НОВЫЙ СТЕРЕОСЕЛЕКТИВНЫЙ СИНТЕЗ

ХИРАЛЬНЫХ НЕРАЦЕМИЧЕСКИХ

иис- И транс-3-АЛКИЛ-4-АМИНОПИПЕРИДИНОВ

Ключевые слова: 4-аминопиперидины, цис- и транс-изомеры, стереоселективный синтез.

Мы показали, что не известные ранее оптически чистые *mpaнc*-(3R,4R)-изомеры **4a-d** с диастереомерным избытком de > 99% и диастереомерная пара uuc-(3S,4R), -(3R,4S)-изомеров **3a-d** с de < 71% N-[(1S)-1-фенилэтил]-4-амино-1,3-диалкилпиперидина образуются с выходом 46–90% при последовательном проведении литиирования и алкилирования алкилгало-генидами хиральных иминов **1a,b** с образованием Z-(3S)-3-алкил- и Z-(3R)-3-алкилиминов **2a-d** с последующим их восстановлением натрийборгид-ридом в этаноле. Вся последовательность реакций проводится без выделе-ния промежуточных соединений.

цис-Изомеры **3a**–**d** и *транс*-изомеры **4a**–**d** разделяли с помощью коло-ночной хроматографии на оксиде алюминия, их строение и диастерео-мерную чистоту устанавливали по данным элементного анализа, хромато-масс-спектрометрии и спектров ЯМР ¹H, ¹³C. *цис*- и *транс*-Строение изомеров **3a**–**d** и **4a**–**d** устанавливали анализом вицинальных КССВ прото-нов 3-H и 4-H пиперидинового цикла с помощью одно- и двухмер-ной спектроскопии ЯМР ¹H высокого разрешения. Образование только Z-формы диастереомерных иминов **2a**–**d** подтверждается присутствием в

1a R = Bn, b R = Me; 2-4 a R = Bn, R^1 = Me; b R = Me, R^1 = Me; c R = Me, R^1 = Allyl; d R = Me, R^1 = CH₂OMe

спектрах ЯМР 13 С реакционных проб после окончания процесса алкили-рования сигналов атома $C_{(4)}$ только Z-формы (3S)- и (3R)-изомеров имина $2\mathbf{b}$, появление сигналов E-формы этих изомеров происходит через 10 ч выдерживания этих проб при комнатной температуре, что хорошо согла-суется с данными [1-3]. Ключевыми моментами, определяющими ди-астереоселективность процесса, являются соотношение образующихся Z-(3S)- и Z-(3R)-иминов $2\mathbf{a}$ - \mathbf{d} и последующая предпочтительность гидрид-ной атаки одной из сторон прохиральной связи C=N. Абсолютную конфи-гурацию целевых 4-амино-1,3-диалкилпиперидинов определяли методом стереохимической корреляции в соответствии с конфигурацией (3R,4S)- μ uc-N-[(1S)-1-фенилэтил]-4-амино-1-метил-3-(4-

метилбензил)пиперидина, установленной методом РСА.

Развитый стереоселективный синтез является первым общим подходом к оптически чистым *транс*-изомерам и обогащенным *цис*-изомерам 3-алкил-4-аминопиперидинов, представляющих собой хиральные синтоны для получения анальгетиков нового поколения.

