Л. М. Потиха, Н. В. Школьная, В. М. Кисель, В. А. Ковтуненко

КОНДЕНСИРОВАННЫЕ ИЗОХИНОЛИНЫ

17*. ЕНАМИННЫЕ СВОЙСТВА БЕНЗИМИДАЗО[1,2-*b*]ИЗОХИНОЛИН-11(5H)-ОНА НА ПРИМЕРЕ РЕАКЦИИ АЛКИЛИРОВАНИЯ

Изучено алкилирование бензимидазо[1,2-b]изохинолин- $11(5\mathrm{H})$ -она, протекающее по $\mathrm{N}_{(5)}$ или $\mathrm{C}_{(6)}$ в зависимости от типа алкилирующего реагента и условий реакции. Показано, что в реакциях с реакционноспособными алкилгалогенидами реализуется $\mathrm{C}_{(6)}$ -алкилирование. По этому же положению преимущественно протекает и повторное алкилирование. Взаимодействие с o-ксилилендибромидом приводит к спиро[бензимидазо[1,2-b]изохинолин-6,2'-индан]-11-ону и 1,6-дигидро- $11\mathrm{H}$ -6a,11b-диазабензо[b]бензо[5,6]циклогепта[1,2,3-l,m]-флуорен-11-ону, являющимся производными новых гетероциклических систем.

Ключевые слова: гетероциклические енамины, производные системы 1,6-дигидро-11H-6a,11b-диазабензо[b]бензо[5,6]циклогепта[1,2,3-l,m]флуорен-11-она, спиро[бензимидазо[1,2-b]изохинолин-6,2'-индан]-11-она, алкилирование.

Ацилирование бензимидазо[1,2-b]изохинолин-11(5H)-она (1) в зависимости от природы реагента приводит к образованию двух типов замещенных по положениям 5 или 6 бензимидазоизохинолинов [1]. Эти результаты вполне согласуются с поведением вторичных енаминов [2, 3], структурный элемент которых присутствует в молекуле соединения 1. Но наиболее характерная реакция енаминов – алкилирование – в ряду производных 1 до настоящего времени практически не изучена. Известны лишь два примера этой реакции – $N_{(5)}$ -метилирование [4, 5] и $C_{(6)}$ -диаллилирование соединения 1 [5]. В продолжение исследований реакции алкилирования в ряду конденсированных изохинолинов [6, 7] в настоящей работе нами изучено алкилирование бензимидазоизохинолина 1 различными алкилирующими реагентами в различных условиях.

Направление алкилирования в енаминах определяется природой алкилирующего реагента, причем при взаимодействии с фенацил- или бензил-галогенидами предпочтительнее атака по β -углероду [2]. Действительно, взаимодействие соединения $\mathbf{1}$ с замещенными α -бромацетофенонами проходит весьма энергично с образованием сложной смеси продуктов. Только в случае реакции с n-бромфенацилбромидом удалось выделить и охарактеризовать продукт $C_{(6)}$ -алкилирования — 6-[2-(4-бромфенил)-2-оксоэтил]-бензимидазо[1,2-b]изохинолин-11(5H)-он ($\mathbf{2}$). В случаях фенацил- и n-метоксифенацилбромидов из смеси продуктов удалось идентифицировать только продукт окислительной димеризации соединения $\mathbf{1}$ — соединение $\mathbf{3}$, легкость образования которого была отмечена нами ранее [1].

4a, **6b**
$$R^1 = R^3 = Me$$
, $R^2 = H$; **4b**, **5b**, **6c** $R^1 = R^3 = H$, $R^2 = NO_2$; **4c**, **5c**, **6d** $R^1 = CN$, $R^2 = R^3 = H$, **5a**, **6a** $R^1 = R^2 = R^3 = H$

Основным критерием при установлении направления алкилирования соединения ${\bf 1}$ во всех случаях было сохранение либо исчезновение в спектрах ЯМР 1 Н сигналов протонов $N_{(5)}\underline{H}$ или $C_{(6)}\underline{H}$ протонов. Например, строение соединения ${\bf 2}$, как продукта $C_{(6)}$ -алкилирования, подтверждается наличием сигнала группы $N_{(5)}\underline{H}$ в ИК и ЯМР 1 Н спектрах (табл. 1), а также отсутствием резонанса в области 6.3 м. д. протона $C_{(6)}\underline{H}$, наблюдаемого в исходном соединении ${\bf 1}$.

