А. В. Варламов, Н. В. Сидоренко, Ф. И. Зубков, А. И. Чернышев, К. Ф. Турчин^а

ЗАМЕЩЕННЫЕ И СПИРОАННЕЛИРОВАННЫЕ ПЕРГИДРО-1,2,3-ОКСАТИАЗИНДИОКСИДЫ-2,2 И 1-БЕНЗИЛ-4-МЕТИЛАЗЕТИДИНЫ

Пергидро-1,2,3-оксатиазиндиоксиды-2,2 получены циклизацией 4-N-бензиламино-4-тетраметилен(фенил-, метилфенил-, диметил)бут-1-енов в конц. $\rm H_2SO_4$ при 25 °C. Действием спиртового раствора щелочи оксатиазины превращены в 2-замещенные и спироаннелированные 1-бензил-4-метилазетидины.

Ключевые слова: азетидины, гомоаллиламины, 1,2,3-оксатиазиндиоксиды-2,2.

Химия полностью гидрированных 1,2,3-оксатиазиндиоксидов-2,2 практически не изучена [1, 2]. Это обусловлено отсутствием простых методов синтеза таких гетероциклических систем, трудностями их выделения, а также их высокой химической лабильностью.

Ранее циклизацией гем-бензиламиноаллилциклогексана и -циклооктана под действием конц. H_2SO_4 в кипящем хлороформе были получены спиро[1,2,3-оксатиазин-4,1'-циклогексан(-циклооктан)] и осуществлено их последующее расщепление до соответствующих спиро[азетидин-2,1'-циклоалканов] [3, 4].

С целью изучения границ применимости метода и стереохимии процесса мы исследовали циклизацию ряда гомоаллиламинов **1a**—**d** под действием серной кислоты. Исходные аллиламины **1a**—**d** легко образуются при взаимодействии соответствующих шиффовых оснований с аллилмагнийбромидом [5, 6].

При обработке аминов 1a—d избытком конц. H_2SO_4 при 25 °C с выходом 43—83% образуются 1,2,3-оксатиазиндиоксиды-2,2 2a—d. По-видимому, образование оксатиазинов 2 протекает через циклическую аммонийную соль, последующая дегидратация которой под действием избытка H_2SO_4 дает целевые соединения.

Оксатиазины **2** представляют собой белые, высокоплавкие, трудно растворимые в большинстве органических растворителей мелкокристаллические порошки. Их строение доказано совокупностью спектральных данных (табл. 1 и 2). ИК спектры соединений **2a–d** характеризуются наличием интенсивных полос валентных колебаний группы SO_2 при 1370-1190 см⁻¹. В масс-спектрах соединений **2** отсутствуют пики молекулярных ионов, однако наблюдаются пики фрагментных ионов $[M-80]^+$, отвечающих выбросу из M^+ молекулы SO_3 . Как и следовало ожидать, максимальную интенсивность во всех случаях имеют ионы с m/z 91, обусловленные элиминированием бензильного радикала от атома азота.

Таблица 1 Физико-химические и спектральные характеристики оксатиазинов 2a-d и азетидинов 3a-d

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			M		Т. пл.,	R_f^{**}	ИК спектр,	Выход, %
нение*	формула	С	Н	N	Найдено [M] ⁺	Вычислено	°C	- 9	cm ⁻¹ , V _{SO2}	
2a	C ₁₅ H ₂₁ NO ₃ S	60.89 60.81	7.23 7.09	4.98 4.73	215 [M–SO ₃] ⁺	295	214–215.5	-	1298, 1190	43
2 b	C ₁₇ H ₁₉ NO ₃ S	64.35	5.99	4.09 4.42	237 [M–SO ₃] ⁺	317	87-100 (с разл.)	-	1282, 1231	83
2c	C ₁₈ H ₂₁ NO ₃ S	65.26	6.34	4.03 4.23	-	331	185–190 (с разл.)	-	1370, 1215	69
2d	C ₁₃ H ₁₉ NO ₃ S	57.99	7.06	5.12 5.20	$189 \\ \left[\text{M-SO}_3\right]^+$	296	225–227	-	1233, 1187	51
3a	C ₁₅ H ₂₁ N	83.89 83.72	10.01 9.77	6.48 6.51	215	215	-	0.50	-	31
3b	C ₁₇ H ₁₉ N	86.08	8.02	5.70 5.91	237	237	-	0.30	-	40
3c	C ₁₈ H ₂₁ N	86.06	8.37	5.55 5.56	251	251	-	0.47 0.55	-	30
3d	C ₁₃ H ₁₉ N	82.54	10.05	7.21 7.41	189	189		0.62	-	48

^{*} Для соединений $2\mathbf{b}$, \mathbf{c} и $3\mathbf{b}$, \mathbf{c} приведены данные для смесей изомеров. ** Значения R_f получены в смеси этилацетат—гексан, 1:3 (соединения $3\mathbf{a}$, \mathbf{d}), 1:4 (соединение $3\mathbf{b}$) и 1:5 (соединение $3\mathbf{c}$).

