В. К. Василин, Е. А. Кайгородова, С. И. Фирганга, Г. Д. Крапивин

СИНТЕЗ И СВОЙСТВА ЗАМЕЩЕННЫХ ИЗОКСАЗОЛО[3',4':4,5]ТИЕНО[2,3-*b*]ПИРИДИНОВ

Производные новой гетероциклической системы — изоксазоло[3',4':4,5]тиено[2,3-b]-пиридина — синтезированы последовательными превращениями в три стадии: изомеризацией 2-(2-оксо-2-R-этилтио)-3-пиридилцианидов, полученных алкилированием из замещенных 3-циано-2(1H)-пиридинтионов α -галогенметилкетонами в щелочной среде, в 3-аминотиено[2,3-b]пиридины; диазотированием аминогруппы с последующим нуклеофильным замещением диазониевой группы на азидо-, минуя стадию выделения диазониевых солей, и термолизом образовавшихся азидов.

Ключевые слова: 3-аминотиено[2,3-b]пиридины, 3-азидотиено[2,3-b]пиридины, изок-сазоло[3',4':4,5]тиено[2,3-b]пиридины, 2-(2-оксо-2-R-этилтио)-3-пиридилцианиды, 3-циано-2(1H)-пиридинтионы.

3-Циано-2(1H)-пиридинтионы широко используются для синтеза поликонденсированных гетероароматических систем [1–4]. Соединения, содержащие в своей структуре одновременно пиридиновый, тиофеновый и оксазольный циклы, получены нами ранее [5]. Целью настоящей работы является направленный синтез изоксазоло[3',4':4,5]тиено[2,3-*b*]пиридинов и изучение их физико-химических характеристик.

В качестве исходных веществ для построения трициклической системы были использованы замещенные 3-циано-2(1H)-пиридинтионы 1-3 и α -галогенметилкетоны 4a-g.

Взаимодействие пиридинтионов **1–3** с кетонами **4а–g** проводили в присутствии двукратного количества КОН для связывания выделяющегося галогеноводорода и обеспечения циклизации по Торпу–Циглеру промежуточных продуктов **5** в тиенопиридины **6**. Продукты алкилирования **5**, как показано в наших работах [6, 7], могут быть выделены в индивидуальном состоянии и охарактеризованы, однако в данном случае они не были предметом нашего исследования.

3-Аминотиено[2,3-*b*] пиридины **6** представляют собой ярко-желтые кристаллы, хорошо растворимые в полярных растворителях, не растворимые в воде и алканах, их физико-химические характеристики приведены в табл. 1. Характеристики соединений **6а,d,g**, синтезированных нами ранее, приведены в [6–8].

Для установления структуры тиенопиридинов $\bf 6$ наиболее информативны данные ИК и ЯМР 1 Н спектров (см. табл. 1). Так, в ИК спектрах соединений $\bf 6$ отсутствуют полосы поглощения нитрильной группы в 462

1, 6a, 6d–g $R^1 = Me$, $R^2 = CH_2OMe$; **2, 6b** $R^1 = CH_2OMe$, $R^2 = Me$; **3, 6c** $R^1 = R^2 = Me$; **4a–c, 6a–c** $R^3 = Ph$; **4d, 6d** $R^3 = C_6H_4Br-4$; **4e, 6e** $R^3 = C_6H_3Cl_2-2,4$; **4f, 6f** $R^3 = C_6H_3F_2-2,4$; **4g, 6g** $R^3 = Ad^1$

области 2240—2215 и группы C=S тиоамида при 1215—1220 см $^{-1}$, характерные для соединений **1**—**3**, и появляются две полосы поглощения валентных колебаний связи N—H аминогруппы при 3520—3340 и 3315—3230 см $^{-1}$, а также полоса поглощения сопряженной карбонильной группы при 1605—1590 см $^{-1}$. В спектрах ЯМР 1 H присутствуют сигналы всех протонов, причем уширенный синглет протонов аминогруппы наблюдается в области 7.32—8.17 м. д.

Реакцию диазотирования 3-аминотиенопиридинов **6** проводили в среде уксусной кислоты в присутствии конц. H_2SO_4 , что обеспечивало хорошую растворимость исходных компонентов при достаточно низких температурах (5–7 °C). Низкая основность 2-ацилзамещенных аминотиенопиридинов в реакции диазотирования способствует содержанию в равновесной смеси достаточно большого количества свободного амина, необходимого для эффективного протекания реакции. Полученные в растворах диазониевые соли **7**а–g сразу после освобождения от избытка азотистой кислоты вводили в реакцию нуклеофильного замещения с концентрированным водным раствором азида натрия.