При проведении реакции гетероцикла 1 с бензилгалогенидами в 2-пропаноле в присутствии i-PrONa образуются три типа продуктов алкилирования — 6-бензилбензимидазо[1,2-b]изохинолин-11(5H)-оны (4a,b), 6,6-дибензилбензимидазо[1,2-b]изохинолин-[1,5]н)-оны (5а-с) и 5,6-дибензилбензимидазо[1,2-b]изохинолин-11(5H)-оны (**6а-d**). Количества алкилпроизводных 4-6 в образующейся смеси зависят от природы заместителя в бензильном радикале и от соотношения используемых в реакции реагентов. При эквивалентном соотношении реагентов (метод А) лишь в случае 2,4-диметилбензилхлорида получен единственный продукт реакции – монобензилпроизводное 4а. В остальных опытах образуются смеси либо исходного 1 с дибензилпроизводными (5а, 6а и 5с, 6d), либо, как в случае 3-нитробензилхлорида, смесь моно- и дибензилпроизводных (4b, 5b). Использование 2-кратного избытка алкилирующего реагента (метод Б) приводит к увеличению общего выхода по реакции алкилирования и росту доли продуктов дибензилирования. Однако и в этом случае преобладающим продуктом взаимодействия с 2,4-диметилбензилхлоридом (смесь 4а, 6b) остается 6-бензилпроизводное 4а, что, вероятно, обусловлено пониженной реакционной способностью самого реагента, а также стерическими препятствиями со стороны о-заместителя для повторной атаки по положению 6. 5,6-Диалкилпроизводные 6а-d образуются в небольших количествах (10-25%). При этом выделить и охарактеризовать удалось лишь 5,6-дибензилпроизводное ба, а в остальных случаях присутствие соединений типа **6** в смеси регистрировалось с помощью спектров ЯМР ¹Н неочищенных продуктов реакции.

Бензилирование соединения 1 путем сплавления во многих случаях осложняется значительным осмолением. При сплавлении 1 с бензилхлоридом (180 °C) 6,6-дибензилпроизводное **5а** получается с небольшим выходом (20%), а при использовании *о*-бромметилбензонитрила удается успешно выделить продукт монобензилирования **4c**. Попытки повторного алкилировании (без основания и при сплавлении) моно-6-бензилпроизводных **4a**–**c** до дибензильных производных ведут к образованию смесей неидентифицированных продуктов. А при проведении бензилирования гетероцикла **1** без основания нагреванием смеси реагентов в ДМФА или МеСN наблюдается образование уже упоминаемого выше димера **3**.

Полученные данные указывают на участие в бензилировании в присутствии i-PrONa азотистых аналогов енолят-ионов, генерируемых как из исходного бензимидазоизохинолина 1, так и соединений 4. А невозможность образования такого аниона для 5-метилбензимидазо[1,2-b]изохинолин-11(5H)-она (7), полученного ранее [4,5], объясняет инертность последнего в этой реакции. Таким образом, можно констатировать, что основным направлением алкилирования соединения 1 является положение $C_{(6)}$. По этому же положению протекает преимущественно и повторное алкилирование.

Строение продуктов бензилирования **4–6** установлено спектральными методами (табл. 1, 2). У всех трех типов бензилпроизводных в спектрах ЯМР 1 Н отсутствует наблюдаемый у исходного соединения **1** сигнал метинового протона $C_{(6)}$ <u>Н</u> в области 6.3 м. д. В спектрах монобензилпроизводных **4а,b** есть сигнал группы $N_{(5)}$ Н (в области 11.7–11.9 м. д. в

ЯМР ¹Н и 3100 см⁻¹ в ИК спектрах), который отсутствует в спектрах дибензилпроизводных **5**а-**c**, **6**а. Наблюдаемые различия в форме сигналов и химических сдвигах метиленовых протонов бензильных заместителей дибензилпроизводных **5** и **6** также позволяют однозначно определить их структуру: метиленовые протоны 5,6-дибензилпроизводных **6**а-**d** наблюдаются в виде двух синглетов в области 3.8- $4.4~(C_{(6)}$ - $C\underline{H}_2)$ и 5.0-5.6~ м. д. ($N_{(5)}$ - $C\underline{H}_2$), а сигнал метиленовых групп в 6,6-дибензилпроизводных **5**а-**c** в области 3.9-4.2~ м. д. – в виде АВ-спиновой системы с геминальной КССВ 13.2 Гц. Неэквивалентность протонов метиленовых групп при атоме $C_{(6)}$ в соединениях **5**а-**c** обусловлена, очевидно, стерической затрудненностью вращения вокруг простых связей $C_{(6)}$ - CH_2 -Ar.

Данные по бензилированию соединения 1, а также обнаруженная нами ранее [1] на примере 6-(α -галоген)ацетилпроизводных 1 возможность внутримолекулярного алкилирования, позволили надеяться на успешное проведение гетероциклизаций с использованием реагента с двумя алкилирующими функциями — o-ксилилендибромида. При проведении реакции в присутствии эквивалентного количества i-PrONa нами получен продукт своеобразного моноалкилирования 6-{2-[(11-оксо-5,11-дигидробензо[4,5]-имидазо[1,2-b]-изохинолин-6-ил)метил]бензил}бензил}бензо[4,5]имидазо[1,2-b]-изохинолин-11(5H)-он (8). Использование же 2-кратного избытка основания ведет к смеси производных двух новых гетероциклических систем — спиро[бензимидазо[1,2-b]изохинолин-6,2'-индан]-11-ону (9) и 1,6-дигидро-11H-6a,11b-диазабензо[b]бензо[5,6]циклогепта[1,2,3-l,m]флуорен-11-ону (10) в соотношении 1:5.

