Н. Г. Лукьяненко, Т. И. Кириченко, С. В. Щербаков

СИНТЕЗ ЛАРИАТНЫХ ДИАЗАКРАУН-ЭФИРОВ С ТЕРМИНАЛЬНЫМИ АМИНОГРУППАМИ В БОКОВЫХ ЦЕПЯХ

Взаимодействие диазакраун-эфиров с N-(галогеналкил)- и N-(галогеноксиэтил)фталимидами приводит к соответствующим N,N'-замещенным диазакраун-эфирам. Гидразинолизом последних получают диазакраун-эфиры с терминальными первичными аминогруппами в боковой цепи. Их восстановительное метилирование действием формальдегида в муравьиной кислоте дает диметиламинопроизводные. Показано наличие лариатного эффекта при взаимодействии полученных соединений с пикратами щелочных и щелочноземельных металлов.

Ключевые слова: диазакраун-эфиры, N,N'-замещенные, терминальные аминогруппы, лариатный эффект.

Краун-эфиры с функциональными донорными группами в боковой цепи (лариатные краун-эфиры) во многих случаях образуют более прочные комплексы с катионами металлов в сравнении с их незамещенными аналогами, проявляя при этом высокую селективность комплексообразования [1-3]. Это, как правило, обусловлено участием в комплексообразовании с катионом донорных групп боковой цепи, которые при определенных структурных соответствиях могут взаимодействовать с находящимся в полости краун-эфира катионом с аксиальных позиций (лариатный эффект), создавая вокруг него трехмерное лигандное окружение [4-6]. Одним из факторов, определяющих комплексообразующие свойства лариатных краун-эфиров, является природа донорных групп боковой цепи. Среди большого массива синтезированных лариатных азакраун-эфиров наименее изучены соединения, содержащие в боковой цепи концевые аминогруппы [4]. Такие соединения образуют устойчивые комплексы как с жесткими ионами щелочных и щелочно-земельных, так и с мягкими ионами переходных и некоторых других металлов [7–10]. В связи с этим нами синтезированы новые замещенные диазакраун-эфиры с терминальными аминогруппами в боковой цепи и на качественном уровне оценено проявление лариатного эффекта при взаимодействии их с пикратами щелочных и щелочно-земельных металлов.

Лариатные азакраун-эфиры с аминогруппами в боковой цепи обычно получают ацилированием азакраун-эфиров активированными производными α-аминокислот либо алкилированием N,N-диалкиламидами α-галогенкислот с последующим восстановлением полученных соединений алюмогидридом лития либо дибораном [7, 8], алкилированием первичных аминов или вторичных диаминов соответствующими дигалогенидами или дитозилатами [11, 12], а также присоединением азакраун-эфиров к акрило-

нитрилу и восстановлением нитрильной группы [10]. Предложен интересный способ получения лариатных аза- и диазакраун-эфиров на основе соединений с бензотриазольной группой в боковой цепи [6]. Все перечисленные методы не являются общими, так как не позволяют вводить боковые группы с произвольной длиной связки и природой функциональных групп в них.

Мы предлагаем путь синтеза, который, на наш взгляд, является наиболее рациональным и общим способом получения замещенных азакраунэфиров с терминальными аминогруппами в боковой цепи.

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

1, 3–5 a n = 1, b n = 2; 2a,b–5a,b $\mathbf{m} = 0$; 2c–5c m = 1, Y = (CH₂)₂; 2d–5d m = 1, Y = 0; 2e–5e m = 2, Y = 0; 2a X = Br, b–d X = Cl, e–g X = I

Синтез N,N'-замещенных диазакраун-эфиров $3\mathbf{a}$ — \mathbf{e} осуществляли взаимодействием диаза-15-краун-5 ($1\mathbf{a}$) или диаза-18-краун-6 ($1\mathbf{b}$) с N-(2-бром-этил)- ($2\mathbf{a}$), N-(6-иодгексил)- ($2\mathbf{e}$), N-[2-(2-иодэтокси)этил]- ($2\mathbf{f}$) и N-{2-[2-(иодэтокси)этокси]этил}фталимидами ($2\mathbf{g}$). Реакция диазакраун-эфиров $1\mathbf{a}$, \mathbf{b} с фталимидом $2\mathbf{a}$ в ацетонитриле в присутствии карбоната натрия приводит к N,N'-[(2-фталимидо)этил]диаза-15-краун-5 ($3\mathbf{a}$) и N,N'-[(2-фталимидо)этил]диаза-18-краун-6 ($3\mathbf{b}$) с небольшим выходом. Проведение этой же реакции без растворителя при 100 °C позволяет существенно

