А. Ю. Ершов, Н. В. Кошмина

ТАУТОМЕРИЯ И КОНФОРМАЦИОННАЯ ИЗОМЕРИЯ МЕРКАПТОАЦЕТИЛГИДРАЗОНОВ МЕТИЛАЛКИЛКЕТОНОВ

Меркаптоацетилгидразоны метилалкилкетонов (Alk = Me, Et, Pr, i-Pr, i-Bu, s-Bu, t-Bu), существуют в растворах в виде таутомерной смеси линейной и циклической 1,3,4-тиадиазиновой форм. Линейная гидразонная форма представлена набором конформеров, которые обусловлены эффектом заторможенного амидного вращения относительно связи С–N. Показано, что константы таутомерного равновесия коррелируют со стерическими постоянными алкильных заместителей E_s .

Ключевые слова: меркаптоацетилгидразоны, 1,3,4-тиадиазин-5(4H)-оны, кольчатоцепная таутомерия, уравнение Тафта.

Результаты исследования часто встречающихся кольчато-цепных таутомерных превращений, связанных с внутримолекулярными обратимыми присоединениями нуклеофильных групп ОН, NH и SH по связи C=N, отражены в монографиях [1, 2]. Известно, что гидразоны молочной и α -аминопропионовой кислот имеют линейное строение [3, 4], тогда как полученный нами недавно меркаптоацетилгидразон ацетона склонен к кольчатоцепной таутомерии в растворах с участием цикла 1,3,4-тиадиазин-5-она [5].

Целью данной работы является изучение способности к таутомерным превращениям меркаптоацетилгидразонов 1a-g из метилалкилкетонов, а также влияния стерических параметров алкильных заместителей на положение таутомерного равновесия.

 $\mathbf{1}$ \mathbf{a} $\mathbf{R} = \mathbf{Me}$, \mathbf{b} $\mathbf{R} = \mathbf{Et}$, \mathbf{c} $\mathbf{R} = \mathbf{Pr}$, \mathbf{d} $\mathbf{R} = i$ -Pr, \mathbf{e} $\mathbf{R} = i$ -Bu, \mathbf{f} $\mathbf{R} = s$ -Bu, \mathbf{g} $\mathbf{R} = t$ -Bu

Соединения **1а**—**g** были получены с выходами 50—75% в результате непродолжительного выдерживания эквимолярных количеств гидразида тиогликолевой кислоты и соответствующего метилалкилкетона в воде или водно-спиртовом растворе при комнатной температуре (см. табл. 1 и экспериментальную часть).

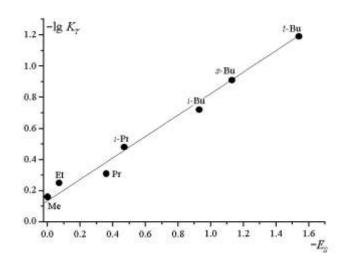
Таблица 1 Физико-химические характеристики соединений 1b-g

Соеди-	Бругто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
		C	Н	N		70
1b	C ₆ H ₁₂ N ₂ OS	45.04 44.97	7.49 7.55	17.53 17.48	Масло	65
1c	C ₇ H ₁₄ N ₂ OS	48.31 48.25	8.06 8.10	16.14 16.08	Масло	60
1d	$C_7H_{14}N_2OS$	48.20 48.25	8.14 8.10	16.11 16.08	108–110	75
1e	$C_8H_{16}N_2OS$	<u>50.97</u> 51.03	8.50 8.56	14.94 14.88	92–95	70
1f	C ₈ H ₁₆ N ₂ OS	<u>51.08</u> 51.03	8.61 8.56	14.95 14.88	83–85	75
1g	$C_8H_{16}N_2OS$	50.96 51.03	8.63 8.56	$\frac{14.82}{14.88}$	94–96	50

Ранее было показано [5], что в растворе соединения **1а** в пиридине- d_5 , наряду с явлением кольчато-цепной таутомерии типа $\mathbf{A} \rightleftharpoons \mathbf{B}$, для гидразонной формы \mathbf{A} в спектрах ЯМР наблюдается удвоение отдельных сигналов, обусловленное эффектом заторможенного амидного вращения меркапто-ацетильной группы относительно связи \mathbf{C} - \mathbf{N} и существованием форм E,E '- \mathbf{A} и E,Z '- \mathbf{A} . В случае же соединений **1b**- \mathbf{g} следовало считаться и с возможностью пространственной Z,E-изомерии меркаптоацетилгидразонного фрагмента относительно связи \mathbf{C} = \mathbf{N} , а, следовательно, с появлением в растворе до четырех возможных линейных форм: E,E '- \mathbf{A} , E,Z '- \mathbf{A} , Z,E '- \mathbf{A} и Z,Z '- \mathbf{A} .