Таблица 1

Спектральные характеристики 6-R-бензимидазо[1,2-b]изохинолин-11(5H)-онов

Со- еди- нение		ИК спектр,			Спектр ЯМР 1 Н, δ , м. д. (J , Γ ц)											
	v, cm^{-1}			Сигналы бензимидазо[1,2- <i>b</i>]изохинолинового ядра									Сигналы заместителя			
	C=O	N–H	Другие сигна- лы	H-5,	H-1, д, J=8.0	H-10, Д, J = = 8.0	H-8, T, J = = 8.0	H-7, д, J= = 8.0	H-3, T, J = = 8.0	H-4, д, J = = 8.0	H-9, T, J = = 8.0	H-2, T, J = = 8.0	Ar–H	6-СН ₂ , 2Н, с	Другие сигналы	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
2	1660, 1620	3280		11.72	8.65	8.37	7.60	7.50	7.41	7.31	7.28	7.22	8.12 (2H, д, J = 8.0, H-2', H-6'), 7.84 (2H, д, J = 8.0, H-3', H-5')	4.76		
4 a	1650	3300		11.74	8.67	8.39	7.56	7.33	7.40	7.30	7.27	7.22	7.06 (1H, c, H-3'), 6.70 (1H, д, J = 8.0, H-5'), 6.48 (1H, д, J = 8.0, H-6')	4.14	2.48 (3H, c, 2'-C <u>H</u> ₃), 2.19 (3H, c, 4'-C <u>H</u> ₃)	
4b	1650	3200	1560, 1340 (s,asNO ₂)	11.97	8.65	8.37		-7.57 [, м)	7.42	7.35	7.27	7.23	8.16 (1H, c, H-2'), 8.03 (1H, π , J = 8.0, H-4'), 7.67 (1H, π , J = 8.0, H-6'), 7.52 (1H, π , J = 8.0, H-5')	4.46		

4c	1655	3180	2200 (CN)	11.92	8.67	8.40	7.59	_*	_*	7.34	7.28	7.24	7.89 (1H, д, J = 8.0, H-3', 7.47-7.37 (4H, м, H-3, H-7, H-4', H-5'), 7.03 (1H, д, J = 8.0, H-6')	4.52	
8	1650	3200		11.69 (2H)	8.71 (2H)	8.45 (2H)	7.63 (2H)	7.59 (2H)	7.37 (2H)	7.34 (2H)	7.29 (2H)	7.19 (2H)	6.88 (2H, M, H-3', H-4'), 6.75 (2H, M, H-2', H-6')	4.54 (4H)	
11	1655	3180	3280, 3410 (^{s,as} NH ₂)	12.29	8.63	8.37	7.58	7.47	7.32	(5H	7.25–7.12 (5H, м, H-2, H-4, H-9, H-4', H-5')		7.71 (1H, д, J = 7.2, H-3'), H-4', H-5' **, 6.98 (1H, д, J = 7.2, H-6')	4.41	8.13 (1H, c, N <u>H</u> _A H _B), 7.74 (1H, c, NH _A <u>H</u> _B)
13a	1655	3200	3300, 3410 (^{s,as} NH ₂)	11.84	8.64	8.37	_*	_**	7.33	(5H,	7.27–7.13 , м, H-2, I 7, H-9, H-	H-4,	7.58–7.54 (2H, M, H-8, H-5'), 7.67 (1H, π , J = 8.0, H-3'), H-4' **, 6.95 (1H, π , J = 7.2, H-6')	4.41	10.12 (1H, c, -N' <u>H</u> N"H-CONH ₂), 8.11 (1H, c, -N'HN" <u>H</u> -CONH ₂), 5.99 (2H, c, N <u>H</u> ₂)
13b	1640, 1710	3050	1230 (C-O)	11.63	8.66	8.39	8.49	_*	(4H	7.27–7.21 (, м, Н-3, l Н-9, Н-4')	H-4,	7.15	7.94 (1H, m, H-3'), 7.37–7.30 (2H, m, H-7, H-5'), H-4' **, 6.90 (1H, m, H-6')	4.62	3.97 (3H, c, OC <u>H</u> ₃)

^{*} Наложение сигналов бензимидазо[1,2-b]изохинолинового ядра и сигналов заместителя, см. колонку 14. ** Наложение сигналов бензимидазо[1,2-b]изохинолинового ядра и сигналов заместителя, см. колонки 11-13.

Строение продуктов **8–10** подтверждается их спектральным данными (табл. 1, 2), которые весьма подобны спектрам бензил- и дибензилпроизводных **4–6**. Среди их особенностей можно отметить положение сигнала протона $C_{(7)}$ <u>Н</u> в спектре ЯМР 1 Н спиропродукта **9**, наблюдаемого вследствие экранирования бензольным кольцом спироинданового фрагмента в более сильных полях (7.34 м. д.) по сравнению с соответствующим сигналом 6,6-дибензилпроизводных **5а–с**.