8a, 8d-g R^1 = Me, R^2 = CH_2OMe ; 8b R^1 = CH_2OMe , R^2 = Me; 8c R^1 = R^2 = Me; 8a-c R^3 = Ph; 8d R^3 = C_6H_4Br -4; 8e R^3 = $C_6H_4Cl_2$ -2,4; 7f, 8f R^3 = $C_6H_4F_2$ -2,4; 8g R^3 = Ad^1

Таблица 1 Физико-химические характеристики замещенных 3-аминотиено[2,3-*b*]пиридинов 6а–g

Со-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Т. пл., V , см $^{-1}$ Спектр ЯМР 1 Н, δ , м. д. $(J, \Gamma$ ц)						, Гц)	Вы-	
не-	T - F - J	С	Н	N	°C	NH ₂	C=O	CH ₃ ,	OCH ₃ ,	CH ₂ O,	H _{Py} ,	NH ₂ ,	другие протоны	ход, %
6a	$C_{17}H_{16}N_2O_2S$	65.25 65.36	5.15 5.16	8.94 8.97	137–138	3465 3260	1595	2.66	3.45	4.80	7.01	8.10	7.27–7.90 (5Н, м, Н _{Рh})	92
6b	$C_{17}H_{16}N_2O_2S$	65.20 65.36	5.14 5.16	9.05 8.97	126–127	3480 3305	1590	2.84	3.41	4.53	7.22	7.98	7.50-7.76 (5H, M, H _{Ph})	90
6c	$C_{16}H_{14}N_2OS$	68.20 68.06	5.01 5.00	9.94 9.92	203–204	3520 3310	1590	2.53 2.78	_	_	7.05	7.96	7.50–7.75 (5H, M, H _{Ph})	89
6d	$C_{17}H_{15}BrN_2O_2S$	<u>52.01</u> 52.18	3.81 3.86	7.12 7.16	135–136	3340 3230	1605	2.66	3.45	4.80	7.00	8.17	7.62 (2H, д, ${}^{3}J = 8.1$, 2,6-H _{Ar}), 7.82 (2H, д, ${}^{3}J = 8.1$, 3,5-H _{Ar})	93
6e	$C_{17}H_{14}Cl_2N_2O_2S$	53.64 53.55	3.69 3.70	7.37 7.35	185–186	3400 3298	1595	2.57	3.42	4.86	7.28	8.11	7.50–7.55 (2H, м, 5,6-H _{Ar}), 7.71 (1H, д, ⁴ <i>J</i> = 2.2, 3-H _{Ar})	90
6f	C ₁₇ H ₁₄ F ₂ N ₂ O ₂ S	58.72 58.61	4.05 4.05	8.05 8.04	169–170	3410 3310	1595	2.58	3.43	4.87	7.28	8.07	7.20 (1H, π . π , ${}^{4}J = 2.7$, 3-H _{Ar}), 7.33 (1H, π , ${}^{3}J = 8.6$, ${}^{4}J = 2.7$, 5-H _{Ar}), 7.63 (1H, π , ${}^{3}J = 8.6$, 6-H _{Ar})	92
6g	$C_{21}H_{26}N_2O_2S$	68.22 68.08	7.11 7.07	7.50 7.56	176–177	3370 3250	1600	2.80	3.48	4.63	7.13	7.32	1.79–1.90 (6H, м, H _{Ad}), 2.06–2.20 (9H, м, H _{Ad})	96

Таблица 2

Некоторые физико-химические характеристики 3-азидо-2-ацилтиено[2,3-b]пиридинов 8а-g

