } \pi, J = 16.0, \text{ CF}_3^{\text{e}}), 9.0 ext{ (3F, } \pi, J = 11.0, \text{ CF}_3^{\text{h}}), 38.3 ext{ (2F, } \pi, J = 20.0, \text{ CF}_2^{\text{g}}), 54.1 ext{ (1F, } \text{m, } \text{F}^{\text{f}})$	2.8 (3H, c, CH ₃), 7.8 (1H, μ , $J_{(F-H)} = 4.4$)			
10	261 [M] ⁺ (100), 260 [C ₉ H ₅ F ₇ N] (100), 242 [C ₉ H ₆ F ₆ N] (30), 240 [C ₉ H ₄ F ₆ N] (78), 213 [C ₇ H ₁ F ₆ N] (23), 69 [CF ₃] (22)	-14.8 (3F, д, $J = 13.5$, CF ₃ °), -12.0 (3F, д, $J = 15.5$, CF ₃ °), 53.6 (1F, кв. кв. д, $J = 4.4$, F ^b)	1.55 (3H, T, $J = 7.0$, $CH_2\underline{CH_3}$), 3.1 (2H, K, $\underline{CH_2}CH_3$), 7.75 (1H, π , $J_{(F-H)} = 4.4$)			
11	261 [M] ⁺ (100), 242 [C ₉ H ₆ F ₆ N] (37), 241 [C ₉ H ₅ F ₆ N] (90), 69 [CF ₃] (18)	-21.0 (3F, д, <i>J</i> = 30.0, CF ₃ ^f), -12.0 (3F, д, <i>J</i> = 15.5, CF ₃ ^d), 52.2 (1F, кв. кв, F ^e)	2.65 и 2.75 (6H, оба с, 2CH ₃)			
15	309 [M] ⁺ (100), 290 [C ₁₃ H ₆ F ₆ N] (27), 240 [C ₁₂ H ₆ F ₄ N] (18), 77 [C ₆ H ₅] (3), 69 [CF ₃] ⁺ (6)	-15.0 (3F, д, <i>J</i> = 13.5, CF ₃ ^c), -12.0 (3F, д, <i>J</i> = 16.0, CF ₃ ^a), 52.0 (1F, р м, F ^b)	7.2–7.95 (5H, M, Ar), 8.0 (1H, μ , $J_{(F-H)} = 4.4$)			
19	359 [M] ⁺ (100), 340 [C ₁₄ H ₈ F ₈ N] (25), 290 [C ₁₃ H ₈ F ₆ N] (92), 220 [C ₁₂ H ₇ F ₃ N] (15), 77 [C ₆ H ₅] (8)	-13.0 (3F, π , $J = 13.0$, CF ₂ ^a), 6.5 (3F, π , $J = 4.0$, CF ₃ ^d), 38.0 (2F, π , $J = 22.0$, CF ₂ ^c), 53.0 (1F, π , F ^b)	6.1–7.65 (12H, м, H(3) и Ar)			
20	359 [M] ⁺ (100), 340 [C ₁₄ H ₈ F ₈ N] (9), 290 [C ₁₃ H ₈ F ₆ N] (24), 220 [C ₁₂ H ₇ F ₃ N] (8), 77 [C ₆ H ₅] (4)	-11.0 (3F, π , $J = 15.5$, CF ₃ °), 8.5 (3F, π , $J = 11.5$, CF ₃ ^h), 38.5 (2F, π , $J = 20.0$, CF ₂ ^g), 52.0 (1F, M, F ^f)				

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н и 19 F записывали на спектрометре Bruker AC-200F (200 и 188 МГц соответственно), внешние стандарты ТМС и CF₃COOH, масс-спектры — на спек-трометре VG-7070E (ионизирующее напряжение 70 эВ). Выходы и характеристики полу-ченных соединений приведены в табл. 1 и 2.

6-Метил-2,4-бис(трифторметил)-3-фторпиридин (4). Смесь 4 г (17.7 ммоль) β -диимина **1a** и 2.3 г (40.3 ммоль) ацетона кипятят с обратным холодильником 48 ч. Остывшую реакционную массу выливают в 20 мл CH_2Cl_2 , промывают водой (2 \times 30 мл), органический слой отделяют, высушивают над $CaCl_2$, перегоняют и получают 2.1 г пиридина **4**.

6-Метил-4-трифторметил-2-пентафторэтил-3-фторпиридин (5), 6-метил-2-трифторметил-4-пентафторэтил-3-фторпиридин (6). Смесь $5.3\ \Gamma$ (19.3 ммоль) β -диимина **1b** и $2.8\ \Gamma$ (50.0 ммоль) ацетона кипятят с обратным холодильником 60 ч. Остывшую реакционную массу выливают в 30 мл CH $_2$ Cl $_2$, промывают водой (2×30 мл), органический слой отделяют, высушивают над CaCl $_2$, перегоняют и получают $3.7\ \Gamma$ смеси, содержащей, по данным ЯМР $_1^{19}$ F, 75% пиридина **5** и $_2$ 5% пиридина **6**.