В связи с легкостью ацилирования соединения 1, представлялось интересным исследовать вопрос об ацилировании алкилзамещенных бензимидазоизохинолинов. Опыты по ацилированию соединения 7 показали его инертность. Если 6-бензилпроизводные 4a,b в отсутствие оснований в диоксане с ацилирующими агентами не взаимодействовали, то в пиридине давали смесь неидентифицированных продуктов. В этом плане весьма интересными оказались превращения описаного выше 6-(2-цианобензил)-бензимидазоизохинолинила 4c. При кипячении в уксусной кислоте в присутствии НВг это соединение гидролизуется до амида 11, но при более длительном нагревании в уксусной кислоте можно получить продукт внутримолекулярного ацилирования — спиро[бензимидазо[1,2-b]изохинолин-6(11H),2'-индан]-1',11-дион (12).

13 a R = NHNHCONH₂, b R = OMe

Вывод о спиростроении соединения 12 сделан нами на основании данных его спектра ЯМР 1 Н: помимо отсутствия в слабопольной области сигналов обменивающихся протонов типа NH, что соответствует как продукту $C_{(6)}$ -ацилирования, так и продукту $N_{(5)}$ -ацилирования, в первую очередь обращают на себя внимание положение и вид сигнала протонов метиленовой группы. В области 4.0 и 4.5 м. д. зарегистрированы два однопротонных дублета с $J = 18.0 \, \Gamma$ ц, что соответствует по положению и

Таблица 2 Спектральные характеристики 6,6-дибензилпроизводных 5а-с и спирозамещенных 9, 12

	ИК спектр, ν, см ⁻¹		Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J , Γ ц)												
Соеди-			Сигналы бензимидазо $[1,2-b]$ изохинолинового ядра								Сигналы заместителя				
нение	C=O	Другие сигналы	H-1, д, J=8.0	H-10, Д, J=8.0	H-4, д, J=8.0	H-2, т, J=8.0	H-7, д, J=8.0	H-3, T , $J = 8.0$	H-8, т, J=8.0	H-9, T, $J = 8.0$	Ar–H	6-С <u>Н</u> _А Н _В , 2Н, д	6-СН <u>аН</u> в, 2Н, д		
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
5a	1700		8.31				7.90–7.88 (2H, м) 7.48		7.46	7.35	6.86 (2H, т, <i>J</i> = 8.0, H-4'), 6.75 (4H, т, <i>J</i> = 8.0, H-3', H-5'), 6.39 (4H, д, <i>J</i> = 8.0, H-2', H-6')	4.02 (<i>J</i> = 13.2)	3.79 (<i>J</i> = 13.2)		
5b	1700	1510, 1340 (s,asNO ₂)	8.53	8.07–8.00 (3H, м) 7.95		7.59	7.53	7.42	7.80 (2H, д, J = 8.0, H-4'), 7.29 (2H, с, H-2'), 7.15 (2H, т, J = 8.0, H-5'), 6.86 (2H, д, J = 8.0, H-6')	4.14 (J = 13.2)	4.06 (J = 13.2)				
5c	1700	2210 (CN)	8.22	8.11	8.07		-7.80 I, м)	7.56	7.50–7.42 (4H, м, H-8, H-9, H-3')		H-3'*, 7.18 (2H, т, <i>J</i> = 8.0, H-5'), 7.08 (2H, т, <i>J</i> = 8.0, H-4'), 6.31 (2H, д, <i>J</i> = 8.0, H-6')	4.26 (J = 13.2)	4.15 (J = 13.2)		
9	1695		8.38 (M)	8.31		64 [, м)	7.34 7.55		7.41-7.38 (2H, м)		7.30 (4Н, м, Н-4' – Н-7')	4.11 (<i>J</i> = 16.5)	3.58 ($J = 16.5$)		
12	1710 (уш.)			-8.40 I, м)	7.89 (2H, м, H-4, H-7')	7.74–7.61 (4H, м, H-2, H-3, H-7, H-5')			7.44	7.39	H-5', H-7'**, 7.58 (1H, т, <i>J</i> = 8.0, H-6'), 7.23 (1H, д, <i>J</i> = 8.0, H-4')	4.57 (1H, J = 18.0)	4.04 (1H, J=18.0)		

^{*} Наложение сигналов бензимидазо[1,2-b]изохинолинового ядра и сигналов заместителя, см. колонки 10, 11. ** Наложение сигналов бензимидазо[1,2-b]изохинолинового ядра и сигналов заместителя, см. колонки 6-9.

виду протонам метиленовых групп спиросоединения **9**, также наблюдаемых в виде АВ-спиновой системы с $J=16.5~\Gamma$ ц (табл. 2). В спектре ЯМР ¹³С в области поглощения алифатических атомов углерода наблюдаются два сигнала, отнесенные нами к резонансу $C_{(spiro)}$ (56.68 м. д.) и $C_{(3)}$ Н₂ (42.55 м. д.), а в области, характерной для поглощения карбонильных атомов углерода кетонов [8], — сигнал $C_{(1')}$ (199.94 м. д.). В ИК спектре наблюдается уширенная полоса в области 1710 см⁻¹, соответствующая колебаниям двух карбонильных групп. Образование продукта внутримолекулярного ацилирования подтверждают и данные массспектра (350 [M]⁺, 39%).