Со-	Брутто-	Е	Найдено, Вычислено		Т. разл.,	ИК сі v, c	Вы-	
не- ние	формула	С	Н	N	°C	N_3	C=O	%
8a	C ₁₇ H ₁₄ N ₄ O ₂ S	60.55 60.34	4.19 4.17	16.50 16.56	115–117	2110	1625	74
8b	$C_{17}H_{14}N_4O_2S$	60.39 60.34	4.18 4.17	16.52 16.56	114–115	2110	1625	79
8c	$C_{16}H_{12}N_4OS$	62.39 62.32	3.93 3.92	18.10 18.17	118–119	2115	1630	78
8d	C ₁₇ H ₁₃ BrN ₄ O ₂ S	49.00 48.93	3.16 3.14	13.36 13.43	126–128	2105	1625	75
8e	C ₁₇ H ₁₂ Cl ₂ N ₄ O ₂ S	50.32 50.13	2.98 2.97	13.60 13.69	122–124	2125	1640	83
8f	$C_{17}H_{12}F_2N_4O_2S$	54.70 54.54	3.25 3.23	14.91 14.97	118–119	2125	1640	73
8g	$C_{21}H_{24}N_4O_2S$	63.81 63.61	6.13 6.10	14.06 14.13	120–122	2125	1635	82

Полученные 3-азидо-2-ацилтиено[2,3-b]пиридины (8) — кристаллические вещества от бледно-кремового до светло-желтого цвета, темнеющие на воздухе, температуры разложения которых лежат в диапазоне 114–128 °C (табл. 2).

Структура пиридинов **8** подтверждена данными ИК, ЯМР ¹Н и массспектров (табл. 2, 3, 6). В ИК спектрах продуктов **8** присутствует характеристичная очень интенсивная полоса поглощения азидной группы при $2105-2125~{\rm cm}^{-1}$. Замена аминогруппы на азидную приводит к смещению полос поглощения карбонильной группы в область более высоких частот в среднем на 40 см⁻¹ и составляет $1625-1660~{\rm cm}^{-1}$ (табл. 4). В спектрах ЯМР ¹Н, в сравнении с таковыми для исходных аминотиенопиридинов **6**, отсутствует сигнал протонов аминогруппы; сигнал протона пиридинового цикла смещается в область более слабых полей ($\Delta \delta = 0.25-0.35~{\rm m.~g.}$).

Таблица 3 Спектры ЯМР 1 Н некоторых из синтезированных 3-азидо-2-ацилтиено[2.3-b] пиридинов 8

	ЯМР 1 Н, δ , м. д. (J , Γ ц)									
Соеди- нение	СН ₃ , с	CH ₃ O,	CH ₂ O,	H _{Py} , c	другие протоны					
8a	2.50	3.38	4.76	7.26	7.07-7.62 (5Н, м, НРh)					
8d	2.64	3.51	5.05	7.46	7.80 (2H, д, ${}^{3}J$ = 8.1, 2,6-H _{Ar}), 7.87 (2H, д, ${}^{3}J$ = 8.1, 3,5-H _{Ar})					
8e	2.63	3.50	5.03	7.46	7.63 (1H, д, ${}^{3}J$ = 8.3, 6-H _{Ar}), 7.74 (1H, д. д, ${}^{3}J$ = 8.3, ${}^{4}J$ = 2.2, 5-H _{Ar}), 7.79 (1H, д, ${}^{4}J$ = 2.2, 3-H _{Ar})					
8 f	2.62	3.49	5.03	7.45	7.24–7.90 (3H, м, H _{Ar})					
8g	2.62	3.47	4.98	7.40	1.70–1.82 (6H, м, H _{Ad}), 2.00–2.15 (9H, м, H _{Ad})					

Таблица 4

Физико-химические характеристики соединений 9

Соеди-	Брутто-		<u>Найдено, %</u> ычислено, %	T. 00	Выход,	
нение	формула	С	Н	N	Т. пл., °С	%
9a	C ₁₇ H ₁₄ N ₂ O ₂ S	65.93 65.79	4.50 4.55	9.07 9.03	183–184	81
9b	$C_{17}H_{14}N_2O_2S$	65.95 65.79	4.52 4.55	9.05 9.03	176–177	77
9c	$C_{16}H_{12}N_2OS$	68.66 68.55	4.29 4.31	10.02 9.99	202–203	84
9d	C ₁₇ H ₁₃ BrN ₂ O ₂ S	<u>52.29</u> 52.45	3.36 3.37	7.18 7.20	259–260	83
9e	C ₁₇ H ₁₂ Cl ₂ N ₂ O ₂ S	53.72 53.84	3.18 3.19	7.39 7.39	242–243	72
9f	$C_{17}H_{12}F_2N_2O_2S$	<u>59.00</u> 58.95	3.50 3.49	8.11 8.09	233–234	78
9g	$C_{21}H_{24}N_2O_2S$	68.30 68.45	6.55 6.56	7.58 7.60	191–192	83

Карбонильная группа, находящаяся по соседству с азидной, ускоряет процесс разложения азида при наличии π-сопряжения благодаря образованию переходного состояния, в котором нуклеофильная атака неподеленной пары электронов атома кислорода проходит по атому азота в плоскости молекулы, что способствует образованию изоксазолов [9, 10]. Аналогичная картина наблюдается в случае термолиза 3-азидо-2-ацилтиенопиридинов 8а-g, приводящего к образованию производных новой гетероароматической системы – изоксазоло[3',4':4,5]тиено[2,3-*b*]пиридина 9.

