М. В. Вовк, А. В. Больбут, В. И. Бойко, В. В. Пироженко, А. Н. Чернега, А. А. Толмачев

СИНТЕЗ 2-ТРИГАЛОГЕНМЕТИЛ-3,4-ДИГИДРОТИЕНО[2,3-d]-ПИРИМИДИН-4-ОНОВ

N-(1-Хлор-2,2,2-тригалогенэтилиден)-О-метилуретаны при комнатной температуре реагируют с 2-аминотиофенами с образованием N-(2-тиенил)-N-(метоксикарбонил)тригалогенацетамидинов, которые при нагревании в кипящем толуоле циклизуются в 2-тригалогенметил-3,4-дигидротиено[2,3-d]пиримидин-4-оны.

Ключевые слова: 2-аминотиофены, N-(2-тиенил)-N'-метоксикарбониламидины, 2-тригалогенметил-3,4-дигидротиено[2,3-d]пиримидин-4-оны, N-(1-хлор-2,2,2-тригалогенэтилиден)-О-метилуретаны, внутримолекулярная циклизация.

Среди производных тиено[2,3-d]пиримидинов обнаружены вещества, обладающие антивирусной, фунгицидной и инсектицидной активностью [1], антибактериальными и антипаразитическими свойствами [2], антигипертензивным [3], противоопухолевым [4] и антигистаминным действием [5]. Для синтеза указанной конденсированной гетероциклической системы наиболее часто используют два метода. Первый включает аннелирование 6-хлор-5-формил(циано)пиримидинов 2-меркаптоацетатами [6, 7]. Второй основан на конденсации 2-амино-3-алкоксикарбонилтиофенов с амидами [8] и гуанидинами [9] и оказывается эффективным для получения 3,4-ди- Γ идро[2,3-d]пиримидин-4-онов, которые, в свою очередь, являются базовыми соединениями для функционализации положения 4 разнообразными нуклеофильными группировками [10, 11]. 3,4-Дигидротиено[2,3-а]пиримидин-4-оны с тригалогенметильными заместителями в положении 2 до настоящего времени в литературе не описаны, хотя следует ожидать, что введение трифторметильной группы в пиримидиновое ядро должно повышать липофильные свойства молекулы [12].

Нами предложен новый удобный подход к синтезу такого типа соединений, основанный на взаимодействии N-(1-хлор-2,2,2-тригалоген-этилиден)-О-метилуретанов **1a,b** [13] с 2-аминотиофенами **2a,b**. Детальное исследование найденной реакции позволило установить, что, несмотря на бифильный характер реагентов, она является региоселективной и при комнатной температуре протекает по схеме N-иминоалкилирования аминотиофенов с образованием N-(2-тиенил)-N'-(метоксикарбонил)тригалогенацетамидинов **3a-d** (табл. 1). Строение последних согласуется с результатами измерений спектров ЯМР ¹Н (табл. 2), в которых для соединений **3a,b** в диапазонах 7.03–7.15 и 7.68–7.70 м. д. имеются дублеты С₍₃₎Н и С₍₄₎Н протонов, а для соединений **3c,d** в области 6.91–7.04 — синглеты

 $C_{(3)}$ Н протона тиофенового цикла. ИК спектры характеризуются полосами поглощения связей N–H (3230–3300), C=O (1690–1750), а для соединений **3b,d** также C=N (1650 см⁻¹).

Соединения $\bf 3a-d$ при нагревании в кипящем толуоле (3 ч) подвергаются внутримолекулярной циклизации в тиено[2,3-d]пиримидин-4-оны $\bf 4a-d$ (см. табл. 1) за счет электрофильной атаки карбонильной группы по π -электронообогащенному атому $C_{(3)}$ тиофенового кольца. Фактором, определяющим процесс циклизации, по-видимому, является повышенная электрофильность карбонильной группы, обусловленная в значительной степени влиянием тригалогенамидинового фрагмента. В случае же аминаля $\bf 3e$ с менее электрофильной группой $\bf C=O$, полученного из $\bf N$ -этилиденуретана $\bf 1c$ [14] и аминотиофена $\bf 2b$, ни при указанной на схеме, ни при более высокой (140 °C) температуре образование соединения $\bf 4e$ не наблюдалось.