Спироинданон 12, будучи достаточно устойчивым в кислой среде, оказался весьма чувствительным к действию оснований: спироинданоновый цикл легко размыкается с образованием производных 6-(2-карбоксибензил)бензимидазо[1,2-b]изохинолин-11(5H)-она. При попытке получить семикарбазон нами выделен ацилированный семикарбазид 13a, а при кипячении в метаноле в присутствии Et_3N – метиловый эфир 13b.

Таблица 3 Физико-химические характеристики синтезированных соединений

Соеди-	Брутто-		Найдено, % Вычислено, %	Т. пл., °С *	Выход, %	
нение	формула	С	Н	N	C.	(метод)
2**	C ₂₃ H ₁₅ BrN ₂ O ₂	63.96 64.05	3.45 3.51	6.58 6.50	248 (разл.)	65
4a	$C_{24}H_{20}N_2O$	81.69 81.79	<u>5.65</u> 5.72	8.01 7.95	211	57 (A), 45 (Б)
4b	$C_{22}H_{15}N_3O_3$	71.50 71.54	4.00 4.09	11.45 11.38	270	31 (A)
4c	C ₂₃ H ₁₅ N ₃ O	78.98 79.07	4.30 4.33	12.10 12.03	201	75
5a	$C_{29}H_{22}N_2O$	83.92 84.03	5.48 5.35	6.86 6.76	159	40 (A), 55 (Б)
5b	C ₂₉ H ₂₀ N ₄ O ₅	68.94 69.04	3.95 4.00	11.19 11.11	195	34 (A), 55 (Б)
5c	$C_{31}H_{20}N_4O$	80.07 80.15	4.26 4.34	12.10 12.06	134	47 (A), 63 (Б)
8	C ₃₈ H ₂₆ N ₄ O ₂	<u>79.88</u> 79.98	4.50 4.59	9.85 9.82	204	60
9	C ₂₃ H ₁₆ N ₂ O	82.10 82.12	4.72 4.79	8.35 8.33	240	18
11	$C_{23}H_{17}N_3O_2$	75.09 75.19	4.61 4.66	11.47 11.44	294	76
12	C ₂₃ H ₁₄ N ₂ O ₂	78.74 78.84	3.95 4.03	8.05 8.00	282	63
13a	C ₂₄ H ₁₉ N ₅ O ₃	67.74 67.76	5.54 5.50	16.43 16.46	295	57
13b	$C_{24}H_{18}N_2O_3$	75.30 75.38	<u>4.68</u> 4.74	$\frac{7.37}{7.33}$	215	75

^{*} Перекристаллизовали соединение **4a** – из MeCN, соединение **5a** – из EtOH, остальные соединения – из ДМФА.

^{**} Данные анализа на Br: 18.56% (найдено), 18.53% (вычислено).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления синтезированных соединений определены на нагревательном приборе типа Boetius и не подвергались коррекции. ИК спектры (таблетки КВг) зарегистрированы на приборе Pye-Unicam SP3-300. Спектры ЯМР 1 Н и 13 С получены на приборе Varian Mercury 400 (400 МГц $^{-1}$ Н и 100 МГц $^{-13}$ С) в ДМСО- 13 С, внутренний стандарт ТМС. Отнесение сигналов ароматических протонов подтверждено данными спектров COSY НН соединений **2**, **5a**, **6a**, **10**, **12**. Масс-спектр получен на приборе Waters Integrity System, Thermabeam detector (подвижная фаза CH 3 СN). Контроль за ходом реакций и чистотой полученных соединений осуществлялся с помощью ТСХ на пластинках Silufol UV-254. Характеристики полученных соединений представлены в табл. 1 – 3 .

Бензимидазо[1,2-b]изохинолин-11(5H)-он (1) получен по методике [4], 5-метилбензимидазо[1,2-b]изохинолин-11(5H)-он (7) – по методике [5].

6-[2-(4-Бромфенил)-2-оксоэтил]бензимидазо[1,2-*b*] **изохинолин-11(5H)-он (2)**. К раствору 2.34 г (10 ммоль) бензимидазоизохинолина **1** в 10 мл ДМФА прибавляют 3.61 г (13 ммоль) *п*-бромфенацилбромида и кипятят 40 мин. Охлаждают, отфильтровывают выпавший осадок, промывают ацетоном. Перекристаллизовывают из ДМФА.

Алкилирование бензимидазо[1,2-*b*]изохинолин-11(5H)-она бензилгалогенидами в растворе проводят, используя различные соотношения реагентов в расчете на 10 ммоль гетероцикла 1. А. Используют 0.25 г (11 ммоль) натрия и 11 ммоль бензилгалогенида. Б. Используют 0.5 г (22 ммоль) натрия и 22 ммоль бензилгалогенида.