8a, 8d-g, 9a, 9d-g
$$R^1 = Me$$
, $R^2 = CH_2OMe$; 8b, 9b $R^1 = CH_2OMe$, $R^2 = Me$; 8c, 9c $R^1 = R^2 = Me$; 8a-c, 9a-c $R^3 = Ph$; 8d, 9d $R^3 = C_6H_4Br-4$; 8e, 9e $R^3 = C_6H_3Cl_2-2,4$; 8f, 9f $R^3 = C_6H_3F_2-2,4$; 8g, 9g $R^3 = Ad^1$

Реакцию разложения азидов **8а–**g проводили в *м*-ксилоле при температуре кипения растворителя. Процесс завершается примерно при 30 мин кипячения (по данным TCX). Изоксазолотиенопиридины **9а–**g выделены из реакционной смеси с выходами 72–83%.

Продукты **9** – бесцветные кристаллические вещества, не растворимые в воде, алканах, эфире, растворимые в галогеналканах. Некоторые физико-химические характеристики соединений **9** представлены в табл. 4, 5.

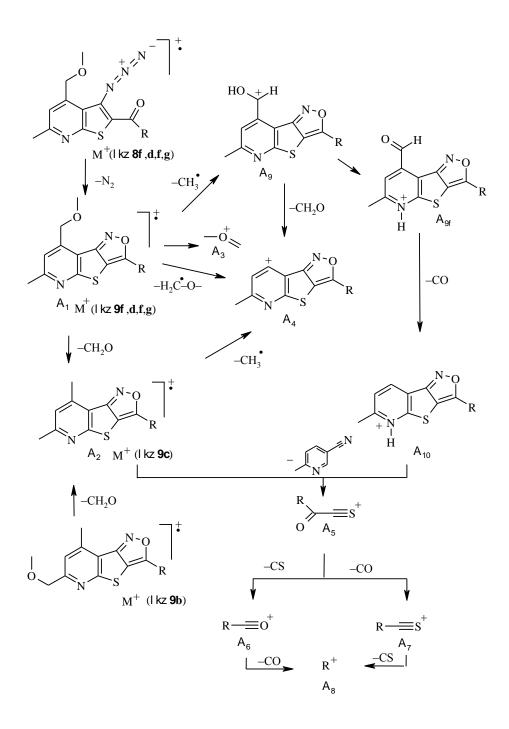
Таблица 5 Спектральные характеристики 3-R-изоксазоло[3'.4':4.5]тиено[2.3-*b*]пиридинов 9

