Е. В. Вервес, А. В. Кучер, Л. В. Музычка, О. Б. Смолий*

СИНТЕЗ

7-АЛКИЛ-4-АМИНО-7*H*-ПИРРОЛО-[2,3-*d*]ПИРИМИДИН-6-КАРБОНОВЫХ КИСЛОТ

Рассмотрены два варианта синтеза производных этил-N-алкил-N-(6-амино-5-формилпиримидин-4-ил)глицинатов, которые при действии метилата натрия претерпевают внутримолекулярную циклизацию с образованием производных метиловых эфиров 7H-пирроло[2,3-d]пиримидин-6-карбоновой кислоты. Получены новые представители пиримидо[5',4':4,5]пирроло[2,1-c][1,4]оксазинов, содержащие 3-хлорпропильную группу в положении 8.

Ключевые слова: пиримидо[5',4':4,5]пирроло[2,1-c][1,4]оксазин, 7*H*-пирроло[2,3-d]пиримидин, этил-*N*-алкилглицинат, циклизация.

В последние годы производные пирроло[2,3-d]пиримидина интенсивно изучаются и успешно используются для решения актуальных проблем медицинской химии и молекулярной биологии. Растущее число публикаций с описанием биологических свойств соединений данного класса свидетельствует об их значительном потенциале. Недавно получены новые представители пирроло[2,3-d]пиримидинов, которые проявляют противоопухолевую и антипролиферативную активность, а также являются антагонистами рецептора CRF₁ [1–3]. Однако главным стимулом для поиска новых препаратов в ряду 7H-пирроло[2,3-d]пиримидина стало открытие сильных селективных ингибиторов киназ JAK3 (CP-690,550) и Akt (CCT128930), эффективных при лечении аутоиммунных и онкологических заболеваний [4–7].

Несмотря на то, что синтезы производных пирроло[2,3-*d*]пиримидина достаточно хорошо изучены, получение некоторых представителей затруднено. Одним из таких примеров является синтез соединений **A**, который не удалось осуществить с применением описанного ранее метода [8, 9]. Исходя из 4,6-дихлорпиримидин-5-карбальдегида, нами были получены соединения **1a**–**d**. При действии на них основаниями происходила внутримолекулярная циклизация с участием альдегидной и метиленовой групп, которая сопровождалась сильным осмолением реакционной смеси, что, очевидно, связано с нуклеофильной атакой по положению 2 пиримидинового кольца и дальнейшим его раскрытием.

1а, 5а–d, 6а–d R = бензил, 1b, 5e, 6e R = аллил, 1c, 5f,i,k, 6f,i,k R = 2-метоксиэтил, 1d, 5g,h,j,l, 6g,h,j,l R = (тетрагидрофуран-2-ил)метил; 3a, 5a,e,f,g, 6a,e,f,g $NR^1R^2 = NMe_2$, 3b, 5b,h, 6b,h $NR^1R^2 = пирролидин-1-ил$, 3c, 5c,i,j, 6c,i,j $NR^1R^2 = пиперидин-1-ил$, 3d, 5d,k,l, 6d,k,l $NR^1R^2 = морфолин-4-ил$

Соединение 4 получено только на одном примере с выходом 30%. Поэтому использование превращений $1 \rightarrow 4 \rightarrow 5$ для синтеза целевых продуктов 6a-lоказалось неперспективным. Следует отметить, что хлоральдегиды 1а-d все же удалось превратить в производные пирроло[2,3-d]пиримидина **5a-l** с достаточно высокими выходами. Этому способствовало введение электронодонорных заместителей в положение 4 пиримидинового цикла, которые уменьшают электрофильность атома углерода в положении 2 гетероциклического кольца. Наиболее удобным способом замены подвижного атома хлора на вторичные амины в альдегидах 1а-d является проведение данной реакции в безводном ацетонитриле в присутствии поташа. Соединения 2а-1 были получены при обработке альдегидов 3a-d эфирами N-алкилглицина. Контроль за протеканием превращений 1 o 2 и 3 o 2осуществляли методом тонкослойной хроматографии. Следует отметить, что побочные продукты в этих реакциях практически не образуются. Альдегиды 2а-1 – маслообразные вещества, которые быстро темнеют на воздухе, поэтому они использовались для дальнейших превращений без дополнительной очистки. Внутримолекулярная циклизация альдегидов 2а-1 проводилась в абсолютном метаноле с эквимолярным количеством метилата натрия и сопровождалась переэтерификацией. Щелочным гидролизом эфиров 5а-1 были получены целевые соединения – 7*H*-пирроло[2,3-*d*]пиримидин-6-карбоновые кислоты 6а-1 (табл. 1).

Введение карбоксильной группы в ядро пирроло[2,3-d] пиримидина открывает возможности для создания химических библиотек соединений различных классов, в первую очередь амидов. Исключение составляют соединения, содержащие возле атома азота пиррольного кольца (тетрагидрофуран-2-ил)метильный заместитель. Так, при обработке соединений $\mathbf{6g}$, \mathbf{j} , \mathbf{l} тионилхлоридом происходит размыкание тетрагидрофуранового цикла с последующей трансформацией в трициклические производные пиримидо[5',4':4,5] пирроло-[2,1-c][1,4] оксазина $\mathbf{7a}$ – \mathbf{c} . Данная рециклизация была обнаружена нами ранее на близком примере [10].