Таблица 2 Спектры ЯМР ¹Н 1,2,3-оксатиазиндиоксидов-2,2 2a-d

Соеди-		Химические сдвиги, δ , м. д.									КССВ, J , Γ ц							
нение*	4 д. д	5a	5 <i>e</i>	6	6-CH ₃ д	NCH ₂ AB	H–Ar M	R^1 R^2	4, 5 <i>a</i>	4, 5e	5a, 5e	5a, 6	5e, 6	6, CH ₃	CH ₂ N AB			
2a	-	2.20 д. д	1.67 д. д	4.59 д. д. к	1.27	4.35 3.97	7.67–7.27	2.00-1.51 M	_	-	16.2	10.7	1.2	6.1	12.2			
2b maj	4.11	2.71–2	2.48 м	4.64 д. к	1.26	3.98 3.63	7.46–7.09 м		10.4	3.1	12.0	9.5	0	6.4	13.7			
2b min	4.42	2.47 д. д. д	2.04 д. д. д	4.93 д. д. к	1.31	3.79 3.64			11.0	4.0	15.0	11.8	3.1	6.1	-			
2c maj	-	2.75 д. д	1.75 д	4.85 д. к	1.36	3.95 3.47	7.75–7.15	1.49 c	_	_	15.8	10.4	0	5.2	13.1			
2c min	-	2.45 д. д	1.84 д	4.70 д. к	0.97	4.04 3.83		1.99 c	_	_	15.6	10.1	0	5.8	-			
2d	-	2.11 д. д	1.65 д. д	4.59 м	1.24	4.21 4.04	7.65–7.35	1.46 c 1.39 c	_	_	15.6	10.7	1.2	6.4	12.8			

 $[\]overline{\ ^* \text{Спектры ЯМР}}$ ¹Н снимали в ДМСО- d_6 (соединение **2a**) и CDCl₃ (соединения **2b–d**).

1, **2** a
$$R^1 + R^2 = (CH_2)_4$$
; b $R^1 = H$, $R^2 = Ph$; c $R^1 = Me$, $R^2 = Ph$; d $R^1 = R^2 = Me$

По данным ЯМР 1 Н (табл. 2), симметрично замещенные по $C_{(4)}$ оксатиазины **2a** и **2d** образуются в виде одного геометрического изомера, который существует в конформации *кресло* с экваториальной группой 6-Ме. Спектры ЯМР 1 Н этих соединений характеризуются наличием при 4.59 м. д. мультиплета протона H-6. Значение КССВ $J_{5a6a} = 10.7$ Гц однозначно свидетельствует об аксиальном расположении протона H-6.

$$Bn \underbrace{\bigcap_{\substack{1 \\ 0 = S}}^{O} \bigcap_{\substack{1 \\ R^1}}^{R^2} \bigcap_{\substack{1 \\ 5}}^{1} \bigcap_{\substack{6 \\ Me}}^{6} Me}_{\mathbf{2a d}}$$

Циклизация несимметрично замещенных по положению 4 гомоаллиламинов 1b и 1c протекает стереоселективно. Соединения 2b и 2c образуются в виде смесей двух изомеров по расположению заместителей при $C_{(4)}$ и метильной группы при $C_{(6)}$ оксатиазинового цикла в соотношении ~1:1.7 и 1:1.8 соответственно. На это указывает наличие в их спектрах ЯМР ¹Н двойного набора сигналов для каждой группы протонов (см. табл. 2). Детальный анализ спектров смесей изомеров 2b и 2c позволил сделать вывод об их строении. Спектр минорного изомера 2b характеризуется наличием больших (11.0 и 11.8 Гц) и малых (4.0 и 3.1 Гц) вицинальных КССВ для протонов H-4 и H-6 с химическими сдвигами 4.42 и 4.93 м. д. соответственно. Следовательно, для этого изомера можно предположить конформацию *кресло* с аксиальным расположением протонов H-4 и H-6 и экваториальным — групп 4-Ph и 6-Me.