К раствору изопропилата натрия в 10 мл 2-пропанола прибавляют 2.34 г (10 ммоль) соединения 1 и растворяют при нагревании. К полученному раствору прибавляют соответствующий бензилгалогенид и кипятят 1.5–2 ч. После охлаждения реакционной смеси образовавшийся осадок отфильтровывают, тщательно промывают водой, спиртом и перекристаллизовывают из ДМФА. Дальнейшее выделение продуктов проводят раздельно из осадка и фильтрата.

При использовании бензилхлорида (метод A) получают 0.93 г осадка, состоящего, по данным ЯМР 1 Н спектра*, из соединения **6a** и исходного **1**, в соотношении 1:1. При алкилировании по методу Б осадок составлял 1.03 г и состоял исключительно из **5,6-дибензил-бензимидазо[1,2-** $^{\text{b}}$ **|изохинолин-11(5H)-она (6a)**, выход которого по реакции составлял 25%. Т. пл. 242–244 $^{\circ}$ C (из ДМФА). ИК спектр, $^{\circ}$ V, см $^{-1}$: 1650 (C=O). Спектр ЯМР 1 Н, $^{\circ}$ M, м. д. ($^{\circ}$ J, $^{\circ}$ R): 8.79 (1H, д, $^{\circ}$ J = 8.0, $^{\circ}$ C₍₁₎H); 8.42 (1H, д, $^{\circ}$ J = 8.0, $^{\circ}$ C₍₁₀₎H); 7.56 (1H, т, $^{\circ}$ J = 8.0, $^{\circ}$ C₍₈₎H); 7.46 (1H, д, $^{\circ}$ J = 8.0, $^{\circ}$ C₍₇₎H); 7.37–7.23 (8H, м, $^{\circ}$ C₍₂₎H–C₍₄₎H, $^{\circ}$ C₍₉₎H, $^{\circ}$ C₍₅₎H, $^{\circ}$ C₍₅₎H); 7.19 (2H, м, $^{\circ}$ C₍₄₎H); 7.10 (4H, м, $^{\circ}$ C₍₂₎H, $^{\circ}$ C₍₆₎H); 5.26 (2H, c, 5-CH₂); 4.18 (2H, c, 6-CH₂). Найдено, %: C 83.96; H 5.30; N 6.79. С₂₉H₂₂N₂O. Вычислено, %: C 84.03; H 5.35; N 6.76.

В случае алкилирования 2,4-диметилбензилхлоридом по методу А осадок состоял исключительно из NaCl. При алкилировании по методу Б осадок (0.25 г) содержал смесь 6-(2,4-диметилбензил)бензимидазо[1,2-b]изохинолин-11(5H)-она (4a) и 5,6-ди(2,4-диметилбензил)бензимидазо[1,2-b]изохинолин-11(5H)-она (6b). По данным спектра ЯМР 1 H, δ , м. д. (J, Γ µ): 8.81 (м, ArH); 8.45 (м, ArH); 7.60–6.30 (м, ArH); 5.03 (с, 5-C \underline{H}_2 , 6b); 4.15 (с, 6-C \underline{H}_2 , 4a); 3.83 (с, 6-C \underline{H}_2 , 6b); 2.49 (с, 2'-C \underline{H}_3 , 4a); 2.23 (с, 5-[2',4'-(C $\underline{H}_3)_2C_6H_4CH_2]$, 6b); 2.19 (с, 4'-C \underline{H}_3 , 4a); 1.96 (с, 6-(2'-C \underline{H}_3 -4'-CH $_3$ -C6H $_4$ CH $_2$), 6b); 1.85 (с, 6-(2'-C \underline{H}_3 -(2'-C \underline{H}_3 -(2'-C)(2'-C)(2'-C)(2'-C)(2'-C)(2'-C)(3'-C)(4'-C)(4'-C)(4'-C)(5'-

По методу A из 3-нитробензилхлорида получают 0.22 г смеси, по данным спектра ЯМР 1 Н, состоящей из **6-(3-нитробензил)бензимидазо[1,2-**b]изохинолин-**11(5H)-она** (**4b**) и исходного **1**, в соотношении 3:2. По методу Б получают 0.3 г смеси 6-бензилпроизводного **4b** и **5,6-ди(3-нитробензил)бензимидазо[1,2-**b]изохинолин-**11(5H)-она** (**6c**). По данным спектра ЯМР 1 Н, δ , м. д. (J, Γ ц): 11.96 (уш. с, N \underline{H} , **4b**); 8.90–8.35 (м, ArH); 8.19–7.15 (м, ArH); 5.65 (с, 5-C \underline{H} ₂, **6c**); 4.47 (с, 6-C \underline{H} ₂, **4b** и 6-C \underline{H} ₂, **6c**), в смеси соотношение **4b** : **6c**, 5 : 1.