6-Этил-2,4-бис(трифторметил)-3-фторпиридин (10) и 2,3-диметил-4,6-бис(трифторметил)-5-фторпиридин (11). Смесь 3.8 г (17 ммоль) β -диимина **1a** и 2.4 г (34.0 ммоль) метилэтилкетона кипятят с обратным холодильником 25 ч. Остывшую реакционную массу выливают в 30 мл CH_2Cl_2 , промывают водой (2 \times 30 мл), органический слой отделяют, высушивают над $CaCl_2$, перегоняют и получают 3.1 г смеси, содержащей, по данным спектров ЯМР ¹⁹F, 68% соединения **10** и 32% соединения **11**.

6-Фенил-2,4-бис(трифторметил)-3-фторпиридин (15). Раствор 8.2 г (36.6 ммоль) β-диимина **1а** и 4.4 г (36.6 ммоль) ацетофенона в 10 мл диглима кипятят с обратным холодильником 22 ч. Остывшую реакционную массу выливают в воду, выпавший осадок отфильтровывают, высушивают на воздухе. Возгонкой получают 7.1 г (62.8%) пиридина **15**.

6-Фенил-4-трифторметил-2-пентафторэтил-3-фторпиридин (19) и **6-фенил-2-трифторметил-4-пентафторэтил-3-фторпиридин (20)**. Раствор 4.0 г (14.6 ммоль) β -диимина **1b** и 1.8 г (15 ммоль) ацетофенона в 10 мл диоксана кипятят с обратным холодильником 31 ч. Остывшую реакционную массу выливают в 30 мл CH_2Cl_2 , промывают водой $(2 \times 30 \text{ мл})$, высушивают над $CaCl_2$, перегоняют и получают 3.3 г смеси, содержащей, по данным спектров ЯМР ¹⁹F, 73% пиридина **19** и 27% пиридина **20**.

СПИСОК ЛИТЕРАТУРЫ

- 1. K. Burger, U. Waβmuth, F. Hein, S. Rotlegger, Liebigs Ann. Chem., 991 (1984).
- 2. T. Ishihara, Y. Okada, M. Kuroboshi, T. Shinozaki, T. Ando, Chem. Lett., 819 (1988).
- 3. S. Adam, Tetrahedron, 45, 1409 (1989).
- 4. А. А. Зидермане, Фторпиридины в химиотерапии опухолей, Зинатне, Рига, 1982.
- 5. Y. T. Welch, Tetrahedron, 43, 3123 (1987).
- A. L. Jackman, P. R. Marcham, T. J. Thornton, J. A. M. Bishop, B. M. O'Connor, L. R. Hughes, A. H. Calvert, T. R. Jones, *J. Med. Chem.*, 33, 3067 (1990).
- 7. R. Balicki, P. Natka-Namirski, Pol. J. Chem., 54, 2175 (1980).
- 8. В. А. Дорохов, Л. С. Васильев, Ф. Э. Суржиков, В. С. Богданов, *Изв. АН, Сер. хим.*, 1329 (1995).
- I. Katsuyama, S. Ogawa, Y. Yamaguchi, K. Funabiki, M. Matsui, H. Muramatsu, H. Shibata, Synthesis, 1321 (1997).
- 10. Л. Г. Никишин, В. П. Кислый, В. Н. Нестеров, А. М. Шестопалов, Ю. Т. Стрючков, В. В. Семенов, *Изв. АН, Сер. хим.*, 482 (1998).
- 11. N. Zanatta, R. Barichelo, H. G. Bonacarso, M. A. P. Martins, Synthesis, 765 (1999).
- 12. В. И. Филякова, В. Г. Ратнер, Н. С. Карпенко, К. И. Пашкевич, *Изв. АН, Сер. хим.*, 2278 (1996).
- 13. О. Е. Петрова, М. А. Курыкин, Д. В. Горлов, Изв. АН, Сер. хим., 2195 (1999).
- 14. O. E. Petrova, M. A. Kurykin, D. V. Gorlov, 13th European Symposium on Fluorine Chemistry, Bordeaux, France, 2001, 2-P52.
- 15. J. Barluenga, M. Tomas, S. Fustero, V. Gotor, Synthesis, 346 (1979).
- 16. О. Е. Петрова, М. А. Курыкин, Д. В. Горлов, Изв. АН, Сер. хим., 1710 (1999).

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail: mak@ineos.ac.ru

Поступило в редакцию 28.12.2001