увеличить выход соединений **3a,b**. В противоположность этому алкилирование диазакраун-эфиров **1a,b** иодидами **2f-g** в аналогичных условиях не дает удовлетворительных результатов. Хорошие результаты получены при проведении этой реакции в присутствии карбоната натрия в кипящем ацетонитриле в течение 18 ч. Увеличение времени нагревания снижает выход целевых продуктов, очевидно, вследствие частичной кватернизации продукта алкилирования.

Исходные иодиды **2e**—**g** синтезировали из N-(6-хлоргексил)- (**2b**), N-[2-(2-хлорэтокси)этил]- (**2c**) и N-{2-[2-(хлорэтокси)этокси]этил}фталимидов (**2d**) при кипячении их с иодистым натрием в ацетонитриле. Бромид **2a** и хлориды **2b**—**d** получали при взаимодействии фталимида калия с дибромэтаном, 1,6-дихлоргексаном, 1-хлор-2-(2-хлорэтокси)этаном и 1-хлор-2-[2-(хлорэтокси)этокси]этаном соответственно.

Взаимодействие гидразингидрата с диазакраун-эфирами **3а**—е с выходом 70—85% приводит к образованию лариатных диазакраун-эфиров **4а**—е, содержащих терминальные первичные аминогруппы в боковых цепях. Диазакраун-эфиры с терминальными диметиламиногруппами **5а**—е получали восстановительным метилированием соединений **4а**—е при реакции их с формальдегидом в муравьиной кислоте.

Тестом наличия лариатного эффекта может служить величина индуцированного сдвига максимума поглощения пикрат-аниона ($\Delta\lambda_{Pi}$) в малополярных средах [13]. В основе метода известная зависимость величины $\Delta\lambda_{Pi}$ от степени разделения ионной пары исследуемого пикрата металла. Очевидно, что чем более экранирован катион металла липофильной оболочкой лиганда, тем в большей степени будет разделена ионная пара пикрата, что, в свою очередь, будет приводить к увеличению батохромного сдвига полосы пикрат-аниона. Действительно, краун-эфиры создают двумерное лигандное окружение катиона, что приводит к значительно меньшим значениям $\Delta\lambda_{Pi}$, чем для криптандов, имеющих трехмерную внутримолекулярную полость. При проявлении лариатного эффекта величина $\Delta\lambda_{Pi}$ заметно превышает сдвиг, наблюдаемый для незамещенных соединений, и приближается к наблюдаемому для криптандов, что вполне понятно, так как и в этом случае вокруг катиона также формируется трехмерное лигандное окружение.

Спектрофотометрическое изучение взаимодействия замещенных азакраун-эфиров **4b**—е и **5b**—е с пикратами лития, натрия, калия, магния и кальция проводили в тетрагидрофуране. В большинстве случаев при добавлении к растворам пикратов стократных избытков лиганда наблюдается максимально возможный сдвиг максимума поглощения пикратаниона ($\lambda_{\rm Pi}$ 376—380 нм), что указывает на образование разделенных ионных пар и, вероятно, свидетельствует о высокой стабильности комплекса, так как величина $\Delta\lambda_{\rm Pi}$ слабо чувствительна к соотношению концентраций пикрат—лиганд вплоть до 1/(2-5) (табл. 2).