При использовании 2-цианобензилбромида (метод A) получают 0.23 г смеси, по данным спектра ЯМР 1 Н, состоящей из **5,6-ди(2-цианобензил)бензимидазо[1,2-**b]изо-хинолин-11(5H)-она (6d) и исходного 1, в соотношении 1 : 3. По методу Б получают 0.2 г смеси **6,6-ди(2-цианобензил)бензимидазо[1,2-b]изохинолин-11(5H)-она (5c) и 5,6-дибензилпроизводного 6d. По данным спектра ЯМР ^{1}Н, \delta, м. д. (J, \Gammaц): 8.85–8.05 (м, ArH); 7.90–7.10 (м, ArH); 6.30 (м, ArH); 5.46 (с, 5-С\underline{H}_2, 6d); 4.28–4.05 (м, 6-С\underline{H}_2, 5c и 6-С\underline{H}_2, 6d), в смеси соотношение 5c : 6d, 1: 6.**

^{*} Данные спектра ЯМР ¹Н исходного соединения **1** приведены в работе [1].

Фильтрат упаривают в вакууме, к оставшемуся маслу прибавляют 15 мл воды и оставляют на 1 день. Образовавшийся осадок отфильтровывают, промывают небольшим количеством 2-пропанола. При использовании бензилхлорида по методу А получают 1.65 г (40%), а по методу Б – 2.26 г (55%) **6,6-дибензилбензимидазо[1,2-**b]изохинолин-11(6H)-она (5a).

В случае использования 2,4-диметилбензилхлорида получают 2.0 г (57%, метод A) или 1.58 г (45%, метод Б) 6-[(2,4-диметилбензил)]бензимидазо[1,2-b]изохинолин-11(5H)-она (4a) (табл. 1 и 3).

В случае применения 3-нитробензилхлорида получают смесь (метод A) **6-(3-нитробензил)бензимидазо[1,2-***b*]**изохинолин-11(5H)-она (4b)** и **6,6-ди(3-нитробензил)бензимидазо[1,2-***b*]**изохинолин-11(5H)-она (5b)**, которую разделяют перекристаллизацией из ДМФА (табл. 1–3). Выпавший при охлаждении осадок отфильтровывают и получают 1.14 г (31%) монобензилированного **4b**. К фильтрату добавляют воду и отфильтровывают осадок дибензилированного **5b**. Выход 1 г (34%). По методу Б получают 1.67 г (55%) 6,6-дибензилироизводного **5b**.

Используя o-бромметилбензонитрил получают 2.18 (метод A) или 2.92 г (метод Б) соединения **5с** (табл. 2 и 3).

6-(2-Цианобензил)бензо[4,5]имидазо[1,2-*b***]изохинолин-11(5H)-он (4c)** (табл. 1 и 3). Смесь 2.34 г (10 ммоль) соединения **1** и 2.94 г (15 ммоль) 2-бромметилбензонитрила сплавляют на масляной бане при 135 °C в течение 40 мин. Охлаждают, добавляют 10 мл ацетона. Образовавшийся осадок отфильтровывают, промывают ацетоном и растворяют при нагревании в 5 мл морфолина. После охлаждения добавляют 20 мл воды и отфильтровывают образовавшийся осадок.

6-{2-[(11-Оксо-5,11-дигидробензо[4,5]имидазо[1,2-b]изохинолин-6-ил)метил]бензил}-бензо[4,5]имидазо[1,2-b]изохинолин-11(5H)-он (8) (табл. 1 и 3). К раствору 0.9 г (11 ммоль) *i*-PrONа в 10 мл *i*-PrOH прибавляют 2.34 г (10 ммоль) соединения 1 и растворяют при нагревании. К полученному раствору прибавляют 3.16 г (12 ммоль) о-ксилилендибромида и кипятят 1.5-2 ч. Отфильтровывают образовавшийся осадок, фильтрат упаривают в вакууме. К оставшемуся маслу добавляют 15 мл воды и оставляют на 1 день. Осадок отфильтровывают, тщательно промывают водой, спиртом, перекристаллизовывают из ДМФА.

1,6-Дигидро-11H-6*а***,11***b*-диазабензо[*b*]бензо[**5,6**]циклогента[**1,2,3**-*l,m*]флуорен-11-он (10). К раствору 0.5 г (22 ммоль) натрия в 10 мл 2-пропанола прибавляют 2.34 г (10 ммоль) бензимидазоизохинолина **1** и растворяют при нагревании. К полученному раствору прибавляют 3.16 г (12 ммоль) *о*-ксилилендибромида и кипятят 1.5 ч. Образовавшийся осадок отфильтровывают после охлаждения. Дальнейшее выделение продуктов алкилирования проводят отдельно из осадка и фильтрата (см. ниже). Отфильтровывают образовавшийся осадок, тщательно промывают водой, перекристаллизовывают из ДМФА. Выход: 2.18 г (65%). Т. пл. 246–248 °C (из ДМФА). ИК спектр, v, см⁻¹: 1645 (С=О). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Γ п): 8.64 (1H, д. J = 8.0, $C_{(10)}$ H); 8.36 (1H, д. J = 8.0, $C_{(12)}$ H); 8.04 (1H, д. J = 8.0, $C_{(15)}$ H); 7.70 (2H, м. $C_{(7)}$ H, $C_{(14)}$ H); 7.54 (1H, д. д. J = 8.0, J = 2.0, $C_{(5)}$ H); 7.43 (2H, м. $C_{(2)}$ H, $C_{(8)}$ H); 7.30–7.22 (3H, м. $C_{(3)}$ H, $C_{(4)}$ H, $C_{(13)}$ H); 7.16 (1H, т. J = 8.0, $C_{(9)}$ H); 5.58 (2H, с. 6-CH₂); 4.50 (2H, с. 1-CH₂). Найдено, %: C 82.09; H 4.70; N 8.32. C₂₃H₁₆N₂O. Вычислено, %: C 82.12; H 4.79; N 8.33.