Coe-	УФ спектр,	ИК спектр,		Спектр ЯМР 1 Н, δ , м. д. (J , Γ ц)								
дине- ние	λ_{max} , HM (lg ϵ)	v, cm ⁻¹ , C=C, C=N	-СН ₃ , с	-О-СН ₃ , с	-СH ₂ -О-, с	H _{Py} ,	другие протоны					
9a	212(4.33), 221(4.26) 245(4.19), 254(4.18) 288(4.53), 335(3.90)	1600	2.65	3.54	4.87	7.41	7.45–7.83 (5H, м, H _{Ph})					
9b	212(4.32), 222(4.26) 245(4.13), 257(4.07) 287(4.43), 337(3.87)	1605	2.81	3.46	4.60	7.46	7.51–7.84 (5H, м, H _{Ph})					
9c	_	1600	2.60 2.75	_	_	7.30	7.52–7.83 (5H, м, H _{Ph})					
9d	210(4.12), 227(3.96) 247(3.90), 256(3.93) 292(4.34), 336(4.14)	1605	2.72	3.61	5.01	7.28	7.42 (2H, π , ${}^3J = 8.1$, 3,5-H _{Ar}), 7.71 (2H, π , ${}^3J = 8.1$, 2,6-H _{Ar})					
9e	-	1600	2.64	3.50	4.91	7.46	7.67 (1Н. д. д, ${}^{3}J$ = 8.3, ${}^{4}J$ = 2.2, 5-HAr), 7.89 (1Н, д, ${}^{3}J$ = 8.3, 6-H _{Ar}), 7.95 (1H, д, ${}^{4}J$ = 2.2, 3-H _{Ar})					
9f	207(4.54), 225(4.24) 242(4.16), 253(4.03) 287(4.56), 388(3.89)	1605	2.66	3.52	4.91	7.46	7.33 (1H, $_{\rm H}$, $_{\rm J}$, $_{\rm J}$ = 2.7, 3-H _{Ar}); 7.48 (1H, $_{\rm H}$, $_{\rm J}$, $_{\rm J}$, $_{\rm J}$ = 8.6, $_{\rm J}$ = 2.7, 5-HAr), 8.08 (1H, $_{\rm H}$, $_{\rm J}$, $_{\rm J}$ = 8.6, 6-HAr)					
9g	212(4.02), 221(4.10) 238(4.00), 244(4.06) 275(4.39), 322(3.57)	1603	2.67	3.58	4.93	7.38	1.83 (6H, M, H_{Ad}), 2.24 (9H, M, H_{Ad})					

T а б л и ц а $\,6\,$ Значения $\it m/z~(I_{\rm отн},\,\%)$ основных характеристических ионов в масс-спектрах 3-азидотиено[2.3- $\it b$] пиридинов (8) и изоксазолотиенопиридинов (9)

Соединение	M ⁺ _(азид)	Φ_1	Φ_2	Ф3	Φ_4	Ф5	Φ_6	Φ ₇	Φ8	Ф9	Ф10
8a	338	310	280	45	265	149	105	121	77	295	267
	(1.4)	(5.1)	(9.8)	(13.0)	(-)	(1.0)	(78.0)	(18.5)	(100)	(36.6)	(-)
8d*	417	388	359	45	344	228	183	199	155	373	342
	(-)	(5.5)	(8.0)	(37.8)	(-)	(-)	(100)	(28.7)	(54.5)	(17.8)	(-)
8f	374	346	316	45	301	185	141	157	113	331	303
	(5.4)	(8.0)	(14.1)	(13.6)	(-)	(-)	(100)	(16.6)	(34.4)	(51.3)	(10.2)
8g	396	368	338	45	323	207	163	179	135	353	325
	(4.0)	(30.6)	(22.0)	(14.9)	(-)	(-)	(-)	(-)	(100)	(16.6)	(9.7)
9a	_	310	280	45	265	149	105	121	77	295	267
		(22.1)	(16.5)	(11.5)	(-)	(-)	(81.9)	(17.3)	(100)	(51.2)	(5.1)
9b	_	310	280	45	265	149	105	121	77	_	_
		(31.5)	(100)	(5.4)	(3.0)	(0.4)	(24.4)	(6.8)	(24.1)		
9c	_	280	280	_	265	149	105	121	77	_	_
		(100)	(100)		(2.2)	(0.4)	(18.5)	(7.4)	(25.8)		
9 d *	_	388	359	45	344	228	183	199	155	373	342
		(35.5)	(18.0)	(7.0)	(-)	(-)	(100)	(20.4)	(70.0)	(29.0)	(-)
9f	_	346	316	45	301	185	141	157	113	331	303
		(54.4)	(38.1)	(7.0)	(7.0)	(-)	(100)	(17.6)	(29.8)	(97.0)	(19.8)
9g	_	368	338	45	323	207	163	179	135	353	325
		(64.6)	(49.0)	(13.0)	(3.9)	(-)	(6.7)	(-)	(100)	(27.8)	(17.5)

^{*} Приведены значения m/z фрагментов, содержащих более легкий изотоп брома.