$$Hlg_{3}C \longrightarrow R \longrightarrow R$$

$$1a,b \longrightarrow R$$

$$20 \circ C \longrightarrow R$$

$$-HCl$$

$$1a,b \longrightarrow R$$

$$2a,b \longrightarrow R$$

$$Hlg_{3}C \longrightarrow R$$

$$Hlg_{4}C \longrightarrow R$$

$$Hlg_{4}$$

1 a Hlg = F, b Hlg = Cl; **2** a R = H, R' = Me; b R = Me, R' = Et; **3**, **4** a Hlg = F, R = H, R' = Me; b Hlg = Cl, R = H, R' = Me; c Hlg = F, R = Me, R' = Et; d Hlg = Cl, R = Me, R' = Et

$$F_{3}C \longrightarrow N-C-OMe + 2b \xrightarrow{20 \circ C} \longrightarrow MeO \xrightarrow{NH} \longrightarrow Me$$

$$1c \longrightarrow F_{3}C \longrightarrow NH \longrightarrow S \longrightarrow C(O)OEt$$

$$F_{3}C \longrightarrow NH \longrightarrow S \longrightarrow C(O)OEt$$

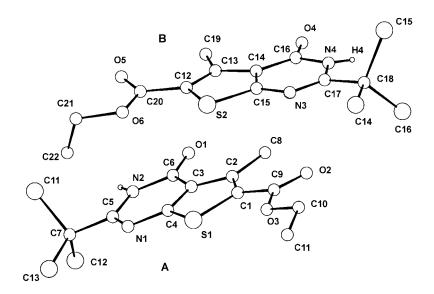
$$F_{4}C \longrightarrow NH \longrightarrow S \longrightarrow C(O)OEt$$

 $\label{eq:Tadia} T\ a\ б\ \pi\ u\ ц\ a\ 1$ Характеристики синтезированных соединений 3a—d, 4a—d

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %		Т. пл., ℃	Выход, %
нение	формула	N	Hlg		
3 a	$C_{10}H_9F_3N_2O_4S$	9.29 9.03	17.84 18.37	110–111	78
3b	C ₁₀ H ₉ Cl ₃ N ₂ O ₄ S	7.60 7.79	29.23 29.58	107–108	73
3c	$C_{12}H_{13}F_3N_2O_4S$	8.45 8.28	17.07 16.85	118–119	84
3d	$C_{12}H_{13}Cl_3N_2O_4S$	7.58 7.23	27.89 27.44	97–98	80
4a	$C_9H_5F_3N_2O_3S$	9 <u>.72</u> 10.07	20.63 20.49	227–228	76
4b	C ₉ H ₅ Cl ₃ N ₂ O ₃ S	8.85 8.55	32.74 32.47	238–239	79
4c	$C_{11}H_9F_3N_2O_3S$	8.86 9.15	18.97 18.61	159–160	74
4d	$C_{11}H_9Cl_3N_2O_3S$	8.17 7.88	30.27 29.91	220–221	77