Таблица 1 Характеристики синтезированных соединений

T. n.n.* Particular Part	Характеристики синтезированных соединений							
The	Соели-	Брутто-	Найдено, %			Т. пл.*.	Выхол %	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C			l N		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	C. H. CIN.O.					121_122	50
Ib C₁₂H₁₄CIN,O₃ 50.81 box 4.95 box 4.97 box 12.59 box 14.81 box 4.97 b	14	C161116CHV3O3					121-122	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1b	$C_{12}H_{14}CIN_3O_3$				14.85	81-82	58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1c	$C_{12}H_{16}CIN_3O_4$		5.39			75–76	55
4 C ₁₅ H ₁₂ ClN ₃ O ₂ 55.69 59.71 4.00 4.01 11.78 11.75 13.95 13.95 124-125 55 5a C ₁₇ H ₁₈ N ₄ O ₂ 65.76 65.79 5.82 5.85 - 18.02 18.02 135-136 68 (A) 70 (B) 5b C ₁₉ H ₂₉ N ₄ O ₂ 68.52 68.52 6.30 68.55 - 16.69 16.65 165-166 65 (A) 70 (A) 5c C ₂₉ H ₂₉ N ₄ O ₂ 68.52 68.55 6.30 68.55 - 15.90 15.90 158-160 70 (A) 5d C ₁₉ H ₂₉ N ₄ O ₃ 64.76 64.76 5.72 5.99 - 15.99 15.90 15.90 70 (A) 70 (A) 5e C ₁₃ H ₁₆ N ₄ O ₃ 56.21 56.10 6.59 59.99 - 20.18 6.10 15.90 6.21 6.59 - 20.18 10.5-106 68 (B) 5g C ₁₃ H ₁₆ N ₄ O ₃ 56.21 50.10 6.59 6.21 6.10 - 18.50 20.13 94-95 6.3 63 5g C ₁₅ H ₂₀ N ₄ O ₃ 61.89 6.18 - 18.50 6.53 93-94 73 5i C ₁₆ H ₂₀ N ₄ O ₃ 60.36 6.18 6.71 7.15 - 16.85 16.90 </th <th>1d</th> <th>C. H. CIN.O.</th> <th></th> <th></th> <th></th> <th></th> <th>73_74</th> <th>50</th>	1d	C. H. CIN.O.					73_74	50
4 C ₁₅ H ₁₂ CIN ₅ O ₂ 59.69 4.00 11.78 13.93 124-125 55 5a C ₁₇ H ₁₈ N ₄ O ₂ 65.76 5.82 - 18.02 13.5-136 68 (A) 5b C ₁₉ H ₂₉ N ₄ O ₂ 68.57 5.82 - 16.69 165-166 65 (A) 5c C ₂₀ H ₂₉ N ₄ O ₂ 68.52 0.30 - 15.90 158-160 70 (A) 5d C ₁₉ H ₂₉ N ₄ O ₃ 64.70 5.70 - 15.90 158-160 70 (A) 5c C ₁₉ H ₁₉ N ₄ O ₃ 64.70 5.70 - 15.90 68 (B) 5c C ₁₃ H ₁₈ N ₄ O ₂ 56.01 65.72 - 15.90 68 (B) 5c C ₁₃ H ₁₈ N ₄ O ₂ 56.21 6.59 - 20.13 105-106 68 (B) 5c C ₁₃ H ₁₈ N ₄ O ₂ 56.21 6.52 20.13 105-106 68 (B) 5c C ₁₃ H ₁₈ N ₄ O ₂ 56.21 6.52 20.13 105-106 68 (B)	14	C141118CH 1304					75 74	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$C_{15}H_{12}ClN_3O_2$	59.69	4.00	11.78	13.95	124-125	55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	G ** ** 0			11.75		105 106	60 (4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5a	$C_{17}H_{18}N_4O_2$			_		135–136	
$ \begin{array}{c} \textbf{5c} & \textbf{C}_{20}\textbf{H}_{22}\textbf{N}_{4}\textbf{O}_{2} & \frac{68.52}{68.55} & \frac{6.30}{6.33} & - & \frac{15.91}{15.99} & 158-160 & 70 (A) \\ \textbf{70} & \frac{68.75}{73} & \frac{6.37}{15.99} & \frac{15.99}{15.99} & 158-160 & 70 (A) \\ \textbf{70} & \frac{73}{15} & \frac{15.99}{15.99} & 1$	5b	C10H20N4O2			_		165–166	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							100 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5c	$C_{20}H_{22}N_4O_2$			-		158-160	70 (A)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1	C H NO					150 160	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	$C_{19}H_{20}N_4O_3$			_		159–160	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5e	C13H16N4O2			_		109-110	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			59.99	6.20		21.52		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5f	$C_{13}H_{18}N_4O_3$			_		105–106	68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 a	C. H. N.O.					04 05	62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jg	C151120114O3					74-73	03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5h	$C_{17}H_{22}N_4O_3$		6.65	_		93-94	73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C H NO					124 125	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	$C_{16}H_{22}N_4O_3$			_	17.60	124–125	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5i	C ₁₈ H ₂₄ N ₄ O ₃			_		95–97	62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5k	$C_{15}H_{20}N_4O_4$			_		143–144	68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	C17H22N4O4			_		130-131	59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	C1/11221 14 04					130 131	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6a	$C_{16}H_{16}N_4O_2$			-			91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6h	CHNO						0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OD	C ₁₈ 11 ₁₈ 1N ₄ O ₂			_			01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6c	$C_{19}H_{20}N_4O_2$			_			75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6d	$C_{18}H_{18}N_4O_3$			_			82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6e	C12H14N4O2			_			93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0121141402				22.75		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6f	$C_{12}H_{16}N_4O_3$			-			90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	C. H. N.O.						75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	og	C1411181N4O3			_		230-239	/3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6h	$C_{16}H_{20}N_4O_3$			-		245-246	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		G ** ** 0					104 105	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	$C_{15}H_{20}N_4O_3$			_		184–185	73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6i	C17H22N4O2			_		203-204	71
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			61.80	6.71		16.96		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6k	$C_{14}H_{18}N_4O_4$			_	<u>18.36</u>	212–213	75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61	C. H. N.O.					104 105	69
7а $C_{14}H_{17}CIN_4O_2$ $\frac{54.52}{54.46}$ $\frac{5.61}{5.55}$ $\frac{11.59}{11.48}$ $\frac{18.26}{18.15}$ >255 70 7b $C_{17}H_{21}CIN_4O_2$ $\frac{58.60}{58.53}$ $\frac{6.12}{6.07}$ $\frac{10.23}{10.16}$ $\frac{16.15}{16.06}$ >256 66 7c $C_{16}H_{19}CIN_4O_3$ $\frac{54.70}{54.70}$ $\frac{5.50}{5.50}$ $\frac{10.04}{10.04}$ $\frac{16.03}{16.03}$ $\frac{192-193}{192-193}$ $\frac{65}{100}$	UI	C1611201N4O4			_		174-173	00
7b $C_{17}H_{21}CIN_4O_2$ $\frac{58.60}{58.53}$ $\frac{6.12}{6.07}$ $\frac{10.23}{10.16}$ $\frac{16.15}{16.06}$ >256 66 $(c pa3π.)$ 7c $C_{16}H_{19}CIN_4O_3$ $\frac{54.70}{54.70}$ $\frac{5.50}{5.50}$ $\frac{10.04}{10.04}$ $\frac{16.03}{16.03}$ $\frac{192-193}{192-193}$ 65	7a	$C_{14}H_{17}ClN_4O_2$	<u>54.52</u>	<u>5.61</u>		18.26		70
7c $C_{16}H_{19}CIN_4O_3$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 1	G II GDI O						
7c $C_{16}H_{19}CIN_4O_3$ 54.70 5.50 10.04 16.03 $192-193$ 65	7 b	$C_{17}H_{21}CIN_4O_2$						66
	7c	C ₁₆ H ₁₉ ClN ₄ O ₃						65
	. •	- 1017 14-5						