Отнесение сигналов к геометрическим изомерам Z,E '-**A** и Z,Z '-**A** можно было бы сделать на основании выявленного для гидразонов дезэкранирующего влияния гидразонного фрагмента на *цис*-расположенные метиленовые или метиновые протоны в спектре ЯМР ¹H [6]. Учитывая это, указанные сигналы должны располагаться в более слабом поле, чем аналогичные сигналы для изомерных форм E,E '-**A** и E,Z '-**A**. Следует отметить, что мы не наблюдали появления в спектрах ЯМР ¹H соединений **1b**–**g** каких-либо сигналов, которые можно было бы отнести к конфигурационным изомерам Z,E '-**A** и Z,Z '-**A**, обусловленных пространственной изомерией.

Соединения $1\mathbf{a}-\mathbf{g}$ действительно склонны к кольчато-цепной таутомерии в растворе, причем введение алкильных заместителей благоприятствует линейной форме \mathbf{A} . Логарифмы констант таутомерного равновесия соединений $1\mathbf{a}-\mathbf{g}$ показывают линейную корреляцию со стерическими константами E_S согласно уравнению:


$$\lg K_T = -0.16 + 0.67 \cdot E_S,$$

где коэффициент корреляции r = 0.993.

Таблица 2 Таутомерный состав, спектры ЯМР ¹Н и константы таутомерного равновесия соединений 1а-g в пиридине-d₅

Сооти	Таутомерный		Спектр ЯМР 1 Н, δ , м. д. (КССВ, J , Γ ц)*				
Соеди- нение	состав (%)	=CMe (A) или C ₍₂₎ Me (B) с или два с	SCH ₂ (A) или C ₍₆₎ H ₂ (B)	SH	Н, уш. с или два уш. с	$K_T = \frac{[\mathbf{B}]}{[\mathbf{A}]^{**}}$	
1a	E,E '-A (44)	1.90; 1.92	3.84, c	2.92, c	10.83	0.69	
	E,Z'-A (15)	1.92; 1.97	3.61, c	2.50, c	10.95		
	B (41)	1.68	3.70, c	_	6.55; 10.36		
1b	E,E '-A (54)	1.90	3.85, c	2.92, c	10.85	0.56	
	<i>E</i> , <i>Z</i> '- A (10)	1.96	3.57, c	2.49, c	10.95		
	B (36)	1.61	3.60; 3.69 (д. д, $J = 14.0$)	_	6.42; 10.29		
1c	<i>E,E</i> '- A (57)	1.93	3.84, c	2.88, c	10.80	0.49	
	<i>E</i> , <i>Z</i> '- A (10)	1.94	3.56, c	2.48, c	10.87		
	B (33)	1.64	3.59; 3.70 (д. д, $J = 14.0$)	_	6.34; 10.20		
1d	E,E '-A (68)	1.90	3.84 (д, $J = 7.0$)	2.95 (T, J = 7.0)	10.93	0.33	
	E,Z '- A (7)	1.92	3.58, c	2.58, c	10.97		
	B (25)	1.55	3.54; 3.71 (д. д, $J = 14.0$)	_	6.42; 10.37		
1e	E,E '-A (77)	1.93	$3.86 \; (д, J = 7.0)$	2.93 (T, J = 7.0)	10.91	0.19	
	E,Z'-A(7)	1.96	3.58, c	2.49, c	10.95		
	B (16)	1.69	3.48; 3.67 (д. д, J = 14.0)	_	6.35; 10.32		
1f	<i>E,E</i> '- A (83)	1.90	3.85 (д, $J = 7.0$)	2.89 (T, J = 7.0)	10.86	0.12	
	E,Z'-A (6)	1.92	3.57, c	2.47, c	10.94		
	B (11)	1.58	3.46; 3.75 (д. д, J = 14.0)	_	6.32; 10.25		
1g	E,E '-A (88)	1.91	3.83 (д, $J = 7.0$)	2.87 (T, J = 7.0)	10.80	0.06	
	E,Z '-A (6)	1.97	3.58, c	2.48, c	10.88		
	B (6)	1.66	3.41; 3.73 (д. д, J = 14.0)	_	6.13; 10.15		

^{*} Спектры ЯМР 1 Н сняты через 72 ч после растворения соединения 1; сигналы протонов заместителя R не приведены.
** [**A**] – суммарное содержание форм E,E'-**A** и E,Z'-**A**.

Корреляция логарифма констант таутомерного равновесия \mathbf{K}_T со стерическими постоянными алкильных заместителей $E_{\mathbf{S}}$

Подобная зависимость является характерной чертой для кольчатоцепных равновесий, где циклический изомер возникает в результате обратимого присоединения по кратной связи, несущей объемистый алкильный заместитель [7, 8] (см. рисунок). Конформационное равновесие в меньшей степени чувствительно к изменению объема заместителя при связи C=N и сильно смещено в сторону формы E,E '-A, в которой пространственные взаимодействия существенно меньше, чем в альтернативной форме E,Z -A.