В отличие от этого незамещенный диаза-18-краун-6 **1b** и N,N'-дибензилдиаза-18-краун-6 **(6)**, которые не могут проявлять лариатного эффекта, вызывают значительно меньшие сдвиги максимума поглощения пикрат-аниона ($\lambda_{\rm Pi}$ 349–364 нм) (табл. 2). Это свидетельствует о наличии

Таблица 1 Характеристики N,N'-замещенных диазакраун-эфиров 3–5

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Масс- спектр,	Спектр ЯМР ¹ Н (CDCl ₃), δ, м. д., КССВ (<i>J</i> , Гц)		
		С	Н	N	m/z			
3a	C ₃₀ H ₃₆ N ₄ O ₇	63.82 63.74	6.43 6.52	9.92 9.86	564	2.6 (8H, м, NCH ₂); 2.9 (4H, т, J = 6.9, NCH ₂); 3.4 (8H, м, OCH ₂); 3.5 (4H, с, OCH ₂); 3.6 (4H, т, J = 6.9, CH ₂ N); 7.7 (8H, м, C ₆ H ₄)		
3b	$C_{32}H_{40}N_4O_8$	63.14 63.13	6.62 6.69	9.20 9.17	608	2.7 (8H, т, J = 6.1, NCH ₂); 2.9 (4H, т, J = 7.0, NCH ₂); 3.4 (8H, м, OCH ₂); 3.5 (8H, с, OCH ₂); 3.7 (4H, т, J = 7.0, CH ₂ N); 7.7 (8H, м, C ₆ H ₄)	87	
3c	$C_{40}H_{56}N_4O_8$	66.64 66.70	7.83 7.85	7.77 7.72	720	1.4 (16H, м, CH ₂); 2.6 (12H, м, NCH ₂); 3.5 (16H, м, OCH ₂); 3.8 (4H, т, J = 7.2, CH ₂ N); 7.7 (8H, м, C ₆ H ₄)		
3d	$C_{36}H_{48}N_4O_{10}$	62.06 62.11	6.94 6.93	8.04 8.02	696	2.7 (12H, м, NCH ₂); 3.5 (24H, м, OCH ₂); 3.8 (4H, т, J = 5.8, CH ₂ N); 7.7 (8H, м, C ₆ H ₄)		
3 e	$C_{40}H_{56}N_4O_{12}$	61.21 61.27	7.19 7.13	7.14 7.16	784	2.7 (12H, м, NCH ₂); 3.5 (32H, м, OCH ₂); 3.8 (4H, т, J = 5.8, CH ₂ N); 7.7 (8H, м, C ₆ H ₄)		
4a	C ₁₄ H ₃₂ N ₄ O ₃	55.24 55.16	10.59 10.62	18.40 18.50	304	1.5 (4H, ш. c, NH); 2.5 (12H, м, NCH ₂); 2.8 (4H, м, <u>СН</u> ₂ NH ₂); 3,4 (8H, м, ОСH ₂); 3.6 (4H, с, ОСH ₂)		
4b	$C_{16}H_{36}N_4O_4$	55.15 55.20	10.41 10.37	16.08 16.13	348	1.6 (4H, ш. c, NH); 2.6 (12H, м, NCH ₂); 2.8 (4H, м, <u>CH</u> ₂ NH ₂); 3.4 (8H, т, <i>J</i> = 6.2, OCH ₂); 3.5 (8H, с, OCH ₂)		