^{*} Растворители для перекристаллизации: EtOH (соединения **5a–l**), 2-PrOH (соединение **4**), ДМФА–EtOH (соединения **6a–l**), ДМФА (соединения **7a–c**).

$$NR^{1}R^{2}$$
 $NR^{1}R^{2}$
 $NR^{1}R^{2}$

6g, 7a $NR^1R^2 = NMe_2$, 6j, 7b $NR^1R^2 =$ пиперидин-1-ил, 6l, 7c $NR^1R^2 =$ морфолин-4-ил

Состав и строение синтезированных соединений подтверждены результатами элементного анализа, а также данными ИК спектров, хромато-масс-спектров, спектров ЯМР 1 Н и 13 С. Появление синглетов протонов в области 7.32–7.47 м. д. в спектрах ЯМР 1 Н соединений **5a–l** свидетельствует о замыкании пиррольного цикла. Характерной особенностью пиримидо[5',4':4,5]-пирроло[2,1-c][1,4]оксазинов **7a–c** является наличие сигналов протонов группы NCH₂ в виде двух однопротонных дублет дублетов в области 4.05–4.71 м. д. В спектрах ЯМР 13 С соединений **7a–c** сигнал атома углерода С-8 наблюдается в области 81.8–82.0 м. д. (табл. 2–4).

Таким образом, в данной работе найден способ синтеза производных 7H-пирроло[2,3-d]пиримидин-6-карбоновых кислот, которые являются перспективными промежуточными соединениями для получения потенциальных ингибиторов протеинкиназ. Показано, что некоторые из полученных производных, содержащие при атоме азота пиррольного кольца (тетрагидрофуран-2-ил)метильный заместитель, при обработке тионилхлоридом склонны претерпевать рециклизацию с образованием производных пиримидо[5',4':4,5]-пирроло[2,1-c][1,4]оксазина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Bruker Vertex 70 FTIR в таблетках КВг. Спектры ЯМР 1 Н и 13 С зарегистрированы на приборах Varian Mercury 400 (400 МГц для ядер 1 Н, соединения **1b**, **5e**,**h**, **7a**) и Bruker Avance DRX-500 (500 и 125 МГц для ядер 1 Н и 13 С соответственно) в CDCl₃ (соединения **1a–d**, **4**, **5a–l**), ДМСО-d₆ (соединения **6a–l**, **7a–c**), CF₃COOD (для спектров ЯМР 13 С соединений **6b**, **7a–c**), внутренний стандарт ТМС. Хромато-масс-спектры записаны на высокоэффективном жидкостном хроматографе Agilent 1100 Series, оснащённом диодной матрицей с масс-селективным детектором Agilent LC/MSD SL, метод ионизации – ХИ при атмосферном давлении, диапазон сканирования – m/z 80–1000. Элементный анализ проведён сжиганием по методам Прегля и Дюма, анализ содержания хлора – титрованием хлорид-аниона после сжигания в кислороде. Температуры плавления определены на приборе Boetius. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом ТСХ на пластинах Silufol UV-254, элюент CHCl₃—MeOH, 19:1.

Этил-*N*-алкил-*N*-(5-формил-6-хлорпиримидин-4-ил)глицинаты 1а-d (общая методика). К раствору 1.00 г (5.6 ммоль) 4,6-дихлорпиримидин-5-карбальдегида [11] в 10 мл CH_2Cl_2 добавляют раствор 0.57 г (6.7 ммоль) $NaHCO_3$ в 20 мл H_2O . Смесь охлаждают до 0 °C и при интенсивном перемешивании добавляют по каплям 6.7 ммоль соответствующего этил-*N*-алкилглицината в 10 мл CH_2Cl_2 . Реакционную смесь перемешивают при 20–25 °C в течение 10 ч. Органический слой отделяют и экстрагируют водный слой CH_2Cl_2 (2×10 мл). Объединённые органические экстракты сушат над $MgSO_4$ и упаривают в вакууме. Остаток хроматографируют на колонке, элюент $CHCl_3$. Соединения 1a–d использовали для дальнейших превращений без перекристаллизации.

Константы **4-Амино-6-хлорпиримидин-5-карбальдегидов 3а-d** приведены в работах [12, 13].