Получение соединений 3a-d и 4a-d на примере иис- и транс-изомеров N-[(1S)-1-фенилэтил]-4-амино-1,3диметилпиперидина (3b, 4b) (общая методика). Реакцию проводят в атмосфере аргона с использованием септа и шприцевой техники. К раствору диэтиламида лития, полученному при -10 °C перемешиванием в течение 10 мин смеси растворов 1.32 г (18 ммоль) HNEt₂ в 20 мл абс. ТГФ и 11.3 мл (18 ммоль) 1.6 н. раствора ВиLi в гексане, добавляют 3 г (13.9 ммоль) (1S)-N-(1-метилпиперидин-4-илиден)-1-фенилэтанамина в 5 мл абс. ТГФ. Реакционную смесь перемешивают 30 мин при -10 °C, охлаждают до -80 °C, добавляют 2.56 г (18 ммоль) МеІ и перемешивают 1 ч при -80 °C. Затем последовательно добавляют 2 мл абсолютного этанола и 0.68 г (18 ммоль) NaBH₄ и перемешивают еще 1 ч при -80 °C и затем реакционную смесь оставляют нагреваться до комнатной температуры при интенсивном перемешивании. Растворители упаривают, остаток разлагают осторожным прибавленим 6 н. НСІ до окончания выделения водорода, прибавляют 10 мл воды и 20% раствором NaOH доводят до pH 12-13, экстрагируют CH₂Cl₂ (2 × 30 мд). Органические экстракты объединяют, сущат безводным Na₂SO₄, растворитель упаривают. Остаток хроматографируют на колонке с Al₂O₃ в системе гексан-ЕtOAc с градиентом от 30:1 до 1:1. Получают 1.42 г (44%) цис-(3S, 4R)- и (3R, 4S)-диастереомерной пары **3b** и 1.45 г (45%) транс-(3R,4R)-диастереомера 4b N-[(1S)-1-фенил-этил]-4-амино-1,3-диметилпиперидина. (3S,4R), (3R,4S)-3b: de 29%, R_f 0.6 (алуфол, гексан–ацетон, 1:1), α (20 – 59° (с 2.0, бензол). Хромато-масс-спектр (время удерживания), m/z ($I_{\text{отн}}$, %): (3R, 4S)-3b: $(12.08 \text{ мин}) \ 232 \ [\text{M}]^+ \ (1); \ 127 \ [\text{M} - \text{CH}(\text{CH}_3)\text{C}_6\text{H}_5]^+ \ (100); \ 105 \ [\text{CH}(\text{CH}_3)\text{C}_6\text{H}_5]^+ \ (49); \ 96 \ (64); \ (3S, 4R) - 3b: \ (12.20 \text{ мин}) \ 232 \ [\text{M}]^+ \ (1);$ 127 [M – CH(CH₃)C₆H₅]⁺ (100); 105 [CH(CH₃)C₆H₅]⁺ (61); 96 (88); (3R,4R)-4b: de > 99%, $R_f 0.2$ (алуфол, гексан – ацетон, 1:1), $[\alpha]_D - 108^{\circ}$ (с 2.0, бензол). Спектр ЯМР ¹H (400 МГц, CDCl₃, TMC), δ , м. д. (J, Гц): 0.89 (3H, д, J = 6.2, 3-CH₃); 1.04 (1H, уш. с, NH); 1.26 (1H, M, J = 4.0, J = 11.0, J = 12.4, J = 12.6, 5a-H); 1.31 (3H, π , J = 6.4, $CH(CH_3)C_6H_5$); 1.49 (1H, π , J = 10.8, J = 10.8, 2a-H); 1.53 (1H, M, J = 2.1, J = 10.8, J = 6.2, J = 12.0, 3a-H); 1.71–1.78 (2H, M, J = 11.8, J = 12.4, J = 3.0, J = 11.0, J = 4.1, J =11.1, 4a-,6a-H); 2.04 (1H, д. псевдо к, J = 3.0, J = 12.7, J = 4.1, J = 2.9, 5e-H); 2.17 (3H, с, 1-CH₃); 2.69 (1H, д. д, J = 7.3, J = 2.1, 2e-H); 2.78(1H, M, J = 4.0, J = 4.1, J = 11.1, J = 1.0, 6e-H); 3.95(1H, K, J = 6.4, CH(CH₃)C₆H₅); 7.19-7.33(5H, M, CH(CH₃)C₆H₅). Спектр ЯМР 13 С (CDCl₃, 100 МГц, ТМС), δ , м. д.: 16.3; 25.7; 31.9; 37.2; 46.1; 54.1; 55.1; 57.3; 63.0; 126.6, 126.6, 128.2, 146.0. Хромато-масс-спектр (время удерживания), m/z ($I_{\rm отн}$, %): (12.09 мин) 232 [M] $^+$ (1); 127 [M–CH(CH $_3$)C $_6$ H $_5$] $^+$ (44); 105 [СН(СН₃)С₆H₅]+ (48), 96 (100). Найдено, %: С 47.10; Н 4.37; N 16.06. С₁₅H₂₄N₃·2C₆H₃N₃O₇ (дипикрат). Вычислено, %: С 46.96; H 4.38; N 16.23.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 01-03-32781a.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. В. Гришина, Е. Л. Гайдарова, А. Э. Алиев, ХГС, 1369 (1992).
- 2. R. R. Fraser, J. Banville, K. L. Dhawan, J. Am. Chem. Soc., 100, 7999 (1978).
- 3. A. I. Meyers, D. R. Williams, G. W. Erickson, S. White, M. Druelinger, J. Am. Chem. Soc., 103, 3081 (1981).

Е. Р. Лукьяненко, А. А. Борисенко, Г. В. Гришина

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия

e-mail: grishina@org.chem.msu.su

XΓC. – 2004. – № 4. – C. 622

Поступило в редакцию 04.02.2004