С. В. Толкунов, М. А. Крючков, В. С. Толкунов, В. И. Дуленко

РЕАКЦИИ 1,3-ЗАМЕЩЕННЫХ СОЛЕЙ БЕНЗОТИЕНО[2,3-c]ПИРИЛИЯ С ПЕРВИЧНЫМИ АМИНАМИ

Изучены реакции солей бензотиено[2,3-c]пирилия с первичными аминами. Показано, что рециклизация протекает по двум направлениям и образование солей бензотиено-[2,3-c]пиридиния или 1-аминодибензотиофенов определяется природой первичного амина.

Ключевые слова: 1-аминодибензотиофены, перхлораты бензотиено[2,3-c]пиридиния, перхлораты бензотиено[2,3-c]пирилия, рециклизация.

Рециклизация алкилзамещенных солей пирилия первичными аминами может протекать как с участием α -алкильных заместителей и приводить к алкиланилинам, так и без затрагивания заместителей — с образованием N-пиридиниевых солей. Взаимодействие моноциклических пирилиевых солей и 1,3-диалкилзамещенных бензо[c]пирилиевых солей с первичными аминами приводит к пиридиниевым и изохинолиниевым солям [1, 2]. Напротив, 1-алкил-3-арил- и 1-алкил-3,4-диарилзамещенные бензо[c]пирилиевые соли с первичными аминами дают только замещенные нафтиламины [3]. Реакции аннелированных с гетероциклами солей пирилия с первичными аминами не изучались.

Нами исследовано взаимодействие 1,3-дизамещенных солей бензотиено[2,3-c]пирилия 1, 2 с первичными аминами. Предполагается, что рециклизация солей пирилия первичными аминами протекает по схеме ANRORC и включает присоединение нуклеофила по положению 1 пирилиевого цикла [4]. Дальнейшее раскрытие пиранового цикла приводит к промежуточному образованию кетиминов \mathbf{A} , находящихся в равновесии с таутомерной енаминной формой \mathbf{B} . Образование конечных продуктов — солей бензотиено[2,3-c]пиридиния 3—5 и 1-аминодибензотиофенов (6), очевидно, определяется соотношением форм \mathbf{A} и \mathbf{B} и зависит от природы амина.

Так, взаимодействие солей пирилия **1a,b** с анилинами приводит к пиридиниевым солям **3b,c** и **4a,b**, тогда как рециклизация солей пирилия **2a,b** метиламином и моноэтаноламином ведет исключительно к 1-R⁴-аминобензотиофенам **6b–d**. Реакции солей **1a** и **2c,b** с бензиламином и фурфуриламином приводят к смеси пиридиниевых солей **3a**, **5a,b** и 1-R⁴-аминодибензотиофенов **6a,d,e**.

Строение 1-R⁴-аминобензотиофенов **6а**—**e**, установленное по спектрам ЯМР 1 Н, подтверждает, что присоединение первичных аминов к солям пирилия **1**, **2** проходит по положению 1. Присутствие в положении 3 пирилиевого цикла ариламиногруппы должно привести к тому, что продукт раскрытия цикла после присоединения амина по $C_{(1)}$ окажется неспособным

1 а, b
$$R^1$$
 = H, R^2 = Me, a R^3 = H, b R^3 = Cl; 2 a, c R^1 = H, b R^1 = Me, a-c R^2 = Ph, a, b R^3 = H, c R^3 = Me; 3 a-c R^1 = R^3 = H, R^2 = Me, a R^4 = Bn, b R^4 = p-MeC₆H₄, c R^4 = p-ClC₆H₄; 4 a,b R^1 = H, R^2 = Me, R^3 = Cl, a R^4 = Ph, b R^4 = p-ClC₆H₄; 5 a R^1 = H, b R^1 = Me, a, b R^2 = Ph, a R^3 = Me, b R^3 = H, a, b R^4 = фурфурил; 6 a-c, e R^1 = H, d R^1 = Me, a R^2 = Me, b-e R^2 = Ph, a-d R^3 = H, e R^3 = Me; a R^4 = Bn, b R^4 = Me, c R^4 = CH₂CH₂OH, d, e R^4 = фурфурил

6а-е

3a-c, 4a,b, 5a,b

к дальнейшим рециклизациям. Действительно, изучая взаимодействие перхлората 1,6-диметил-3-(4'-толиламино)бензотиено[2,3-c]пирилия (7) с бензиламином, мы впервые выделили продукт присоединения амина по положению 1 N-(n-толил)амид 2-[(1-бензилимино)этил]-5-метилбензотиофен-3-уксусной кислоты (8). Образование промежуточных кетиминов такого типа ранее постулировалось Димротом и другими исследователями [1,4-6].