Спектры ЯМР 1 Н синтезированных соединений

Соеди-						
нение	Химические сдвиги, δ , м. д. (J , Γ ц)					
1	2					
1a	1.29 (3H, τ , ${}^{3}J$ = 7.0, OCH ₂ CH ₃); 4.19 (2H, c, CH ₂ Ph); 4.24 (2H, κ , ${}^{3}J$ = 7.0, OCH ₂ CH ₃); 4.88 (2H, c, CH ₂ CO); 7.31–7.37 (5H, κ , H Ph); 8.45 (1H, c, H-2); 10.27 (1H, c, CHO)					
1b	1.28 (3H, т, ${}^{3}J$ = 7.0, OCH ₂ C <u>H₃</u>); 4.08 (2H, д, ${}^{3}J$ = 5.5, NCH ₂); 4.22–4.26 (4H, м, С <u>H</u> ₂ COOC <u>H</u> ₂ CH ₃); 5.23 (1H, д, ${}^{3}J$ = 17.2) и 5.32 (1H, д, ${}^{3}J$ = 10.4, NCH ₂ CH=C <u>H</u> ₂); 5.82–5.91 (1H, м, С <u>H</u> =CH ₂); 8.37 (1H, с, H-2); 10.33 (1H, с, CHO)					
1c	1.30 (3H, $_{\rm T}$, $_{\rm J}^3J$ = 7.0, OCH ₂ CH ₃); 3.34 (3H, c, OCH ₃); 3.76–3.78 (4H, $_{\rm M}$, (CH ₂) ₂ OCH ₃); 4.24 (2H, $_{\rm K}$, $_{\rm J}^3J$ = 7.0, OCH ₂ CH ₃); 4.41 (2H, c, CH ₂ CO); 8.37 (1H, c, H-2); 10.38 (1H, c, CHO)					
1d	1.30 (3H, т, 3J = 7.0, OCH ₂ CH ₃); 1.45–1.48 (1H, м) и 2.10–2.12 (1H, м, CH ₂); 1.63–1.66 (2H, м, CH ₂); 3.46–3.49 (1H, м) и 3.74–3.77 (1H, м, CH ₂); 3.84–3.86 (2H, м, CH ₂); 4.24 (2H, к, 3J = 7.0, OCH ₂ CH ₃); 4.28–4.32 (1H, м, CH); 4.32–4.35 (1H, м) и 4.64–4.66 (1H, м, CH ₂); 8.36 (1H, c, H-2); 10.38 (1H, c, CHO)					
4	3.93 (3H, c, OCH ₃); 5.97 (2H, c, CH ₂ Ph); 7.24–7.28 (5H, м, H Ph); 7.41 (1H, c, H-5); 8.81 (1H, c, H-2)					
5a	3.44 (6H, c, N(CH ₃) ₂); 3.85 (3H, c, OCH ₃); 5.89 (2H, c, CH ₂ Ph); 7.18–7.22 (3H, м, H Ph); 7.24–7.28 (2H, м, H Ph); 7.44 (1H, c, H-5); 8.44 (1H, c, H-2)					
5b	2.05–2.14 (4H, м, (CH ₂) ₂ пирролидин); 3.82–3.85 (7H, м, N(CH ₂) ₂ пирролидин, OCH ₃); 5.88 (2H, c, CH ₂ Ph); 7.18–7.28 (5H, м, H Ph); 7.41 (1H, c, H-5); 8.44 (1H, c, H-2)					
5c	1.74–1.77 (6H, м, (CH ₂) ₃ пиперидин); 3.86 (3H, с, OCH ₃); 3.96–4.00 (4H, м, N(CH ₂) ₂ пиперидин); 5.89 (2H, с, CH ₂ Ph); 7.19–7.22 (3H, м, H Ph); 7.25–7.28 (2H, м, H Ph); 7.38 (1H, с, H-5); 8.43 (1H, с, H-2)					
5d	3.86–3.88 (7H, м, OCH ₃ , N(CH ₂) ₂ морфолин); 4.01–4.05 (4H, м, O(CH ₂) ₂ морфолин); 5.90 (2H, c, CH ₂ Ph); 7.19–7.22 (3H, м, H Ph); 7.25–7.28 (2H, м, H Ph); 7.37 (1H, c, H-5); 8.46 (1H, c, H-2)					
5e	3.40 (6H, c, N(CH ₃) ₂); 3.87 (3H, c, OCH ₃); 4.84 (1H, д, ${}^{3}J$ = 16.8) и 5.07 (1H, д, ${}^{3}J$ = 10.4, NCH ₂ CH=CH ₂); 5.22–5.25 (2H, м, NCH ₂); 5.92–6.00 (1H, м, С <u>Н</u> =CH ₂); 7.39 (1H, c, H-5); 8.38 (1H, c, H-2)					
5f	3.31 (3H, c, CH ₂ CH ₂ OC <u>H</u> ₃); 3.42 (6H, c, N(CH ₃) ₂); 3.73 (2H, τ , ${}^{3}J = 5.5$, C <u>H</u> ₂ OCH ₃); 3.92 (3H, c, OCH ₃); 4.86 (2H, τ , ${}^{3}J = 5.5$, NCH ₂); 7.40 (1H, c, H-5); 8.41 (1H, c, H-2)					
5g	1.68–1.72 (1H, м) и 1.84–1.86 (1H, м, CH ₂); 1.95–1.98 (2H, м, CH ₂); 3.42 (6H, с, N(CH ₃) ₂); 3.67–3.72 (1H, м) и 3.86–3.90 (1H, м, CH ₂); 3.91 (3H, с, OCH ₃); 4.30–4.34 (1H, м, CH); 4.63 (1H, д. д, 3J = 5.0, 2J = 13.0) и 4.81 (1H, д. д, 3J = 8.5, 2J = 13.0, NCH ₂); 7.39 (1H, с, H-5); 8.40 (1H, с, H-2)					
5h	$1.67-1.72\ (1H, \ m)$ и $1.82-1.86\ (1H, \ m, \ CH_2);\ 1.94-1.98\ (2H, \ m, \ CH_2);\ 2.05-2.20\ (4H, \ m, \ (CH_2)_2$ пирролидин); $3.67-3.72\ (1H, \ m)$ и $3.76-3.79\ (1H, \ m, \ CH_2);\ 3.88-3.91\ (7H, \ m, \ OCH_3, \ N(CH_2)_2$ пирролидин); $4.30-4.33\ (1H, \ m, \ CH);\ 4.62\ (1H, \ \pi, \ \pi, \ ^3J=3.5,\ ^2J=13.0)$ и $4.81\ (1H, \ \pi, \ \pi, \ ^3J=7.5,\ ^2J=13.0,\ NCH_2);\ 7.36\ (1H, \ c, \ H-5);\ 8.41\ (1H, \ c, \ H-2)$					
5i	1.71–1.75 (6H, м, (CH ₂) ₃ пиперидин); 3.32 (3H, с, CH ₂ CH ₂ OC <u>H₃</u>); 3.73 (2H, т, ${}^{3}J$ = 5.5, C <u>H₂</u> OCH ₃); 3.92 (3H, с, OCH ₃); 3.94–3.98 (4H, м, N(CH ₂) ₂ пиперидин); 4.86 (2H, т, ${}^{3}J$ = 5.5, NCH ₂); 7.34 (1H, с, H-5); 8.41 (1H, с, H-2)					
5j	1.72–1.76 (6H, м, (CH ₂) ₃ пиперидин); 1.72–1.76 (1H, м) и 1.84–1.88 (1H, м, CH ₂); 1.94–1.99 (2H, м, CH ₂); 3.69–3.72 (1H, м) и 3.84–3.89 (1H, м, CH ₂); 3.91–3.95 (7H, м, N(CH ₂) ₂ пиперидин, OCH ₃); 4.30–4.35 (1H, м) и 4.60–4.65 (1H, м, CH ₂); 4.78–4.83 (1H, м, CH); 7.32 (1H, с, H-5); 8.39 (1H, с, H-2)					
5k	3.32 (3H, c, CH ₂ CH ₂ OCH ₃); 3.73 (2H, т, ${}^3J = 5.5$, CH ₂ OCH ₃); 3.84–3.88 (4H, м, N(CH ₂) ₂ морфолин); 3.93 (3H, c, OCH ₃); 3.98–4.04 (4H, м, O(CH ₂) ₂ морфолин); 4.88 (2H, т, ${}^3J = 5.5$, NCH ₂); 7.33 (1H, c, H-5); 8.44 (1H, c, H-2)					
51	$1.59-1.63$ (1H, м) и $1.74-1.77$ (1H, м, CH ₂); $1.80-1.85$ (2H, м, CH ₂); $3.55-3.58$ (1H, м) и $3.60-3.65$ (1H, м, CH ₂); $3.71-3.75$ (4H, м, N(CH ₂) ₂ морфолин); 3.85 (3H, с, OCH ₃); $3.88-3.93$ (4H, м, O(CH ₂) ₂ морфолин); $4.13-4.17$ (1H, м, CH); 4.51 (1H, д, д, ${}^3J=7.0$, ${}^2J=13.5$) и 4.80 (1H, д, д, ${}^3J=10.0$, ${}^2J=13.5$, NCH ₂); 7.47 (1H, c, H-5); 8.30 (1H, c, H-2)					