Таблица 2 Спектральные характеристики соединений 3a-d, 4a-d

Соеди-	ИК спектр, v, см ⁻¹		Спектры ЯМР 1 Н, δ , м. д., КССВ (J , Γ ц)	Спектры ЯМР ¹⁹ F,
		CO		δ, м. д.
3a	3285	1690 1730	3.76 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃); 7.03 (1H, д, <i>J</i> = 3.8, CH); 7.18 (1H, c, NH); 7.70 (1H, д, <i>J</i> = 3.8, CH)	72.3
3b	3230	1650* 1700 1735	3.73 (3H, c, OCH ₃); 3.89 (3H, c, OCH ₃); 7.19 (2H, м, CH + NH); 7.68 (1H, д, <i>J</i> = 3.9, CH)	
3c	3250	1700 1750	1.37 (3H, т, <i>J</i> = 7.1, CH ₃); 2.51 (3H, с, CH ₃); 3.78 (3H, с, OCH ₃); 4.32 (2H, кв, <i>J</i> = 7.1, OCH ₂); 6.91 (1H, с, C ₍₃₎ H); 7.08 (1H, с, NH)	71.8
3d	3300	1650* 1700 1730	1.36 (3H, т, <i>J</i> = 7.2, CH ₃); 2.51 (3H, с, CH ₃); 3.74 (3H, с, OCH ₃); 4.32 (2H, кв, <i>J</i> = 7.2, OCH ₂); 7.04 (1H, с, C ₍₃₎ H); 7.08 (1H, с, NH)	
4a	3110	1700 1735	3.90 (3H, c, OCH ₃); 8.04 (1H, c, C ₍₅₎ H); 14.5 (1H, уш. c, NH)	69.0
4b	3200	1700 1740	3.90 (3H, c, OCH ₃); 8.05 (1H, c, C ₍₅₎ H); 14.0 (1H, уш. c, NH)	
4c	3200	1675 1720	1.33 (3H, т, <i>J</i> = 7.1, CH ₃); 2.83 (3H, с, CH ₃); 4.35 (2H, кв, <i>J</i> = 7.1, OCH ₂); 13.8 (1H, уш. с, NH)	68.9
4d	3200	1720 1735	1.37 (3H, т, <i>J</i> = 7.1, CH ₃); 2.86 (3H, с, CH ₃); 4.33 (2H, кв, <i>J</i> = 7.1, OCH ₂); 13.3 (1H, уш. с, NH)	


^{*} v_{C=N}.

Данные ИК, ЯМР ¹H, ¹⁹F (табл. 2) и ¹³C (табл. 3) спектров подтверждают циклическую структуру синтезированых соединений, однако не дают однозначного ответа о местоположении протона в амидиновой системе связей, на которое может существенно влиять сильно акцепторная тригалогенметильная группа. По этой причине нами было проведено рентгеноструктурное исследование соединения **4d** и установлено, что в кристалле протон находится у атома азота в положении 3, т. е. целевые соединения имеют структуру 3,4-дигидротиено[2,3-*d*]пиримидин-4-онов.

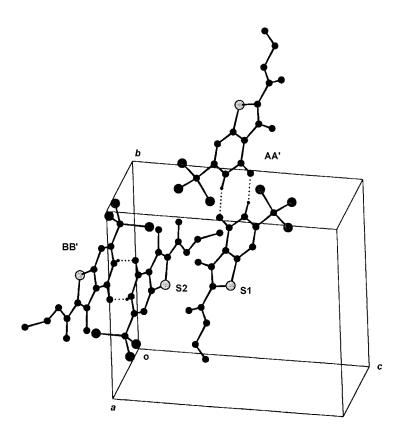

Обнаружено, что в кристалле соединения 4d имеются две симметрически независимые молекулы (А и В), обладающие весьма схожими геометрическими параметрами. Общий вид этих молекул показан на рис.1, основные длины связей и валентные углы приведены в табл. 4. Центральная бициклическая система в молекулах А и В фактически планарна: отклонения атомов от среднеквадратичной плоскости не превышают 0.039 и 0.023 Å соответственно, двугранный угол между 6- и 5-членным циклами составляет лишь 2.4° и 1.2°. Геометрические параметры бициклической системы свидетельствуют о существенной делокализации электронной плотности [15, 16]. Экзоциклическая система связей С-С(=О)-О $(C_{(1)}-C_{(9)}(=O_{(2)})-O_{(3)}$ в молекуле **A** и $C_{(12)}-C_{(20)}(=O_{(5)})-O_{(6)}$ в молекуле **B**) лежит в плоскости бицикла: соответствующие двугранные углы составляют 3.1° и 8.2°. В кристалле соединения 4d посредством относительно прочной [17] водородной связи N-H···О молекулы объединены в центросимметричные димеры АА' и ВВ' (рис. 2). Основные геометрические параметры этих связей H следующие: $N_{(2)} \cdots O_{(1)}$ 2.759(7), $H_{(2)} \cdots O_{(1)}$ 1.86(6), $N_{(2)}-H_{(2)}$ 0.91(6) Å, $N_{(2)}H_{(2)}O_{(1)}$ 169(4)°; $N_{(4)}\cdots O_{(4)}$ 2.816(6), $H_{(4)}\cdots O_{(4)}$ 2.02(5), $N_{(4)}-H_{(4)} 0.82(5) \text{ Å}, N_{(4)}H_{(4)}O_{(4)} 163(4)^{\circ}.$