Связь	Гетероцик- лическая система	Изолиро- ванный гетероцикл	Связь	Гетероцик- лическая система	Изолиро- ванный гетероцикл
N(1)-C(1)	1.357	1.347	C(6)-C(7)	1.490	1.377 (Tf) 1.462 (Isox)
C(1)-C(2)	1.416	1.407	C(7)–S	1.667	1.672
C(2)-C(3)	1.398	1.396	S-C(5)	1.736	1.672
C(3)-C(4)	1.398	1.396	C(6)-N(2)	1.341	1.342
C(4)–C(5)	1.435	1.407 (Py) 1.377 (Tf)	N(2)-O(1)	1.320	1.320
C(5)-N(1)	1.343	1.347	O(1)-C(8)	1.428	1.411
C(4)-C(6)	1.438	1.342	C(8)–C(7)	1.381	1.379

Отметим, что набор основных линий в масс-спектрах изоксазолотиенопиридинов $\bf 9}$ и соответствующих им азидов $\bf 8}$ идентичен (табл. 6). Это позволяет утверждать, что экструзия молекулы азота из молекулярного иона азидов сопровождается перегруппировкой в соответствующий ион-радикал изоксазола (Φ_1). Дальнейшие процессы фрагментации $\Phi_{\rm M}^{\ +}$ не зависят от того, каким путем получена эта частица: непосредственно из молекулы изоксазолотиенопиридина или в результате разложения молекулярного иона азида. Основные направления фрагментации молекулярного иона соединений $\bf 8$ и $\bf 9$ представлены на рис. 1.

Одним из приоритетных направлений распада изоксазоло[3',4':4,5]тиено[2,3-b]пиридинов, содержащих метоксиметильный фрагмент, является выброс молекулы формальдегида, сопровождающийся образованием катион-радикала Φ_2 (M^+ для соединения $\bf 9c$). При отрыве метоксиметильной группы образуются катионы Φ_3 ($CH_2=O^+-CH_3$) и Φ_4 . Дальнейшая фрагментация катион-радикала Φ_2 может протекать по двум направлениям: а) отщепление метильного радикала с образованием катиона Φ_4 ; б) диссоциация, приводящая к катиону Φ_5 , продукты распада которого (катионы Φ_6 , Φ_7 , Φ_8) дают самые интенсивные сигналы в масс-спектре.

Другое направление фрагментации M^+ (Φ_1) включает отщепление метильного радикала, перегруппировку образующегося катиона Φ_9 с переносом протона на пиридиновый атом азота (перегруппировочный ион Φ_{9a}) и последующую экструзию молекулы окиси углерода. Фрагментация катиона Φ_{10} приводит к образованию метилникотинонитрила и неустойчивого катиона Φ_5 .

Таким образом, масс-спектральная фрагментация 3-азидо-2-ацилтиено[2,3-*b*]пиридинов **8** и изоксазоло[3',4':4,5]тиено[2,3-*b*]пиридинов **9** протекает по общей схеме. На начальной стадии фрагментации распаду подвергается метоксиметильная группировка молекулы.

 $Puc.\ 1.$ Основные пути фрагментации 3-азидотиено[2,3-b] пиридинов ${\bf 8}$ и изоксазолотиенопиридинов ${\bf 9}$

Согласно квантово-химическому исследованию структуры 6-метил-8-метоксиметил-3-фенилизоксазоло[3',4':4,5]тиено[2,3-*b*]пиридина (**9a**) (метод AM1), сочетание трех разных типов гетероциклов в одной молекуле приводит к значительным изменениям межатомных расстояний в ароматической системе по сравнению с соответствующими связями изолированных циклов. Интересной особенностью является то, что связи, общие для гетероциклов, становятся более длинными в сравнении с таковыми для изолированных систем (рис. 2, табл. 7).

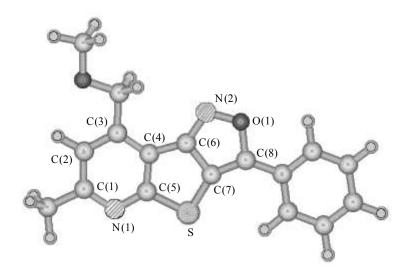


Рис. 2. Проекция пространственной структуры соединения 8а, полученная методом АМ1

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры записаны на приборах Specord UV-vis и Specord M-40 в диапазоне 200–700 нм в кварцевых кюветах толщиной 10 мм в этаноле, ИК спектры — на спектрометре Specord 71 IR-20 в области $3600-650~{\rm cm}^{-1}$, призмы NaCl, KBr. Кристаллические вещества записывали в виде взвеси в вазелиновом масле. Спектры ЯМР 1 Н регистрировали на приборе Bruker WM-250 (250 МГц) в ДМСО- 4 6, внутренний стандарт ГМДС. Масс-спектры получены на приборе Varian CH-6 при ионизирующем напряжении 70 эВ и температурах 5 0–180 °C.