1	2
6a	3.41 (6H, c, N(CH ₃) ₂); 5.82 (2H, c, CH ₂ Ph); 7.06–7.07 (2H, м, H Ph); 7.20–7.29 (3H, м, H Ph); 7.54 (1H, с, H-5); 8.32 (1H, с, H-2); 13.14 (1H, уш. с, OH)
6b	1.95–2.06 (4H, м, (CH ₂) ₂ пирролидин); 3.65-3.69 (2H, м, NCH ₂ пирролидин); 3.86–3.90 (2H, м, NCH ₂ пирролидин); 5.78–5.82 (2H, м, CH ₂ Ph); 7.04–7.05 (2H, м, H Ph); 7.20–7.26 (3H, м, H Ph); 7.43 (1H, c, H-5); 8.27 (1H, c, H-2)
6c	1.70–1.74 (6H, м, (CH ₂) ₃ пиперидин); 3.96–3.99 (4H, м, N(CH ₂) ₂ пиперидин); 5.84 (2H, c, CH ₂ Ph); 7.09–7.10 (2H, м, H Ph); 7.22–7.30 (3H, м, H Ph); 7.63 (1H, c, H-5); 8.39 (1H, c, H-2)
6d	3.72–3.75 (4H, м, N(CH ₂) ₂ морфолин); 3.90–3.93 (4H, м, O(CH ₂) ₂ морфолин); 5.81 (2H, c, CH ₂ Ph); 7.04–7.06 (2H, м, H Ph); 7.22–7.26 (3H, м, H Ph); 7.52 (1H, c, H-5); 8.31 (1H, c, H-2); 13.05 (1H, уш. c, OH)
6e	3.33 (6H, c, N(CH ₃) ₂); 4.70 (1H, д, ${}^{3}J$ = 17.2) и 5.01 (1H, д, ${}^{3}J$ = 10.0, NCH ₂ CH=C <u>H</u> ₂); 5.13–5.16 (2H, м, NCH ₂); 5.93–5.97 (1H, м, NCH ₂ C <u>H</u> =CH ₂); 7.40 (1H, c, H-5); 8.22 (1H, c, H-2); 12.93 (1H, уш. c, OH)
6f	3.21 (3H, c, $CH_2CH_2OC\underline{H}_3$); 3.34 (6H, c, $N(CH_3)_2$); 3.60 (2H, τ , ${}^3J = 5.5$, $C\underline{H}_2OCH_3$); 4.72 (2H, τ , ${}^3J = 5.5$, NCH_2); 7.40 (1H, c, H-5); 8.25 (1H, c, H-2); 12.97 (1H, yii. c, OH)
6g	1.61–1.64 (1H, м) и 1.75–1.79 (1H, м, CH ₂); 1.85–1.87 (2H, м, CH ₂); 3.35 (6H, с, N(CH ₃) ₂); 3.56–3.59 (1H, м) и 3.74–3.78 (1H, м, CH ₂); 4.17–4.21 (1H, м, CH); 4.49 (1H, д. д, ${}^3J = 5.0$, ${}^2J = 13.5$) и 4.66 (1H, д. д, ${}^3J = 8.5$, ${}^2J = 13.5$, NCH ₂); 7.38 (1H, с, H-5); 8.24 (1H, с, H-2); 12.92 (1H, уш. с, OH)
6h	$1.61-1.64$ (1H, м) и $1.77-1.81$ (1H, м, CH ₂); $1.86-1.89$ (2H, м, CH ₂); $2.05-2.09$ (4H, м, (CH ₂) ₂ пирролидин); $3.56-3.59$ (1H, м) и $3.70-3.75$ (1H, м, CH ₂); $3.76-3.79$ (2H, м, NCH ₂ пирролидин); $3.97-4.01$ (2H, м, NCH ₂ пирролидин); $4.14-4.17$ (1H, м, CH); 4.57 (1H, д. д, ${}^3J = 4.5$, ${}^2J = 13.5$) и 4.69 (1H, д. д, ${}^3J = 8.5$, ${}^2J = 13.5$, NCH ₂); 7.56 (1H, c, H-5); 8.38 (1H, c, H-2); 13.48 (1H, уш. c, OH)
6i	$1.59-1.63$ (4H, м, (CH ₂) ₂ пиперидин); $1.67-1.72$ (2H, м, CH ₂ пиперидин); 3.21 (3H, с, CH ₂ CH ₂ OCH ₃); 3.60 (2H, т, ${}^3J=5.5$, CH ₂ OCH ₃); $3.89-3.92$ (4H, м, N(CH ₂) ₂ пиперидин); 4.72 (2H, т, ${}^3J=5.5$, NCH ₂); 7.35 (1H, c, H-5); 8.25 (1H, c, H-2); 13.03 (1H, ym. c, OH)
6 j	1.58–1.61 (6H, м, (CH ₂) ₃ пиперидин); 1.68–1.78 (4H, м, CH ₂ CH ₂); 3.54–3.56 (1H, м) и 3.71–3.75 (1H, м, CH ₂); 3.89 (4H, м, N(CH ₂) ₂ пиперидин); 4.15–4.21 (1H, м, CH); 4.48 (1H, д. д, 3J = 5.5, 2J = 13.5) и 4.65 (1H, д. д, 3J = 7.5, 2J = 13.5, NCH ₂); 7.33 (1H, с, H-5); 8.24 (1H, с, H-2); 12.98 (1H, уш. с, OH)
6k	3.19 (3H, c, $CH_2CH_2OC\underline{H}_3$); 3.60 (2H, т, $^3J=5.5$, $C\underline{H}_2OCH_3$); 3.70–3.76 (4H, м, $N(CH_2)_2$ морфолин); 3.87–3.93 (4H, м, $O(CH_2)_2$ морфолин); 4.73 (2H, т, $^3J=5.5$, NCH_2); 7.44 (1H, c, H-5); 8.29 (1H, c, H-2); 13.07 (1H, уш. c, OH)
61	1.58–1.63 (1H, м) и 1.75–1.81 (3H, м, 2CH ₂); 3.53–3.59 (1H, м) и 3.57–3.62 (1H, м, CH ₂); 3.70–3.74 (4H, м, N(CH ₂) ₂ морфолин); 3.87–3.93 (4H, м, O(CH ₂) ₂ морфолин); 4.15–4.18 (1H, м, CH); 4.51 (1H, д. д. $^3J = 6.0$, $^2J = 13.5$) и 4.67 (1H, д. д. $^3J = 8.0$, $^2J = 13.5$, NCH ₂); 7.42 (1H, c, H-5); 8.29 (1H, c, H-2); 13.03 (1H, уш. c, OH)
7a	1.90–1.95 (4H, м, (С $\underline{\text{H}}_2$) ₂ CH ₂ CI); 3.48 (6H, c, N(CH ₃) ₂); 3.70–3.76 (2H, м, CH ₂ CI); 4.14 (1H, д. д, 3J = 11.2, 2J = 14.5) и 4.71 (1H, д. д, 3J = 2.0, 2J = 14.5, NCH ₂); 4.95 (1H, м, CH); 7.75 (1H, c, H-5); 8.42 (1H, c, H-2)
7b	$1.68-1.73$ (6H, м, (CH ₂) ₃ пиперидин); $1.90-1.95$ (4H, м, (CH ₂) ₂ CH ₂ CI); $3.36-3.41$ (2H, м, CH ₂ CI); 4.00 (4H, c, N(CH ₂) ₂ пиперидин); 4.13 (1H, д. д, $^3J = 11.2$, $^2J = 14.5$) и 4.71 (1H, д. д, $^3J = 2.0$, $^2J = 14.5$, NCH ₂); 4.94 (1H, м, CH); 7.76 (1H, c, H-5); 8.42 (1H, c, H-2)
7c	$1.90-1.95$ (4H, м, (CH ₂) ₂ CH ₂ Cl); $3.70-3.76$ (6H, м, N(CH ₂) ₂ морфолин, CH ₂ Cl); $3.91-3.96$ (4H, м, O(CH ₂) ₂ морфолин); 4.05 (1H, д. д, ${}^3J=11.2$, ${}^2J=14.5$) и 4.59 (1H, д. д, ${}^3J=2.0$, ${}^2J=14.5$, NCH ₂); $4.87-4.90$ (1H, м, CH); 7.63 (1H, c, H-5); 8.33 (1H, c, H-2)