4c	C ₂₄ H ₅₂ N ₄ O ₄	62.57 62.63	11.38 11.43	12.16 12.11	460	1.1 (4H, ш. c, NH); 1.3 (16H, м, CH ₂); 2.4 (12H, м, NCH ₂); 2.6 (4H, м, <u>CH₂</u> NH ₂); 3.5 (16H, м, OCH ₂)	85
4d	$C_{20}H_{44}N_4O_6$	<u>55.02</u> 55.05	10.16 10.12	12.83 12.75	436	1.5 (4H, ш. с, NH); 2.5 (8H, т, J = 6.2, NCH ₂); 2.6 (4H, т, J = 5.8, NCH ₂); 2.8 (4H, т, J = 5.8, <u>CH</u> ₂ NH ₂); 3.3 (8H, т, J = 6.2, OCH ₂); 3.5 (16H, м, OCH ₂)	70
4e	$C_{24}H_{52}N_4O_8$	54.94 54.93	9.99 9.95	10.68 10.59	524	1.9 (4H, ш. c, NH); 2.5 (8H, т, J = 6.2, NCH ₂); 2.6 (4H, т, J = 5.8, NCH ₂); 2.8 (4H, т, J = 5.8, <u>CH₂</u> NH ₂); 3.3 (8H, т, J = 6.2, OCH ₂); 3.5 (24H, м, OCH ₂)	79
5a	$C_{18}H_{40}N_4O_3$	<u>59.97</u> 59.91	11.18 11.25	15.54 15.48	360	2.2 (12H, c, CH ₃); 2.5 (16H, м, NCH ₂); 3.4 (8H, м, OCH ₂); 3.5 (4H, c, OCH ₂)	85
5b	$C_{20}H_{44}N_4O_4$	<u>59.37</u> 59.44	10.96 10.89	13.85 13.87	404	2.2 (12H, c, CH ₃); 2.5 (16H, м, NCH ₂); 3.4 (8H, т, <i>J</i> = 6.2, OCH ₂); 3.5 (8H, c, OCH ₂)	63
5c	$C_{28}H_{60}N_4O_4$	65.07 65.11	11.70 11.76	10.84 10.77	516	1.3 (16H, м, CH ₂); 2.1 (12H, с, CH ₃); 2.4 (16H, м, NCH ₂); 3.4 (8H, т, <i>J</i> = 6.2, OCH ₂); 3.5 (8H, с, OCH ₂)	77
5d	$C_{24}H_{52}N_4O_6$	<u>58.51</u> 58.47	10.64 10.71	11.37 11.32	492	2.2 (12H, c, CH ₃); 2.5 (12H, м, NCH ₂); 2.7(4H, т, <i>J</i> = 5.8, NCH ₂); 3.4 (8H, т, <i>J</i> = 6.2, OCH ₂); 3.5 (16H, м, OCH ₂)	75
5e	$C_{28}H_{60}N_4O_8$	57.90 57.85	10.41 10.43	9.65 9.62	580	2.2 (12H, c, CH ₃); 2.5 (8H, т, J = 6.2, NCH ₂); 2.6 (4H, т, J = 5.8, NCH ₂); 2.8 (4H, м, NCH ₂); 3.4 (8H, т, J = 6.2, OCH ₂); 3.5 (24H, м, OCH ₂)	63

Таблица 2

Положение максимума (λ_{max}) и относительные сдвиги ($\Delta\lambda_{max}$)* полос поглощения пикратов металлов в присутствии стократных избытков соединений 1b, 4, 5b—е и 6 в ТГФ

Соеди- нение	LiPi		NaPi		KPi		MgPi		CaPi	
	λ_{max}	$\Delta \lambda_{max}$	λ_{max}	$\Delta \lambda_{max}$	λ_{max}	$\Delta \lambda_{max}$	λ_{max}	$\Delta \lambda_{max}$	λ_{max}	$\Delta \lambda_{max}$
1b	357	10	-	-	364	5	359	32	358	23
4b	379	32	380	27	380	21	376	49	378	43
4c	_	_	_	_	_	_	380	53	390	45
4d	380	33	380	27	380	20	380	53	380	45
4e	378	31	376	23	379	19	377	50	379	44
5b	378	31	380	27	378	18	375	47	378	43
5c	-	-	-	-	_	-	358	31	-	-
5d	370	17	368	20	370	11	370	43	373	38
5e	378	32	379	26	379	21	376	48	374	39
6	349	3	358	5	-	_	356	30	352	17

^{*} $\Delta\lambda_{max}$ равна разности в положении полос поглощения пикрата металла в присутствии и в отсутствие лиганда.

лариатного эффекта в соединениях **4b—e–5b—e**. Так как боковые цепи этих диазакраун-эфиров различаются длиной, числом и природой донорных атомов, то, очевидно, в каждом конкретном случае участие в комплексообразовании тех или иных гетероатомов будет определяться возможностью достижения структурного максимального и электронного соответствия катиона и боковой цепи краун-эфира.