3-Амино-2-бензоил-4-метил-6-метоксиметилтиено[2,3-*b***]пиридин (6b). К суспензии 1.94 г (0.01 моль) 3-циано-2(1H)-пиридинтиона 2** в 20 мл ДМФА прибавляют 5.6 мл 10% водного раствора КОН (0.01 моль). Затем при перемешивании вносят 1.99 г (0.01 моль) фенацилбромида, выдерживают 10–15 мин при комнатной температуре. Далее прибавляют еще 5.6 мл 10% водного раствора КОН и перемешивают реакционную смесь в течение 20 мин, после чего образовавшийся осадок отделяют, промывают последовательно водой и смесью этанол—вода, 1:1, сушат на воздухе. Фильтрат разбавляют двукратным количеством воды, выпавший хлопьевидный осадок отделяют, промывают водой, перекристаллизовывают из этанола. Аналогично получают соединения **6a, 6c–g**.

3-Азидо-2-бензоил-6-метил-4-метоксиметилтиено[2,3-b]пиридин (8a). К раствору 1.69 г (0.005 моль) вещества **6a** в 12 мл ледяной уксусной кислоты добавляют 0.6 мл конц. H_2SO_4 . Охлаждают реакционную смесь на ледяной бане до +5-+8 °C и медленно, небольшими порциями, вносят раствор 0.48 г (0.007 моль) нитрита натрия в 2 мл воды. Перемешивают в течение 20 мин, затем нейтрализуют избыток азотистой кислоты мочевиной (контроль по иодкрахмальной бумаге) и по каплям в течение 10 мин вводят раствор 0.46 г (0.007 моль) азида натрия в 2 мл воды. Продолжают перемешивание в течение часа. Затем реакционную массу медленно выливают в воду с тонко измельченным

льдом. Выделившийся осадок азида **6a** отделяют, промывают на фильтре холодной водой до нейтральной реакции промывных вод, сушат над концентрированной серной кислотой. Аналогично получают 3-азидо-2-ацилтиено[2,3-b] пиридины **8b**–**g**.

6-Метил-8-метоксиметил-3-фенилизоксазоло[3',4':4,5]тиено[2,3-*b***]пиридин (9а).** Кипятят 1.69 г (0.005 моль) соединения **8а** в 30 мл *м*-ксилола в течение 30 мин. После этого раствор охлаждают до комнатной температуры, разбавляют 40 мл гексана (петролейного эфира). Выпавшие кристаллы изоксазолотиенопиридина отделяют, промывают гексаном, сушат на воздухе. Очищают перекристаллизацией из ДМФА. Соединения **9b–g** получают по аналогичной методике.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. А. Артемов, В. А. Иванов, А. В. Кошкаров, А. М. Шестопалов, В. П. Литвинов, *XTC*, 104 (1998).
- 2. В. А. Артемов, А. М. Шестопалов, В. П. Литвинов, ХГС, 512 (1996).
- 3. В. А. Иванов, В. А. Артемов, Л. А. Родиновская, А. М. Шестопалов, В. И. Нестеров, Ю. Т. Стручков, В. П. Литвинов, *XTC*, 115 (1996).
- 4. Е. А. Кайгородова, Л. Д. Конюшкин, Е. Ю. Камбулов, Г. Д. Крапивин, *XTC*, 1024 (1997).
- 5. B. К. Василин, Е. А. Кайгородова, Г. Д. Крапивин, *XГС*, 565 (2000).
- 6. Е. А. Кайгородова, Л. Д. Конюшкин, С. Н. Михайличенко, В. К. Василин, В. Г. Кульневич, *XГС*, 1432 (1996).
- 7. Е. А. Кайгородова, Л. Д. Конюшкин, С. Н. Михайличенко, В. К. Василин, В. Г. Кульневич, *XTC*, 337 (1999).
- 8. С. Н. Михайличенко, Н. Я. Губанова, Е. А. Кайгородова, В. А. Ковардаков, Л. Г. Богачук, В. Н. Заплишный, *Изв. ВУЗов, Хим. и хим. технология*, **41**, вып. 1, 63 (1998).
- 9. L. K. Dyall, N. J. Dickson, Austral. J. Chem., 33, 91 (1980).
- 10. Т. Джилкрист, Химия гетероциклических соединений, Мир, Москва, 1996, 378.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru

Поступило в редакцию 05.08.2001

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 119991