Спектры ЯМР ¹³С соединений 6а-l, 7а-с

Соеди-	Химические сдвиги, δ, м. д.
нение 6а	38.7 (N(CH ₃) ₂); 45.8 (<u>C</u> H ₂ Ph); 101.3 (C-4a); 112.3 (C-5); 125.2, 126.8, 127.4, 128.6,
~	138.2 (6C Ph и C-6); 150.1, 151.0, 154.8 (С-2,4,7а); 161.9 (С=О)
6b	25.2, 26.5 ((CH ₂) ₂ пирролидин); 49.4 (<u>C</u> H ₂ Ph); 51.2, 53.1 (N(CH ₂) ₂ пирролидин); 103.8 (C-4a); 117.5 (C-5); 128.1, 128.4, 129.8, 130.8, 137.2 (6C Ph и C-6); 146.7, 149.9, 150.6 (C-2,4,7a); 166.8 (C=O)
6c	23.0, 25.2 ((СН ₂) ₃ пиперидин); 46.5, 48.7 (N(СН ₂) ₂ пиперидин и $\underline{\text{C}}$ H ₂ Ph); 101.5 (С-4a); 112.6 (С-5); 126.7, 127.4, 128.1, 129.2, 138.2 (6C Ph и C-6); 148.3, 151.0, 152.2 (С-2,4,7a); 162.3 (С=O)
6d	45.3, 45.6 (N(CH ₂) ₂ морфолин и <u>C</u> H ₂ Ph); 66.1 (O(CH ₂) ₂ морфолин); 101.8 (C-4a); 110.9 (C-5); 124.9, 126.9, 127.3, 128.6, 139.0 (6C Ph и C-6); 153.8, 154.1, 158.0 (C-2,4,7a); 162.7 (C=O)
6e	38.8 (N(CH ₃) ₂); 44.6 (N <u>C</u> H ₂ CH=CH ₂); 101.9 (C-4a); 111.4 (C-5); 115.8 (NCH ₂ CH= <u>C</u> H ₂); 124.3 (C-6); 135.3 (NCH ₂ CH=CH ₂); 153.1, 154.2, 158.3 (C-2,4,7a); 162.7 (C=O)
6f	38.8 (N(CH ₃) ₂); 41.6 (NCH ₂); 57.8 (OCH ₃); 70.8 (<u>C</u> H ₂ OCH ₃); 101.9 (C-4a); 111.2 (C-5); 124.5 (C-6); 153.3, 153.6, 158.1 (C-2, C-4, C-7a); 162.8 (C=O)
6g	24.7, 28.2 ((СН ₂) ₂ тетрагидрофуран); 38.6 (N(СН ₃) ₂); 45.8 (NСН ₂); 67.1 (СН ₂ тетрагидрофуран); 77.0 (СН тетрагидрофуран); 101.9 (С-4а); 110.8 (С-5); 124.9 (С-6); 153.4, 153.8, 158.2 (С-2, С-4, С-7а); 163.0 (С=О)
6h	24.0 ((СН ₂) ₂ пирролидин); 24.8, 28.2 ((СН ₂) ₂ тетрагидрофуран); 46.7 (NСН ₂); 50.4 (N(СН ₂) ₂ пирролидин); 67.2 (СН ₂ тетрагидрофуран); 77.1 (СН тетрагидрофуран); 101.1 (С-4а); 112.0 (С-5); 127.6 (С-6); 145.7, 145.8, 149.2 (С-2,4,7а); 162.2 (С=О)
6i	23.9, 25.3 ((СН ₂) ₃ пиперидин); 41.7 (NCH ₂); 46.3 (N(СН ₂) ₂ пиперидин); 57.9 (ОСН ₃); 70.8 (<u>С</u> Н ₂ ОСН ₃); 101.1 (С-4а); 110.2 (С-5); 124.8 (С-6); 153.7, 153.8, 157.5 (С-2,4,7а); 162.8 (С=О)
6 j	23.9 (СН ₂ пиперидин); 24.7 (СН ₂ тетрагидрофуран); 25.4 ((СН ₂) ₂ пиперидин); 28.2 (СН ₂ тетрагидрофуран), 45.9 (NСН ₂); 46.3 (N(СН ₂) ₂ пиперидин); 67.1 (СН ₂ тетрагидрофуран); 77.1 (СН тетрагидрофуран); 101.4 (С-4а); 110.0 (С-5); 125.1 (С-6); 153.8, 153.9, 157.5 (С-2,4,7а); 163.0 (С=О)
6k	41.7 (NCH ₂); 45.3 (N(CH ₂) ₂ морфолин); 58.1 (O <u>C</u> H ₃); 66.1 (O(CH ₂) ₂ морфолин); 70.8 (<u>C</u> H ₂ OCH ₃); 101.7 (C-4a); 110.1 (C-5); 125.2 (C-6); 153.7, 153.8, 158.0 (C-2,4,7a); 162.8 (C=O)
61	24.7, 28.2 (СН ₂ тетрагидрофуран); 45.3 (NCH ₂); 45.8 (N(CH ₂) ₂ морфолин); 66.1 (О(CH ₂) ₂ морфолин); 67.1 (СН ₂ тетрагидрофуран); 77.1 (СН тетрагидрофуран); 101.6 (С-4а); 109.8 (С-5); 125.6 (С-6); 153.6, 153.8, 157.9 (С-2,4,7а); 163.0 (С=О)
7a	29.1, 30.9 (<u>CH₂CH₂CH₂CI)</u> ; 42.4, 44.0 (N(CH ₃) ₂); 44.9 (NCH ₂); 45.8 (CH ₂ CI); 82.0 (C-8); 105.5 (C-4a); 116.5 (C-5); 124.7 (C-5a); 148.2, 148.5, 153.9 (C-2,4,10a); 164.2 (C-6)
7b	23.7, 26.4 ((СН ₂) ₃ пиперидин); 28.7, 30.6 ((<u>С</u> Н ₂) ₂ СН ₂ СІ); 44.6 (NСН ₂); 45.5 (СН ₂ СІ); 50.5 (N(СН ₂) ₂ пиперидин); 81.8 (С-8); 105.0 (С-4а); 115.7 (С-5); 124.2 (С-5а); 148.1, 148.8, 151.9 (С-2,4,10а); 164.2 (С-6)