В соединении 4с, боковые цепи которого включают шесть метиленовых групп, лариатный эффект может обеспечиваться только участием в комплексообразовании боковых аминогрупп. Появление гем-диметильных заместителей на атомах азота в соединении 5с, очевидно, затрудняет их участие во взаимодействии с катионом, вследствие чего в этом случае наблюдается такой же сдвиг (λ_{Pi} 358 нм), как и для незамещенного диазакраун-эфира (см. табл. 2). Заметно меньшие сдвиги полосы поглощения пикрат-аниона наблюдаются для краун-эфира **5d** (λ_{Pi} 368–373 нм) в сравнении с его незамещенным аналогом 4d (λ_{Pi} 380 нм). В соединениях с короткой (4b) и более длинной (4e) боковой цепью введение метильных заместителей по аминогруппам не сказывается на величине сдвигов. Очевидно, наблюдаемые отличия в спектральном поведении комплексов изученных краун-эфиров обусловлены возможностью координации иона с атомами как азота, так и кислорода боковой цепи, а также возможностью реализации комплексов различной структуры. К сожалению, данные о величинах индуцированных сдвигов пикрат-аниона свидетельствуют лишь об участии в комплексообразовании гетероатомов боковых цепей, однако не позволяют делать более определенные выводы о структуре образующихся комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Bruker AM-250 (250 МГц) в CDCl₃, внутренний стандарт ГМДС. Масс-спектры получены на приборе Varian MAT 112, ионизация электронным ударом (40 и 70 эВ). УФ спектры получены на спектрофотометре Specord M40 UV-vis. Индивидуальность всех соединений контролировали хроматографически. Тонкослойную хроматографию проводили на стеклянных пластинах с нанесенным слоем щелочной окиси алюминия L 5/40 (Chemapol) и пластинах с закрепленным слоем силикагеля Silufol UV-254. ГЖХ проводили на приборе Chrom-5, колонка 3 × 1500 мм, 5% SP 2100 на хроматоне N-Super. 1,2-Дибромэтан, 1,6-дихлоргексан, 1,5-дихлор-3-оксапентан и 1,8-дихлор-3,6-диоксаоктан использовали товарные. Диазакраун-эфиры 1а,b получали согласно методике работы [14]. N,N'-дибензилдиаза-18-краун-6 (6) получен по методике [51].

N-(2-Бромэтил)фталимид (2а). Суспензию 43 г фталимида калия (0.23 моль) в 284 г 1,2-дибромэтана (1.5 моль) кипятят 20 ч при интенсивном перемешивании. Избыток дибромэтана отгоняют при пониженном давлении. Остаток растворяют в 200 мл бензола и отфильтровывают непрореагировавший фталимид калия и 1,2-дифталимидоэтан. Бензол отгоняют, остаток перекристаллизовывают из 55 мл этанола. Выход 43.8 г (75%). Т. пл. 82–83 °С, что соответствует описанному [15].

N-(6-Хлоргексил)фталимид (**2b).** Суспензию 21 г (0.11 моль) фталимида калия и 177.7 г (1.14 моль) 1,6-дихлоргексана перемешивают при 130 °C 20 ч. Охлаждают, фильтруют и отгоняют избыток 1,6-дихлоргексана при пониженном давлении. Остаток кристаллизуют из 200 мл гептана. Выход 23.7 г (78%), т. пл. 38–39 °C. Спектр ЯМР 1 Н, δ , м. д. (J, Γ п): 1.5 (8H, м, CH₂); 3.4 (2H, т, J = 6.2, CH₂Cl); 3.6 (2H, т, J = 7.2, CH₂N); 7.8 (4H, м, C₆H₄). Найдено, %: C 63.17; CH 6.11; CH 6.11;