 $T\ a\ б\ \pi\ u\ ц\ a\ 1$ Характеристики синтезированных соединений

Со-	Брутто-		B	Т. пл., °С	Вы-			
не- ние	формула	С	Н	Cl	N	S	1. III., C	ход, %
3a	C ₂₀ H ₁₈ ClNO ₄ S	<u>59.61</u> 59.48	4.33 4.46	8.65 8.80	3.31 3.47	7.80 7.93	270	14
3b	C ₂₀ H ₁₈ ClNO ₄ S	<u>59.36</u> 59.48	4.31 4.46	8.94 8.80	3.33 3.47	7.85 7.93	243–244	78
3c	C ₁₉ H ₁₅ Cl ₂ NO ₄ S	<u>53.61</u> 53.77	3.41 3.54	16.88 16.75	3.45 3.30	7.61 7.55	267–268	74
4a	C ₁₉ H ₁₅ Cl ₂ NO ₄ S	<u>53.95</u> 53.77	3.41 3.54	16.86 16.75	3.47 3.30	7.60 7.55	283	58
4b	C ₁₉ H ₁₄ Cl ₃ NO ₄ S	49.91 49.73	3.17 3.05	23.35 23.23	3.12 3.05	7.12 6.98	273–274	50
5a	C ₂₄ H ₂₀ CINO ₅ S	61.52 61.34	4.39 4.26	7.34 7.56	2.73 2.98	6.69 6.82	248	12
5b	C ₂₄ H ₂₀ CINO ₅ S	61.52 61.34	4.18 4.26	7.73 7.56	2.81 2.98	6.77 6.82	173	18
6a*	C ₂₀ H ₁₈ CINS	70.57 70.69	5.44 5.30	10.21 10.46	4.23 4.12	9.35 9.43	171–172	23
6b	C ₁₉ H ₁₅ NS	79.02 78.89	5.31 5.19	-	4.71 4.85	11.16 11.07	94–95	86
6c	C ₂₀ H ₁₇ NOS	75.17 75.24	5.47 5.33	-	4.28 4.39	$\frac{10.21}{10.03}$	148–149	90
6d*	C ₂₄ H ₂₀ CINOS	71.15 71.02	4.87 4.93	8.61 8.75	3.60 3.45	7.67 7.89	175–177	57
6e	C ₂₄ H ₁₉ NOS	78.22 78.05	5.37 5.15	-	3.65 3.79	8.82 8.67	116	78
8	C ₂₇ H ₂₆ N ₂ OS	75.87 76.02	6.25 6.14	_	6.44 6.57	7.60 7.52	150–152	91

^{*} Гидрохлориды.

Таблица 2 Спектры ЯМР ¹Н перхлоратов бензотиено[2,3-*c*] пиридиния 3–5 и 1-R⁴-аминодибензотиофенов 6а–е