В спектре ЯМР ¹Н мажорного изомера **2b** для протона H-6 с химическим сдвигом 4.64 м. д. наблюдается только одна большая КССВ $J_{56} = 9.5$ Гц, вторая константа равна нулю. Для протона H-4 с химическим сдвигом 4.11 м. д.

наблюдаются две КССВ $J_{45}=10.4$ и 3.1 Гц. Значения этих констант позволяют предположить для мажорного изомера mвисm-конформацию. Таким образом, по аналогии с циклизацией 4-N-фениламино- и 4-N-бензиламино-1-бутенов в 2-замещенные 4-метилтетрагидрохинолины и 3-замещенные 5-метилтетрагидробенз-2-азепины [5–8] можно предположить, что изомеры, образующиеся при циклизации гомоаллиламина $\mathbf{1b}$, имеют экваториальное расположение групп 6-Ме и различаются лишь ориентацией заместителя 4-Ph.

Минорный изомер с экваториальным расположением заместителей при $C_{(4)}$ и $C_{(6)}$ энергетически выгоден, а мажорный из-за стерического 1,3-диаксиального взаимодействия переходит в *твист*-конформацию, где эти взаимодействия меньше. В пользу высказанных предположений говорят результаты циклизации гомоаллиламина $\mathbf{1c}$ в оксатиазин $\mathbf{2c}$. В этом случае можно было бы также ожидать образования двух изомеров с экваториальной группой 6-Ме и, соответственно, с экваториальным и аксиальным фенильным заместителем при $C_{(4)}$.

В обоих изомерах 1,3-диаксиальное взаимодействие заместителей при $C_{(4)}$ обусловливает их существование в *твист*-форме. В спектрах ЯМР ¹Н изомеров **2c** (табл. 2) наблюдается лишь одна КССВ $J_{56} = 10.1$ для минорного и $10.4~\Gamma$ ц – для мажорного изомера. Вторая КССВ $J_{56} = 0$.

Пергидрооксатиазиндиоксиды-2,2 **2a–d** под действием 15% спиртового раствора гидроксида калия с выходом 30–61% превращаются в азетидины **3a–d** – подвижные масла. На основании литературных данных [9] можно полагать, что на первой стадии в результате атаки атома серы этоксиданионом происходит расщепление связи N–S оксатиазинового цикла. Последующая нуклеофильная атака образовавшегося амид-аниона по атому углерода, несущему сульфогруппу, приводит к конечному азетидину.

Строение азетидинов **3а**—**d** доказано спектральными методами. В их ИК спектрах отсутствуют полосы поглощения связей NH и OH. В масс-спектрах присутствуют пики молекулярных ионов средней интенсивности, соответствующие их брутто-формулам. Основное направление распада молекулярного иона связано с отрывом бензильного радикала. В масс-спектрах также наблюдаются характерные для фрагментации азетидинов ионы, обусловленные разрывом цикла "пополам" по связям $C_{(1)}$ — $C_{(4)}$ и $C_{(2)}$ — $C_{(3)}$.

Несимметрично замещенные по положению 2 азетидины **3b** и **3c** образуются в виде смесей изомеров по расположению заместителей при $C_{(2)}$ и $C_{(4)}$ в соотношении ~1:1. В исходных оксатиазинах **2b** и **2c** соотношение изомеров составляло 1:1.7 и 1:1.8, следовательно, реакция не стереоселективна.

В отличие от изомеров **3b** пространственные изомеры азетидина **3c** имеют различную хроматографическую подвижность и были разделены с помощью колоночной хроматографии.

Их стереохимия установлена с помощью протон-протонного ЯЭО (табл. 3). Наиболее четко ЯЭО проявляется на протонах метильных групп при $C_{(2)}$ и $C_{(4)}$. Так, в спектре хроматографически более подвижного изомера $\mathbf{3cA}$ (R_f 0.55) ЯЭО для протонов метильных групп отсутствует, а в спектре менее подвижного $\mathbf{3cB}$ (R_f 0.47) — наблюдается. Таким образом, в изомере $\mathbf{3cA}$ метильные группы имеют *транс*, а в $\mathbf{3cB}$ — *цис*-расположение.