- **N-[2-(2-Хлорэтокси)этил]фталимид** (**2c**) получают аналогично из 200 г (1.08 моль) фталимида калия и 1522 г (10.6 моль) 1,5-дихлор-3-оксапентана. Остаток после отгонки дихлорида закристаллизовывается при добавлении 100 мл пентана. Осадок отфильтровывают, продукт очищают экстракцией пентаном в аппарате Сокслета в течение 50 ч. Выход 250 г (91.5%), т. пл. 71–72 °C. Спектр ЯМР 1 Н, δ , м. д. (J, Γ u): 3.6 (4H, м, CH₂O); 3.8 (2H, т, J = 6.6, CH₂Cl); 3.9 (2H, т, J = 5.8, CH₂N); 7.6 (4H, м, C₆H₄). Найдено, %: C 56.87; CH 4.83; CH 5.44. CH 6.50 CH 6.70 CH 6.70 CH 6.70 CH 6.70 CH 7.70 CH 7.70 CH 7.70 CH 8.70 CH 9.70 C
- **N-{2-[2-(Хлорэтокси)этокси]этил}фталимид (2d)** получают аналогично из 185 г (1.0 моль) фталимида калия и 1870 г (10 моль) 1,8-дихлор-3,6-диоксаоктана. Выход 89%, масло. Спектр ЯМР 1 Н, δ , м. д.: 3.5 (8H, м, CH₂O); 3.8 (4H, м, CH₂Cl, CH₂N); 7.6 (4H, м, C₆H₄). Найдено, %: C 56.41; H 5.50; N 4.65. $C_{14}H_{16}ClNO_4$. Вычислено, %: C 56.48; H 5.42; N 4.70.
- **N-(6-Иодгексил)фталимид** (2e). Смесь 23.7 г (0.09 моль) N-(6-хлоргексил)фталимида 2b и 30 г (0.2 моль) свежепрокаленного иодистого натрия в 200 мл сухого ацетонитрила кипятят 10 ч при интенсивном перемешивании. Осадок NaCl отфильтровывают и промывают ацетонитрилом. Фильтрат упаривают при пониженном давлении, остаток растворяют в 100 мл хлороформа, раствор промывают 5% водным раствором тиосульфата натрия. Сушат безводным хлористым кальцием. Хлороформ отгоняют, остаток перекристаллизовывают из 300 мл гептана. Выпавшие кристаллы отфильтровывают и сушат на воздухе. Выход 28.6 г (89.7%), т. пл. 75–76 °C. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.5 (8H, м, CH₂); 3.1 (2H, т, J = 6.5, CH₂I); 3.6 (2H, т, J = 7.2, CH₂N); 7.7 (4H, м, C₆H₄). Найдено, %: С 47.12; H 4.48; N 3.88. C_{14} H₁₆INO₂. Вычислено, %: С 47.08; H 4.51; N 3.92.
- **N-[2-(2-Иодэтокси)этил]фталимид (2f)** получают аналогично из 91 г (0.36 моль) фталимида **2c** и 120 г (0.8 моль) NaI в 500 мл ацетонитрила. После отгонки хлороформа продукт кристаллизуют из смеси 1250 мл гексана и 375 мл бензола. Выход 120 г (97%), т. пл. 84–86 °C. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 3.2 (2H, т, J = 7.0, CH₂I); 3.6 (2H, т, J = 6.0, CH₂CH₂N); 3.7 (2H, т, J = 7.0, CH₂CH₂I); 3.9 (2H, т, J = 6.0, CH₂N); 7.6 (4H, м, C₆H₄). Найдено, %: C 41.82; H 3.56; N 4.02. C₁₂H₁₂INO₃. Вычислено, %: C 41.76; H 3.50; N 4.06.