Таблица 3 Спектры ЯМР ¹³С, δ, м. д., КССВ (*J*, Гц) соединений 4а–d

Соеди- нение	R	OR'	CHIg ₃	C _(4a)	C ₍₅₎
4a	-	52.88	118.02 (кв, ${}^{1}J_{\text{C-F}} = 276.1$)	124.47	126.89
4b	_	52.88	92.98	122.76	126.92
4c	14.52	61.36 (OCH ₂) 13.92 (CH ₃)	117.87 (кв, ¹ J _{C-F} =276.3)	123.75	142.21
4d	14.61	61.39 (OCH ₂) 14.00 (CH ₃)	92.46	124.76	142.24
Соеди-	C ₍₆₎	C ₍₂₎	C (7a)	C=O	C (4)
4a	131.53	$^{147.13}$ (кв, $^{2}J_{\text{C-F}} = 37.8$)	159.86	161.14	165.36
4b	131.42	155.92	160.36	161.20	165.22
4c	124.66	$^{146.41}$ (kb, $^{2}J_{\text{C-F}} = 37.6$)	160.11	161.35	163.69
4d	122.31	154.88	160.49	161.49	163.46

Рис. 1. Общий вид двух симметрически независимых молекул **A** и **B** соединения **4d** (из атомов водорода показаны лишь атомы $H_{(2)}$ и $H_{(4)}$)

Рис. 2. Фрагмент кристаллической упаковки соединения **4d**. Пунктиром обозначены межмолекулярные водородные связи $N-H\cdots O$

 $\begin{tabular}{ll} T а блица & 4 \\ \begin{tabular}{ll} O сновные длины связей (d) и валентные углы (ω) в молекуле соединения 4d \\ \end{tabular}$

Связь	d, Å	Угол	ω, град.
$S_{(1)}-C_{(1)}$	1.745(6)	$C_{(1)}$ – $S_{(1)}$ – $C_{(4)}$	90.7(3)
$S_{(1)}$ – $C_{(4)}$	1.690(6)	$C_{(12)}-S_{(2)}-C_{(15)}$	90.2(2)
$S_{(2)}-C_{(12)}$	1.721(5)	$C_{(4)}-N_{(1)}-C_{(5)}$	114.9(5)
$S_{(2)}-C_{(15)}$	1.714(5)	$C_{(5)}-N_{(2)}-C_{(6)}$	123.7(5)
$O_{(1)}$ – $C_{(6)}$	1.226(7)	$C_{(15)}-N_{(3)}-C_{(17)}$	113.8(5)
$O_{(4)}$ – $C_{(16)}$	1.235(6)	$C_{(16)}-N_{(4)}-C_{(17)}$	124.3(5)
$N_{(1)}$ – $C_{(4)}$	1.384(7)	$S_{(1)}-C_{(1)}-C_{(2)}$	113.4(4)
$N_{(1)}$ – $C_{(5)}$	1.279(7)	$C_{(1)}-C_{(2)}-C_{(3)}$	110.6(5)
$N_{(2)}$ – $C_{(5)}$	1.364(7)	$C_{(2)}-C_{(3)}-C_{(4)}$	112.7(5)
$N_{(2)}$ – $C_{(6)}$	1.385(8)	$C_{(4)}$ – $C_{(3)}$ – $C_{(6)}$	118.5(5)
$N_{(3)}$ – $C_{(15)}$	1.356(6)	$S_{(1)}-C_{(4)}-C_{(3)}$	112.7(4)
$N_{(3)}$ – $C_{(17)}$	1.290(7)	$N_{(1)}$ – $C_{(4)}$ – $C_{(3)}$	124.9(5)
$N_{(4)}$ – $C_{(16)}$	1.377(6)	$N_{(1)}-C_{(5)}-N_{(2)}$	124.6(5)
$N_{(4)}$ – $C_{(17)}$	1.354(7)	$N_{(2)}-C_{(6)}-C_{(3)}$	113.4(5)
$C_{(1)}$ – $C_{(2)}$	1.354(8)	$S_{(2)}-C_{(12)}-C_{(13)}$	114.6(4)
$C_{(2)}$ – $C_{(3)}$	1.433(8)	$C_{(12)}$ – $C_{(13)}$ – $C_{(14)}$	109.7(4)
$C_{(3)}$ – $C_{(4)}$	1.383(8)	$C_{(13)}$ – $C_{(14)}$ – $C_{(15)}$	113.6(5)
$C_{(3)}$ – $C_{(6)}$	1.430(8)	$C_{(15)}$ – $C_{(14)}$ – $C_{(16)}$	116.8(4)
$C_{(12)}$ – $C_{(13)}$	1.365(8)	$S_{(2)}-C_{(15)}-C_{(14)}$	112.0(4)
$C_{(13)}-C_{(14)}$	1.423(7)	N ₍₃₎ -C ₍₁₅₎ -C ₍₁₄₎	127.4(5)
$C_{(14)}-C_{(15)}$	1.379(7)	N ₍₄₎ -C ₍₁₆₎ -C ₍₁₄₎	113.3(5)
$C_{(14)}$ – $C_{(16)}$	1.437(8)	N ₍₃₎ -C ₍₁₇₎ -N ₍₄₎	124.3(5)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 в таблетках KBr. Спектры ЯМР 1 H, 13 C и 19 F получены на спектрометре Varian VXR-300 (300, 75.5 и 282 МГц соответственно) в растворах CDCl₃ для соединений **3a–d**, (CD₃)₂SO для соединений **4a–d**, внутренние стандарты TMC (1 H, 13 C) и CCl₃F (19 F).