Соеди-	OER	Облучаемые протоны								
нение	на протонах*	{2-Me}	{3A-H}	{3B-H}	{4-H}	{4-Me}				
3cA	2-Me		+							
	3А-Н	+		+	+					
	3B-H		+			+				
	4-H	+	+			+				
	4-Me			+	+					
3cB	2-Me					+				
	3А-Н			+						
	3B-H	+	+			+				
	4-H		+			+				
	4-Me	+		+	+					

Оценка ЯЭО по спектрам ЯМР ¹Н соединений 3сА и 3сВ

Спектры ЯМР 1 Н азетидинов **3a–d** (табл. 4) характеризуются наличием дублетного сигнала протонов группы 4-Ме при 1.1–0.9 м. д. ($J_{4\text{Me}}$ = 5.8–6.2 Γ ц), двух дублет-дублетных сигналов от метиленовых протонов при $C_{(3)}$ с химическим сдвигом 2.7–1.6 м. д. и мультиплета от протона Н-4 при 3.6–3.2 м. д. Метиленовые протоны N-бензильной группы химически неэквивалентны и регистрируются при 3.9–3.2 м. д. (АВ-система, J_{AB} = 12.8–14.0 Γ ц). В спектрах ЯМР 13 С (табл. 4) изомеров **3сА** и **3сВ** наблюдаются

В спектрах ЯМР 13 С (табл. 4) изомеров **3сА** и **3сВ** наблюдаются сигналы от всех атомов углерода в молекуле, их мультиплетность и значения КССВ также хорошо коррелируют со структурой. В частности, при 53.44–65.09 м. д. расположены сигналы атомов углерода N–CH₂, $C_{(2)}$ и $C_{(4)}$, связанных с электроотрицательным атомом азота.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрометрах UR-20 или Specord IR-75 в таблетках KBr (для кристаллических веществ) или в пленке (для масел). Масс-спектры записывали на масс-спектрометрах Finnigan MAT 95 XL и HP MS 5988 с прямым вводом образца в источник ионов. Ионизирующее напряжение 70 эВ. Спектры ЯМР 1 Н и 13 С получали при 20 $^{\circ}$ С на приборах Bruker WP-200 (200 МГц) или Bruker WH-400 (400 и 100 МГц для 1 Н и 13 С соответственно), внутренний стандарт ТМС. Для ТСХ использовали пластины Silufol UV-254 (проявление парами иода).

Физико-химические и спектральные характеристики приведены в таблю 1, 2, 4.

3-Бензил-6-метил-3,4,5,6-тетрагидроспиро[1,2,3-оксатиазин-2,2-диоксид-4,1'-циклопентан] (2а), 6-метил-3,4,5,6-тетрагидро-4-фенил- (2b), [-4,6-диметил-4-фенил- (2c), -4,4,6-триметил- (2d)]-3-бензил-1,2,3-оксатиазин-2,2-диоксиды (общая методика). К 25 мл охлажденной до \sim 0 °C 96% $\rm H_2SO_4$ осторожно добавляют 0.015 моль гомоаллиламина 1а-d, перемешивают до полной гомогенизации реакционной смеси и оставляют при комнатной температуре на 1 сут. На следующий день реакционную массу выливают на \sim 100 см 3 льда, нейтрализуют 25% водным раствором аммиака при охлаждении ледяной

^{*} Знаком + отмечены ЯЭО, превышающие 3%.

Таблица 4 Спектры ЯМР ¹Ни ¹³С азетидинов 3а-d*

Соеди-		Химические сдвиги, δ, м. д.									КССВ, J , Γ ц							
	2 д. д	3A	3B	4	4-Me д	NCH ₂ AB	H–Ar M	R^1 R^2	2,3A	2,3B	3A,3B	3A,4	3B,4	4,Me	CH ₂ N AB			
3a	_	1.96 д. д	1.64 д. д	3.19 д. д. к	0.90	3.69 3.46	7.45– 7.10	1.25- 2.00 м	-	-	9.8	7.3	8.2	6.1	12.8			
3bA	3.23	1.83 м	2.21 M	3.40 M	0.85	3.87 3.51	7.50– 7.10	-	8.2	6.9	10.0	8.2	7.3	6.1	12.8			
3bB	3.00	~1.90** M	2.80 M	~3.50** M	1.05	3.48 3.15	7.50– 7.10	-	7.0	8.0	10.0	7.2	7.2	6.1	12.8			
3cA	-	1.81 д. д	2.23 д. д	3.37 M	0.83	3.91 3.53	7.50– 7.10	1.60 c	-	-	10.1	8.2	7.3	5.8	13.1			
3cB	_	1.92 д. д	2.75 д. д	3.56 M	1.09	3.44 3.21	7.50– 7.10	1.64 c	-	_	11.0	7.0	7.6	6.1	14.0			
3d	-	1.90 д. д	2.20 д. д	3.22 д. д. к	0.90	3.70 3.40	7.45– 7.15	0.85 c 0.89 c	-	-	9.7	7.0	8.0	6.1	13.0			