	Химические сдвиги, δ , м. д. $(J, \Gamma \mathbf{u})$							
Соеди- нение		Алифатические п	ротоны					
	1-CH ₃ (1-C ₂ H ₅) [4'-CH ₃]	3-CH ₃ (6-CH ₃) [2-CH ₃]	NR ⁴ , NHR ⁴	Ароматические протоны				
3a	3.03	2.84	6.03 (CH ₂)	7.10 (2H, м, 2'-, 6'-H); 7.40 (3H, м, 3'-, 4'-, 5'-H); 7.78 (1H, т, 7-H); 7.90 (1H, т, 6-H); 8.35 (1H, д, <i>J</i> ₅₆ = 8.4, 5-H); 8.65 (1H, д, <i>J</i> ₇₈ = 8.4, 8-H); 8.94 (1H, с, 4-H)				
3 b	3.70 [2.28]	2.55	-	7.44 (2H, $_{7}$, $_{7}$, $_{7}$ = 8.2, 3'-, 5'-H); 7.69 (2H, $_{7}$, $_{7}$, $_{7}$ = 8.2, 2'-, 6'-H); 7.76 (1H, $_{7}$, $_{7}$ -H); 7.88 (1H, $_{7}$, 6-H); 8.40 (1H, $_{7}$, $_{7}$, $_{8}$ = 8.0, 8-H); 8.75 (1H, $_{7}$, $_{7}$, $_{7}$ = 8.0, 5-H); 9.05 (1H, $_{7}$, $_{7}$, $_{7}$ +H)				
3c	2.69	2.50	-	7.76–8.00 (2H, M, 6-, 7-H); 7.79 (2H, π , J32 = 8.2, 3'-, 5'-H); 7.90 (2H, π , J ₂₃ = 8.2, 2'-, 6'-H); 8.40 (1H, π , J ₈₇ = 8.0, 8-H); 8.75 (1H, π , J ₅₆ = 8.0, 5-H); 9.05 (1H, c, 4-H)				
4a	2.68	2.48	-	7.69–7.84 (5H, м, 2'-, 3'-, 4'-, 5'-, 6'-H); 7.97 (1H, д. д, J_{78} = 8.8, J_{75} = 2.1, 7-H); 8.44 (1H, д, J_{87} = 8.8, 8-H); 8.90 (1H, д, J_{57} = 2.1, 5-H); 9.05 (1H, c, 4-H)				
4b	2.70	2.49	-	7.77 (2H, $_{\rm J}$, $_{\rm J_{32}}$ = 8.1, 3'-, 5'-H); 7.89 (2H, $_{\rm J}$, $_{\rm J_{23}}$ = 8.1, 2'-, 6'-H); 7.97 (1H, $_{\rm J}$, $_{\rm J_{78}}$ = 8.7, 7-H); 8.45 (1H, $_{\rm J}$, $_{\rm J_{87}}$ = 8.7, 8-H); 8.91 (1H, $_{\rm C}$, 5-H); 9.09 (1H, $_{\rm C}$, 4-H)				
5a	2.55	(2.35)	4.43 (CH ₂)	7.08 (12H, M)				
5b	(1.00, 2.98, J=7.1)	_	5.05 (CH ₂)	7.50–7.25 (13H)				
6a*	-	2.31	4.51 (CH ₂); 6.56 (NH)	7.20–7.48 (9H, м); 7.51 (1H, c, 4-H); 8.00 (1H, д, <i>J</i> = 8.4, 8-H); 8.20 (1H, д, <i>J</i> = 8.4, 5-H)				
6b	-	-	3.80 (д, <i>J</i> = 5.4, CH ₃); 5.65 (к, NH)	6.85 (1H, c, 2-H); 7.27–7.54 (5H, м); 7.80–7.82 (2H, м, 6-, 7-H); 7.85 (1H, c, 4-H); 8.10 (1H, д, $J_{87} = 8.4$, 8-H); 8.36 (1H, д, $J_{56} = 8.4$, 5-H)				
6с	-	_	3.45 (2H, M, C <u>H</u> ₂ NH); 3.68 (2H, M, C <u>H</u> ₂ OH); 4.95 (T, <i>J</i> = 5.6, OH); 5.49 (T, <i>J</i> = 5.5, NH)	6.96 (1H, c, 2-H); 7.30–7.60 (5H, м); 7.75–7.86 (2H, м, 6-, 7-H); 7.90 (1H, c, 4-H); 8.10 (1H, д, J_{87} = 8.4, 8-H); 8.38 (1H, д, J_{56} = 8.4, 5-H)				
6d	-	[2.15]	4.55 (2H, д, <i>J</i> = 6.3, CH ₂); 6.25 (т, NH)	6.15 (1H, c, 4-Н _{фуран}); 6.25 (1H, c, 3-Н _{фуран}); 7.30–7.59 (7H, м, Н _{фенил}); 7.59 (1H, c, 5-Н _{фуран}); 7.79 (1H, c, 4-H); 7.90 (1H, д, J_{87} = 8.4, 8-H); 8.22 (1H, д, J_{56} = 8.4, 5-H)				
6e	_	(2.49)	4.57 (2H, д, J = 6.3, CH ₂); 6.25 (т, NH)	6.38 (2H, м, 3-, 4-Н _{фуран}); 7.03 (1H, с, 2-H); 7.31–7.49 (5H, м, Н _{фенил}); 7.59 (1H, с, 5-Н _{фуран}); 7.74 (1H, с, 4-H); 7.76 (1H, д, J_{78} = 7.4, 7-H); 7.88 (1H, д, J_{87} = 7.4, 8-H); 8.22 (1H, с, 5-H)				

^{*} Спектры гидрохлоридов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н сняты на приборе Gemini-200 (200 МГц) в ДМСО- d_{6} , внутренний стандарт ТМС. Характеристики синтезированных соединений приведены в табл. 1, 2.