Рентгеноструктурное исследование монокристалла соединения 4d с линейными размерами $0.28 \times 0.38 \times 0.50$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4 (Си K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{\max} = 70^{\circ}$, сегмент сферы $0 \le h \le 9$, $-13 \le k \le 13$, $-17 \le l \le 17$).

Всего было собрано 5105 отражений, из которых 4782 являются симметрически независимыми (*R*-фактор усреднения 0.051). Кристаллы соединения 4d триклинные, $a = 10.615(2), b = 11.213(3), c = 14.440(2) \text{ Å}, \alpha = 95.67(2), \beta = 111.39(1), \gamma = 107.23(2)^{\circ},$ $V = 1486.5(6) \text{ Å}^3, \text{ M} = 369.63, Z = 4, d_{\text{выч}} = 1.69 \text{ г/см}^3, \mu = 73.02 \text{ см}^{-1}, \text{ пространственная}$ группа P1 (N 2). Учет поглощения в кристалле был выполнен по методу азимутального сканирования [18]. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [19]. В уточнении использовано 3117 отражений с $I > 3\sigma(I)$ (369 уточняемых параметров, число отражений на параметр 8.4). Все атомы водорода выявлены из разностного синтеза электронной плотности и включены в расчет с фиксированными позиционными и тепловыми параметрами, лишь атомы $H_{(2)}$ и $H_{(4)}$ были уточнены изотропно. При уточнении использована весовая схема Чебышева [20] с параметрами 2.75, -0.74, 0.87 и -1.08. Окончательные значения факторов расходимости R = 0.069 и $R_{\rm W} = 0.073$, GOF = 1.090. Остаточная электронная плотность из разностного ряда Фурье 0.45 и -0.48 е/Å 3 . Полный набор кристаллографических данных депонирован в Кембриджском банке структурных данных (№ 165118).

N-(2-Тиенил)-N'-(метоксикарбонил)тригалогенацетамидины (3a-d). К раствору 5.0 ммоль N-этилиденуретана **1a,b** в 10 мл бензола прибавляют при перемешивании при комнатной температуре раствор 5.0 ммоль аминотиофена **2a,b** и 0.5 г (5.0 ммоль) три-этиламина в 10 мл бензола. После 2 ч перемешивания реакционную смесь нагревают до кипения и отфильтровывают осадок солянокислого триэтиламина, из фильтрата при охлаждении выпадают целевые продукты.