7c	29.0, 30.9 ((<u>C</u> H ₂) ₂ CH ₂ CI); 44.9 (NCH ₂); 45.9 (CH ₂ CI); 49.6 (N(CH ₂) ₂ морфолин); 67.5 (O(CH ₂) ₂ морфолин); 82.0 (C-8); 105.2 (C-4a); 115.5 (C-5); 125.0 (C-5a); 147.8, 148.3, 154.9 (C-2,4,10a); 164.2 (C-6)

Метиловый эфир 7-бензил-4-хлор-7*H***-пирроло[2,3-***d***] пиримидин-6-карбоновой кислоты (4)**. К раствору $0.50 \, \Gamma$ ($1.5 \,$ ммоль) соединения **1a** в $15 \,$ мл МеОН приливают $0.42 \,$ мл ($3.0 \,$ ммоль) Et_3N , смесь кипятят в течение $20 \,$ ч. Реакционную смесь упаривают в вакууме. Остаток перекристаллизовывают из 2-PrOH.

Метиловые эфиры 7-алкил-4-амино-7*H*-пирроло[2,3-*d*] пиримидин-6-карбоновых кислот 5a-l (общая методика). А. (Соединения 5a-d). Смесь 0.50 г (1.6 ммоль) соединения 4 и 4.8 ммоль вторичного амина кипятят в толуоле в течение 12 ч. Выпавший осадок охлаждают и отфильтровывают. Фильтрат упаривают в вакууме. Остаток перекристаллизовывают из EtOH.

ИК и масс-спектры соединений 5а-l, 7а-с

Соеди-	ИК спектр, ν (C=O), см ⁻¹	Масс-спектр, <i>m</i> / <i>z</i> [M+1] ⁺	Соеди- нение	ИК спектр, v (C=O), см ⁻¹	Масс-спектр, $m/z [M+1]^+$
5a	1706	311	5i	1708	319
5b	1700	337	5j	1711	345
5c	1719	351	5k	1714	321
5d	1704	353	51	1704	347
5e	1714	261	7a	1720	309
5f	1697	279	7b	1727	349
5g	1705	305	7c	1718	351
5h	1697	331			

- Б. (Соединения **5a–l**). Смесь 5.0 ммоль хлоральдегида **1a–d** или **3a–d**, 7.5 ммоль вторичного амина и 1.04 г (7.5 ммоль) K_2CO_3 кипятят в абс. МеСN при перемешивании в течение 15–20 ч. Охлаждают, осадок отфильтровывают и промывают абс. МеСN. Фильтрат упаривают в вакууме. Остаток растворяют в 5 мл МеОН и добавляют раствор 0.33 г (6.0 ммоль) МеОNа в 3 мл МеОН. Реакционную смесь нагревают до кипения, охлаждают и выдерживают в течение 12 ч при 0 °C. Образовавшийся осадок отфильтровывают, промывают H_2O и перекристаллизовывают из EtOH.
- **7-Алкил-4-амино-7***H***-пирроло[2,3-***d***] пиримидин-6-карбоновые кислоты 6а–l** (общая методика). К суспензии 1.5 ммоль соединения **5а–l** в 10 мл 40% водного ЕtOH добавляют 0.072 г (1.8 ммоль) NaOH и кипятят в течение 2–3 ч. Смесь охлаждают и подкисляют разбавленной HCl (1:1) до рН 5–6. Реакционную смесь выдерживают в течение 12 ч при 0 °C. Выпавший осадок отфильтровывают, промывают H_2O и перекристаллизовывают из ДМФА–EtOH.
- **4-Диметиламино-8-(3-хлорпропил)-8,9-дигидро-6***H*-пиримидо[5',4':4,5]пирроло-[2,1-c][1,4]оксазин-6-он (7a). Суспензию 0.50 г (1.7 ммоль) кислоты 6g в 1 мл SOCl₂ кипятят в течение 3 ч. Реакционную смесь охлаждают, выпавший осадок отфильтровывают, промывают 10 мл PhH и 10 мл EtOH. Полученный продукт перекристаллизовывают из ДМФА.
- 4-(Пиперидин-1-ил)-8-(3-хлорпропил)-8,9-дигидро-6H-пиримидо[5',4':4,5]пир-роло[2,1-c][1,4]оксазин-6-он (7b) получают аналогично из кислоты 6j.
- 4-(Морфолин-4-ил)-8-(3-хлорпропил)-8,9-дигидро-6H-пиримидо[5',4':4,5]пир-роло[2,1-c][1,4]оксазин-6-он (7c) получают аналогично из кислоты 6l.