1,3-Дизамещенные перхлораты бензотиено[2,3-c]пирилия 1a,b, 2a-c получены по методикам [7,8].

Получение перхлоратов N-арил-1,3-диметилбензотиено[2,3-*c***]пиридиния (3)** (общая методика). К раствору 5 ммоль ариламина в уксусной кислоте прибавляют 5 ммоль соответствующих перхлоратов пирилия **1а,b**. Смесь нагревают на водяной бане 1 ч. Охлаждают, осадок отфильтровывают, промывают спиртом, эфиром и сушат. Получают соединения **3b,c**, **4a,b**. Кристаллизуют из метанола.

Взаимодействие перхлоратов бензотиено[2,3-*c*]пирилия с алифатическими аминами. К суспензии 5 ммоль замещенных перхлоратов пирилия в спирте добавляют 5.1 ммоль соответствующего первичного амина и нагревают 1 ч, охлаждают. Выпавший осадок перхлоратов пиридиния 3а, 5а,b отфильтровывают, промывают ацетоном, эфиром, сушат. Кристаллизуют из метанола. Фильтрат упаривают, разбавляют водой и осадок 1-R⁴-аминодибензотиофенов 6а-е отфильтровывают. Кристаллизуют из изопропилового спирта.

N-(*n*-**Толил**)амид **2-**[(**1**-бензилимино)этил]-5-метилбензотиофен-3-уксусной кислоты (**8**). К суспензии 5 ммоль перхлората 1,6-диметил-3-(4'-толиламино)бензотиено[2,3-c]-пирилия 7 в 25 мл изопропилового спирта прибавляют 2.5 мл бензиламина и кипятят 1 ч. Охлаждают и к реакционной смеси прибавляют 25 мл воды. Осадок отфильтровывают, промывают водой. Кристаллизуют из смеси бензол—гексан, 1:3. Спектр ЯМР ¹H, δ , м. д. (*J*, Γ п): 2.15 (3H, c, 4'-CH₃); 2.42 (3H, c, 5-CH₃); 2.49 (3H, c, CH₃C=N); 4.13 (2H, c, CH₂CO); 4.79 (2H, c, CH₂N); 6.91 (2H, д, J = 8.0, 3'-, 5'-H); 7.03 (2H, д, J = 8,0, 2'-, 6'-H); 7.24–7.31 (5H, м, H); 7.46 (1H, д, J = 8.2, 6-H); 7.80 (1H, д, J = 8.2, 7-H); 7.86 (1H, c, 4-H); 10.48 (1H, c, NH).

СПИСОК ЛИТЕРАТУРЫ

- 1. K. Dimroth, Angew. Chem., 72, 331 (1960).
- 2. Г. Н. Дорофеенко, Е. И. Садекова, В. В. Гончарова, ХГС, 1308 (1970).
- 3. E. B. Кузнецов, Г. Н. Дорофеенко, *ХГС*, 1437 (1971).
- 4. Г. П. Сафарян, И. В. Щербакова, Г. Н. Дорофеенко, Е. В. Кузнецов, *ХГС*, 1608 (1981).
- 5. C. B. Верин, Д. Э. Тосунян, Е. В. Кузнецов, *XГС*, 1468 (1991).
- 6. В. И. Теренин, Л. Г. Юдин, Р. С. Сагитуллин, В. Н. Торочешников, В. И. Дуленко, Ю. А. Николюкин, А. Н. Кост, *XTC*, 73 (1983).
- 7. В. И. Дуленко, С. В. Толкунов, Н. Н. Алексеев, ХГС, 1351 (1981).
- 8. C. B. Толкунов, *XГС*, 1335 (1998).

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 83114 e-mail: tolkunov@uvika.dn.ua Поступило в редакцию 11.10. 2001