^{*} Химические сдвиги в спектрах ЯМР 13 С измерены относительно сигнала растворителя CDCl₃, δ 77.0 м. д.; спектр ЯМР 13 С, δ , м. д., соединения **3cA**: 150.31 и 140.17 (с, четв.-Ph), 128.93, 127.89, 127.88, 124.67 (д, м, o-Ph), 126.57 и 125.81 (д, p-Ph), 63.65 (с, $C_{(2)}$), 57.64 (д, $C_{(4)}$), 55.49 (т, $C_{(4)}$), 41.96 (т, $C_{(3)}$), 20.43 (к, 2-Me), 22.85 (к, 4-Me); соединения **3cB**: 144.27 и 140.27 (с, четв.-Ph), 128.53, 127.85, 127.78, 126.53 (д, м, o-Ph), 126.49 и 126.32 (д, p-Ph), 63.09 (с, $C_{(2)}$), 55.99 (д, $C_{(4)}$), 53.44 (т, $C_{(3)}$), 40.41 (т, $C_{(3)}$), 29.14 (к, 2-Me), 21.74 (к, 4-Me).

^{**} Точное определение затруднено из-за взаимного перекрывания сигналов протонов.

водой и доводят до pH \sim 8–9. Продукты реакции экстрагируют хлороформом (5 \times 40 мл), экстракт сушат Na₂SO₄. После удаления растворителя выпавшие кристаллы многократно промывают этилацетатом. Получают оксатиазины **2** в виде белых мелкокристаллических порошков.

1-Бензил-4-метилспиро[азетидин-2,1'-циклопентан] (3а), 1-бензил-4-метил-2-фенилазетидин (3b), 2,4-диметил-2-фенил- (3c), 1-бензил[2,2,4-триметил- (3d)]азетидины (общая методика). Кипятят 7.00 ммоль оксатизина 3a-d в 25 мл 15% этанольного раствора КОН в течение 20 ч. Затем реакционную массу выливают в воду (100 мл), экстрагируют эфиром (3 × 50 мл), экстракт сушат MgSO₄. После отгонки растворителя остаток очищают на оксиде алюминия (2 × 2 см), элюент эфир. Получают азетидины 3a-d в виде желтых подвижных масел. Смесь изомеров соединения 3c хроматографируют на колонке (25 × 0.7 см) с оксидом алюминия, элюент этилацетат—гексан, 1:30. Выделяют в индивидуальном виде азетидины 3cA (11%, R_f 0.55) и 3cB (7%, R_f 0.47).

Выходы, физико-химические характеристики и данные элементного анализа азетидинов **3a–d** представлены в табл. 1, данные спектроскопии ЯМР 1 Н и 13 С – в табл. 4.

Работа выполнена при финансовой поддержке РФФИ (гранты № 99-03-32942a и 01-03-32844).

СПИСОК ЛИТЕРАТУРЫ

- 1. K. K. Andersen, M. G. Kocioler, J. Org. Chem., 60, 2003 (1995).
- 2. D. Alker, K. J. Doyle, L. M. Harwood, A. McGregor, *Tetrahedron Asymmetry*, 1, 877 (1990).
- 3. А. В. Варламов, Ф. И. Зубков, А. И. Чернышев, В. В. Кузнецов, А. П. Пальма, *XГС*, 223 (1999)
- 4. L. M. Vargas, W. Rozo, V. V. Kouznetsov, Heterocycles, 53, 785 (2000).
- В. В. Кузнецов, С. В. Ланцетов, А. Э. Алиев, А. В. Варламов, Н. С. Простаков, ЖОрХ, 28, 74 (1992).
- 6. A. V. Varlamov, V. V Kouznetsov, F. I. Zubkov, A. I. Chernyshev, G. G. Alexandrov, A. Palma, L. Vargas, S. Salas, *Synthesis*, 849 (2001).
- 7. В. В. Кузнецов, А. Э. Алиев, Н. С. Простаков, ХГС, 73 (1994).
- 8. L. Y. Vargas, V. Kouznetsov, Heterocycl. Commun., 4, 341 (1998).
- 9. B. J. Littler, T. Gallagher, I. K. Boddy, P. D. Riordan, Synlett, 22 (1997).

Российский университет дружбы народов, Москва 117198 e-mail: avarlamov@sci.pfu.edu.ru

Поступило в редакцию 23.11.2001

^аЦентр по химии лекарственных средств — Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815 e-mail: turchin@drug.org.ru