- **N-{2-[2-(Иодэтокси)этокси]этил}фталимид (2g)** получают аналогично из 89.1 г (0.3 моль) фталимида **2d** и 105 г (0.7 моль) NaI. После отгонки хлороформа продукт экстрагируют из остатка 1 л кипящего гептана. Гептан упаривают и получают соединение **2g** в виде светло-желтого масла. Выход 113 г (96%). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 2.9 (2H, $_{T}$, J = 6.9, CH $_{2}$ I); 3.5 (4H, м CH $_{2}$ O); 3.6 (2H, $_{T}$, J = 5.8, $\underline{\text{CH}}_{2}$ CH $_{2}$ N); 3,7 (2H, $_{T}$, J = 7.0, $\underline{\text{CH}}_{2}$ CH $_{2}$ I); 3.9 (2H, $_{T}$, J = 5.8, CH $_{2}$ N); 7.6 (4H, м, $_{6}$ H $_{4}$). Найдено, %: C 43.15; H 4.21; N 3.67. $\underline{\text{C}}_{14}$ H $_{16}$ INO $_{4}$. Вычислено, %: C 43.21; H 4.14; N 3.60.
- **2-(2-{13-[2-(1,3-Диоксо-1,3-дигидро-2H-изоиндол-2-ил)этил]-1,4,10-триокса-7,13-диазациклопентадекан-7-ил}этил)-1-H-изоиндол-1,3(2H)-дион (3а).** Смесь 2.18 г (10 ммоль) диаза-15-краун-5 **1a**, 12.7 г (50 ммоль) фталимида **2a** и 5.3 г (50 ммоль) свежепрокаленного карбоната натрия перемешивают 10 ч при 100 °C. К горячему раствору прибавляют по каплям 30 мл хлороформа, охлаждают, осадок отфильтровывают и упаривают хлороформ при пониженном давлении. Остаток растворяют в 100 мл смеси бензола—1 н. HCl, 1:1. Бензольный слой отделяют, водный экстрагируют 50 мл бензола. К водному раствору прибавляют карбонат натрия до pH 9–10 и экстрагируют бензолом (2×50 мл). После отгонки бензола получают **3a** в виде светло-желтого масла. Выход 4.0 г.
- **2-(2-{16-[2-(1,3-Диоксо-1,3-дигидро-2H-изоиндол-2-ил)этил]-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил}этил)-1-Н-изоиндол-1,3(2H)-дион (3b)** получают аналогично из 2.62 г (10 ммоль) диаза-18-краун-6 **1b** и 12.7 г (50 ммоль) фталимида **2a**. Остаток после отгонки бензола перекристаллизовывают из 70 мл смеси гептан—бензол, 1:1. Выход 5.0 г, т. пл. 116-117 °C.
- 2-(6-{16-[6-(1,3-Диоксо-1,3-дигидро-2H-изоиндол-2-ил)гексил]-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил}гексил)-1-H-изоиндол-1,3(2H)-дион (3c). Смесь 7.86 г (30 ммоль) диаза-18-краун-6 1b, 28.6 г (0.08 моль) фталимида 2e и 32 г (0.3 моль) свежепрокаленного карбоната натрия в 150 мл сухого ацетонитрила кипятят 18 ч при перемешивании. Охлаждают, осадок отфильтровывают и из фильтрата отгоняют ацетонитрил при пониженном давлении. К остатку прибавляют 100 мл бензола и 100 мл 1 н. HCl. Отделяющийся при этом маслообразный нижний слой закристаллизовывается через 10–12 ч. Кристаллы отфильтровывают, промывают бензолом и обрабатывают 100 мл насыщенного раствора карбоната натрия при 60 °C. Продукт извлекают бензолом, экстракт сушат безводным сульфатом натрия и отгоняют растворитель. Остаток кристаллизуют из 400 мл гептана. Выход 9.2 г, т. пл. 41–42 °C.