1-(N-Метоксикарбониламино)-1-(4-метил-5-этоксикарбонил-2-тиениламино)-1-фенил-2,2,2-трифторэтан (3e). К раствору 1.15 г (5.0 ммоль) N-этилиденуретана **1c** в 10 мл бензола прибавляют 0.93 г (5.0 ммоль) аминотиофена **2b**, оставляют при комнатной температуре на 12 ч, а затем кипятят 1 ч. Остаток после упаривания растворителя кристаллизуют из смеси гексан—бензол, 1:3. Выход 72%, т. пл. 150 °С. ИК спектр, v, см⁻¹: 1720–1760 (С=О), 3300, 3340 (NH). Спектр ЯМР ¹H, δ , м. д. (J, Γ u): 1.24 (3H, τ , J = 7.2, CH₃); 2.29 (3H, c, CH₃); 3.53 (3H, c, CH₃); 4.13 (2H, кв, J = 7.2, CH₂O); 6.09 (1H, c, CH); 7.42 (3H, м, H_{аром}); 7.66 (2H, м, H_{аром}); 7.88 (1H, c, NH); 8.59 (1H, c, NH). Спектр ЯМР ¹⁹F, δ , м. д.: –78.1 (с). Найдено, %: C 52.13; H 4.72; N 6.58. $C_{18}H_{19}F_3N_2O_4S$. Вычислено, %: C 51.92; H 4.60; N 6.73.

2-Тригалогенметил-3,4-дигидротиено[2,3-*d*] **пиримидин-4-оны (4a–d).** Раствор 3.0 ммоль соединения **3a–d** в 10 мл толуола нагревают при температуре кипения в течение 3 ч. Выпавший после охлаждения продукт отфильтровывают и кристаллизуют из этанола.

СПИСОК ЛИТЕРАТУРЫ

- J. M. Cox, J. H. Marsden, R. A. Burrell, N. S. Elmure, Ger. Offen Pat. 2654090; Chem. Abstr., 87, 128906 (1977).
- 2. P. Schmidt, K. Eichenberger, Ger. Offen Pat. 2060968; Chem. Abstr., 75, 88 638 (1971).
- 3. J. B. Press, R. K. Russell, US Pat. 4670560; Chem. Abstr., 107, 115604 (1987).
- 4. V. D. Patil, D. S. Wise, L. B. B. Townsend, J. Chem. Soc. Perkin Trans. 1, 1853 (1980).
- F. F. Janssens, L. E. J. Kennis, J. F. Hens, J. L. G. Torremans, G. S. M. Diels, US Pat. 4695575; Chem. Abstr., 109, 37821 (1988).
- 6. H. Kosaku, S. Mitsuomi, S. Shigeo, J. Heterocycl. Chem., 27, 717 (1990).
- 7. J. Clark, M. S. Shanhet, J. Heterocycl. Chem., 30, 1065 (1993).
- 8. В. И. Шведов, В. К. Рыжкова, А. И. Гринев, ХГС, 459 (1967).
- 9. H. Link, Helv. Chim. Acta, 73, 797 (1990).
- 10. А. И. Гринев, Н. В. Каплина, ХГС, 925 (1985).
- 11. R. Boehm, R. Rech, G. Houbold, E. Hanniy, *Pharmazie*, **41**, 23 (1986).
- 12. H. A. McClinton, Tetrahedron, 48, 6555 (1992).
- 13. Л. И. Самарай, В. И. Бойко, М. Н. Герцюк, *ЖОрХ*, **26**, 745 (1990).
- В. Н. Фетюхин, А. С. Корецкий, В. И. Горбатенко, Л. И. Самарай, ЖОрХ, 13, 271 (1977).
- 15. M. Burke-Laing, M. Laing, Acta Crystallogr., **B32**, 3216 (1976).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1 (1987).
- 17. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 18. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 19. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*, Issue 10, Chemical Crystallography Laboratory, Univ. Oxford, 1996.
- 20. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Институт органической химии HAH Украины, Киев 02094 e-mail: hetfos@ukrpack.net e-mail: mvovk@i.com.ua Поступило в редакцию 26.06.2001