СПИСОК ЛИТЕРАТУРЫ

- 1. K. Aso, K. Kobayashi, M. Mochizuki, N. Kanzaki, Y. Sako, T. Yano, *Bioorg. Med. Chem. Lett.*, **21**, 2365 (2011).
- 2. L. Wang, S. K. Desmoulin, C. Cherian, L. Polin, K. White, J. Kushner, A. Fulterer, M. H. Chang, S. Mitchell-Ryan, M. Stout, M. F. Romero, Z. Hou, L. H. Matherly, A. Gangjee, *J. Med. Chem.*, **54**, 7150 (2011).
- 3. A. Gangjee, Y. Zhao, L. Lin, S. Raghavan, E. G. Roberts, A. L. Risinger, E. Hamel, S. L. Mooberry, *J. Med. Chem.*, **53**, 8116 (2010).
- P. S. Changelian, M. E. Flanagan, D. J. Ball, C. R. Kent, K. S. Magnuson, W. H. Martin, B. J. Rizzuti, P. S. Sawyer, B. D. Perry, W. H. Brissette, S. P. McCurdy, E. M. Kudlacz, M. J. Conklyn, E. A. Elliott, E. R. Koslov, M. B. Fisher, T. J. Strelevitz, K. Yoon, D. A. Whipple, J. Sun, M. J. Munchhof, J. L. Doty, J. M. Casavant, T. A. Blumenkopf, M. Hines, M. F. Brown, B. M. Lillie, C. Subramanyam, C. Shang-Poa, A. J. Milici, G. E. Beckius, J. D. Moyer, C. Su, T. G. Woodworth, A. S. Gaweco, C. R. Beals, B. H. Littman, D. A. Fisher, J. F. Smith, P. Zagouras, H. A. Magna, M. J. Saltarelli, K. S. Johnson, L. F. Nelms, S. G. Des Etages, L. S. Hayes, T. T. Kawabata, D. Finco-Kent, D. L. Baker, M. Larson, M.-S. Si,

- R. Paniagua, J. Higgins, B. Holm, B. Reitz, Y.-J. Zhou, R. E. Morris, J. J. O'Shea, D. C. Borie, *Science*, **302**, 875 (2003).
- M. E. Flanagan, T. A. Blumenkopf, W. H. Brissette, M. F. Brown, J. M. Casavant, Ch. Shang-Poa, J. L. Doty, E. A. Elliott, M. B. Fisher, M. Hines, C. Kent, E. M. Kudlacz, B. M. Lillie, K. S. Magnuson, S. P. McCurdy, M. J. Munchhof, B. D. Perry, P. S. Sawyer, T. J. Strelevitz, Ch. Subramanyam, J. Sun, D. A. Whipple, P. S. Changelian, J. Med. Chem., 53, 8468 (2010).
- 6. J. J. Caldwell, T. G. Davies, A. Donald, T. McHardy, M. G. Rowlands, G. Wynne Aherne, L. K. Hunter, K. Taylor, R. Ruddle, F. I. Raynaud, M. Verdonk, P. Workman, M. D. Garrett, I. Collins, *J. Med. Chem.*, **51**, 2147 (2008).
- 7. T. McHardy, J. J. Caldwell, K.-M. Cheung, L. J. Hunter, K. Taylor, M. Rowlands, R. Ruddle, A. Henley, A. de Haven Brandon, M. Valenti, T. G. Davies, L. Fazal, L. Seavers, F. I. Raynaud, S. A. Eccles, G. Wynne Aherne, M. D. Garrett, I. Collins, *J. Med. Chem.*, **53**, 2239 (2010).
- 8. S. Tumkevicius, M. Dailide, A. Kaminskas, J. Heterocycl. Chem., 43, 1629 (2006).
- 9. M. P. Clark, K. M. George, R. G. Bookland, J. Chen, S. K. Laughlin, K. D. Thakur, W. Lee, J. R. Davis, E. J. Cabrera, T. A. Brugel, J. C. VanRens, M. J. Laufersweiler, J. A. Maier, M. P. Sabat, A. Golebiowski, V. Easwaran, M. E. Webster, B. De, G. Zhang, *Bioorg. Med. Chem. Lett.*, 17, 1250 (2007).
- 10. О. Б. Смолий, Л. В. Музычка, Е. В. Вервес, *XГС*, 1594 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1285 (2009).]
- 11. A. Gomtsyan, S. Didomenico, C.-H. Lee, M. A. Matulenko, K. Kim, E. A. Kowaluk, C. T. Wismer, J. Mikusa, H. Yu, K. Kohlhass, M. F. Jarvis, S. S. Bhagwat, *J. Med. Chem.*, 45, 3639 (2002).
- 12. J. Clark, M. S. Shahhet, D. Korakas, G. Varvounis, J. Heterocycl. Chem., 30, 1065 (1993).
- 13. О. Б. Рябова, М. И. Евстратова, В. А. Макаров, В. А. Тафеенко, В. Г. Граник, *XГС*, 1564 (2004). [*Chem. Heterocycl. Compd.*, **40**, 1352 (2004).]

Институт биоорганической химии и нефтехимии НАН Украины, ул. Мурманская, 1, Киев 02660, Украина e-mail: smolii@bpci.kiev.ua Поступило 21.12.2011