Спиро[бензимидазо[1,2-b]изохинолин-6,2'-индан]-11-он (9) (табл. 2 и 3). Выделяют из фильтрата оставшегося после отфильтровывания циклогептафлуорена 10. Растворитель упаривают в вакууме, к оставшемуся маслу добавляют 10 мл воды и оставляют на 1 день. Образовавшийся осадок отфильтровывают, промывают водой и спиртом, перекристаллизовывают из ДМФА.

6-(2-Аминокарбонилбензил)бензимидазо[1,2-*b***] изохинолин-11(5H)-он (11)** (табл. 1 и 3). Смесь 2.34 г (10 ммоль) бензимидазоизохинолина 1 и 2.94 г (15 ммоль) *о*-бромметилбензонитрила сплавляют на масляной бане при 135 °C в течение 40 мин. Охлаждают, добавляют 10 мл ацетона. Образовавшийся осадок отфильтровывают, промывают ацетоном. Полученное твердое вещество кипятят в 15 мл уксусной кислоты в течение 3 ч, при этом гидробромид 6-(2-цианобензил)замещенного соединения **4c** постепенно растворяется и выпадает осадок бензамида **11**. Осадок после охлаждения отфильтровывают, промывают AcOH и спиртом, перекристаллизовывают из AcOH.

Спиро[бензимидазо[1,2-*b*]изохинолин-6(11H),2'-индан]-1',11-дион (12) (табл. 2 и 3). Суспензию 3.67 г (10 ммоль) бензамида 11 кипятят в 20 мл АсОН в течение 4 ч. При этом исходный бензамид постепенно растворяется. Выпавший после охлаждения осадок отфильтровывают, промывают АсОН и спиртом, перекристаллизовывают из ДМФА. Спектр ЯМР ¹³С, 8, м. д.: 199.94 (С-1'); 155.29 (С-3'a); 154.13 (С-5a); 142.73 (С-4a); 139.69 (C-6a); 137.33 (C-5'); 135.70 (C-8); 132.32 (C-7'a); 131.69 (C-11b); 129.41, 129.14, 127.75, 126.36, 126.17, 125.94, 125.85, 125.51 (C-2, C-3, C-7, C-9, C-10, C-10a, C-4', C-6', C-7'); 119.99 (С-4); 115.54 (С-1); 56.68 (С-6); 42.55 (С-3'). Масс-спектр, m/z (I, %): 350 [M]⁺ (39), 321 (41), 292 (6).

6-(2-Семикарбазидокарбонилбензил)бензимидазо[1,2-b]изохинолин-11(5H)-он (13a) (табл. 1 и 3). Смесь 2 г гидрохлорида семикарбазида и 2 г безводного ацетата натрия кипятят в 20 мл абсолютного этанола и фильтруют горячим. К фильтрату прибавляют 0.9 г (2.6 ммоль) спироинданона 12 и нагревают 1.5 ч на водяной бане до полного растворения исходного соединения. Прибавляют 10 мл воды и охлаждают. Выпавший осадок отфильтровывают, промывают водой и спиртом, перекристаллизовывают из ДМФА.

6-(2-Метоксикарбонилбензил)бензимидазо[1,2-*b*]изохинолин-**11(5H)-он (13b)** (табл. 1 и 3). К суспензии 1.75 г (5 ммоль) спироинданона 12 в 20 мл метанола прибавляют 2 мл Et₃N и кипятят 4 ч. При этом исходное соединение постепенно растворяется и выпадает осадок метил бензоата 13b. После охлаждения осадок отфильтровывают, промывают метанолом, перекристаллизовывают из ДМФА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. М. Потиха, Н. В. Данилейко, В. М. Кисель, В. А. Ковтуненко, XTC, 715 (2004).
- 2. K. Blaha, O. Chervinka, Adv. Heterocycl. Chem., 6, 147 (1966).
- 3. P. W. Hickmott, Tetrahedron, 38, 3363 (1982).
- 4. E. Schefczik, *Liebigs Ann. Chem.*, **729**, 83 (1969).
- 5. K.-Q. Ling, X.-Y. Chen, H.-K. Fun, X.-Y. Huang, J.-H. Xu, J. Chem., Perkin Trans. 1, 4147 (1998).
- 6. В. М. Кисель, Л. М. Потиха, В. А. Ковтуненко, *XГС*, 423 (1995).
- В. М. Кисель, Л. М. Потиха, В. А. Ковтуненко, *XTC*, 131 (2001).
 А. Гордон, Р. Форд, *Спутник химика*, Мир, Москва, 1976, 310.

Национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: vkovtunenko@hotmail.com Поступило в редакцию 12.07.2002