Отнесение сигналов в спектре ЯМР 1Н к тому или иному конформационному изомеру линейной формы А не вызывает затруднений, если воспользоваться установленными критериями и закономерностями, изложенными ранее в монографиях [9, 10], а также в недавно вышедшей работе [11] по изучению пространственного строения цианацетилгидразонов карбонильных соединений – ближайших структурных аналогов формы А соединений 1а-д. Отметим, что одним из типичных признаков формы E,E'-**A** в спектре ЯМР 1 Н является наличие спин-спинового взаимодействия протонов метиленовой группы меркаптоацетильного фрагмента и протона группы SH (КССВ = 7.0 Гц, табл. 2), в результате чего сигналы этих групп имеют вид дублета и триплета соответственно. О существовании в растворе циклической формы В можно судить по сильно-польному смещению сигналов протонов метильной группы, диастереотопии протонов в положении 6 (образующих в отдельных случаях типичную АВ-систему с КССВ = 14 Γ ц), а также сигналу sp^3 -гибридного атома $C_{(2)}$ при 70.0 м. д. в спектрах ЯМР ¹³С (табл. 3).

Определение конформационного состояния шестичленной тиадиазиновой формы требует дополнительного изучения.

Спектры ЯМР 13С соединений 1а,е

Соеди-	Раство-	Форма	Химические сдвиги, δ, м. д.				
нение	ритель		$\underline{\text{Me}}\text{C} = / \underline{\text{Me}}\text{C}_{(2)}$	C=N / C ₍₂₎	C=O / C ₍₅₎	CH ₂ / C ₍₆₎	
1a	ДМСО-d ₆	E,E '- A	18.2	152.2	167.2	25.5	
		E,Z '-A	17.8	157.2	172.4	26.8	
		В	30.5	69.1	173.9	29.4	
1e	ДМФА-d ₇	E,E '-A	16.1	153.5	166.8	26.4	
		E,Z '-A	16.2	158.3	172.2	26.9	
		В	29.4	73.2	173.5	27.5	

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H и ¹³C снимались на спектрометрах Bruker AC 200 и Bruker AM 500 (200 и 125 МГц соответственно). Количественное соотношение таутомерных форм определялось по интенсивности сигналов их метильных групп в спектрах ЯМР ¹Н. Погрешность измерения ± 1%. Контроль за ходом реакций и чистотой полученных соединений осуществлялся методом TCX на пластинках марки Silufol UV-254. Элюент бензол-ацетон, 2:1. Соединение 1а описано ранее [5].

2-Алкил-2-метил-2,3,5,6-тетрагидро-1,3,4-тиадиазин-5(4H)-оны (1b-g) методика). Смесь 0.015 моль карбонильного соединения и 1.06 г (0.01 моль) гидразида тиогликолевой кислоты в 25 мл воды (для соединений 1d-g в 30 мл смеси вода-этанол, 4:1) выдерживают при 25 °C в течение 2 ч. Выпавшие кристаллы продукта 1 отфильтровывают. сушат и перекристаллизовывают из гексана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. Э. Валтер, Кольчато-цепная изомерия в органической химии, Зинатне, Рига, 1978,
- 2. Б. В. Иоффе, М. А. Кузнецов, А. А. Потехин, Химия органических производных гидразина, Химия, Ленинград, 1979, 188.
- 3. A. A. Потехин, В. М. Карельский, *ЖОрХ*, **7**, 2100 (1971).
- 4. П. С. Лобанов, А. Н. Полторак, А. А. Потехин, *ЖОрХ*, **14**, 1086 (1978).
- 5. А. Ю. Ершов, Н. В. Кошмина, ХГС, 1431 (2001).
- G. J. Karabatsos, J. D. Graham, F. M. Vane, J. Am. Chem. Soc., 84, 753 (1962).
- А. С. Днепровский, Т. И. Темникова, Теоретические основы органической химии, Химия, Ленинград, 1979, 580.
- В. А. Пальм, Основы количественной теории органических реакций, Химия, Ленинград, 1977, 359.
- Н. А. Парпиев, В. Г. Юсупов, С. И. Якимович, Х. Т. Шарипов, Ацилгидразоны и их комплексы с переходными металлами, Фэн, Ташкент, 1988, 163.
- 10. Ю. П. Китаев, Б. И. Бузыкин, *Гидразоны*, Наука, Москва, 1974, 381.
- 11. К. Н. Зеленин, С. В. Олейник, В. В. Алексеев, А. А. Потехин, ЖОХ, 71, 1182 (2001).

Институт высокомолекулярных соединений РАН, Санкт-Петербург 199004 e-mail: ershov@hq.macro.ru

Поступило в редакцию 24.02.2003

Санкт-Петербургский государственный университет.

Санкт-Петербург 198904, Россия