2-{2-[2-(16-{2-[2-(1,3-Диоксо-1,3-дигидро-2H-изоиндол-2-ил)этокси]этил}-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил}этил)-1-Н-изоиндол-1,3(2H)-дион (3d) получают аналогично кипячением 1.05 г (4 ммоль) диаза-18-краун-6 **1b** и 3.45 г (10 ммоль) фталимида **2f** в присутствии 3.0 г (40 ммоль) карбоната лития в 20 мл ацетонитрила в течение 30 ч. Остаток после отгонки бензола кристаллизуют из 29 мл смеси гептан—бензол, 18:11. Выход 1.8 г, т. пл. 96-97 °C.

2-[2-(2-{2-[16-(2-{2-[2-(1,3-Диоксо-1,3-дигидро-2Н-изоиндол-2-ил)этокси]этокси]этил)-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил]этокси]этокси)этил]-1-Н-изоиндол-1,3(2Н)-дион (3е) получают аналогично из 1.05 г (4 ммоль) диаза-18-краун-6 1b, 3.9 г (10 ммоль) фталимида 2g в присутствии 3.0 г (40 ммоль) карбоната лития. После отгонки бензола получают 3e в виде светло-желтого масла Выход 1.5 г.

2-[13-(2-Аминоэтил)-1,4,10-триокса-7,13-диазациклопентадекан-7-ил]этиламин (4а), 2-[16-(2-аминоэтил)-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил]этиламин (4b), 6-[16-(6-аминотексил)-1,4,10,13-тетраокса-7,16-диазациклопентадекан-7-ил]тексиламин (4c), 2-(2-[16-[2-аминоэтокси)этил]-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил]этокси)этиламин (4d) и 2-{2-[2-(16-{2-[2-(2-аминоэтокси)этокси]этил}-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил)этокси]этокси]этиламин (4e). (Общая методика). К кипящему раствору 33 ммоль диазакраун-эфира 3 в 100 мл этанола прибавляют по каплям при интенсивном перемешивании 67 ммоль гидразингидрата. Смесь кипятят 7 ч и прибавляют 22 мл 6 н. HCl. Осадок отфильтровывают, этанол отгоняют при пониженном давлении. К остатку прибавляют 120 мл воды и отфильтровывают выпавший осадок. К фильтрату прибавляют насыщенный водный раствор LiOH до рН 10–11. Продукт экстрагируют хлороформом в течение 10 ч. После отгонки хлороформа получают диазакраун-эфир 4 в виде светло-желтого масла.

N-(2-{13-[2-(Диметиламино)этил]-1,4,10-триокса-7,13-диазациклопентадекан-7-ил}этил)-N,N-диметиламин (5а), N-(2-{16-[2-(диметиламино)этил]-1,4,10,13-тетраокса-7,16-диазациклооктадекан-7-ил}этил)-N,N-диметиламин (5b), N-(6-{16-[6-(диметиламино)-гексил]-1,4,10,13-тетраокса-7,16-диазациклопентадекан-7-ил}гексил)-N,N-диметиламин (5c), N-{2-[2-(16-{2-[2-(диметиламино)этокси]этил}-N,N-диметиламин (5d) и N-[2-(2-{2-[(16-(2-{2-[2-(диметиламино)этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этил]-N,N-диметиламин (5e). (Общая методика). К раствору 1.5 ммоль диазакраун-эфира 4 в 5 мл муравьиной кислоты прибавляют 5 мл 40% водного раствора формальдегида. Полученную смесь кипятят 10 ч, после чего к раствору прибавляют 10 мл конц. НС1 и упаривают при пониженном давлении досуха. Эту операцию повторяют еще один раз. Остаток растворяют в 10 мл воды и прибавляют насыщенный водный раствор LiOH до рН 10–11 и экстрагируют хлороформом (5 × 5 мл). После отгонки хлороформа продукт извлекают из остатка горячим гексаном (3 × 10 мл). Гексан упаривают и получают диазакраун-эфир 5 в виде светло-желтого масла.

Методика определения величины индуцированного сдвига ($\Delta\lambda$) полосы поглощения пикратов металлов в присутствии диазакраун-эфиров. Навеску 5 ммоль диазакраун-эфира растворяют в 5 мл раствора (0.05 моль/л) пикрата соответствующего металла в ТГФ. Последовательным разбавлением раствором пикрата металла получают растворы с соотношением диазакраун-эфир : пикрат 50, 10, 2, 1, 0.75, 0.5 и 0.2. Измерения проводили через 12 ч для достижения равновесия системы. Величину $\Delta\lambda$ считали как разность λ_{max} пикрата при 100-кратном избытке диазакраун-эфира и λ_{max} пикрата в его отсутствие. Результаты приведены в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. G. W. Gokel, Chem. Soc. Rev., 39 (1992).
- K. E. Krakowiak, J. S. Bradshaw, D. J. Zameska-Krakowiak, R. M. Izat, *Chem. Rev.*, 89, 929 (1989).
- 3. J. S. Bradshaw, R. M. Izat, Accounts Chem. Res., 30, 338 (1997).
- 4. J. S. Bradshaw, K. E. Krakowiak, R. M. Izat, *Aza-Crown Macrocycles*, John Wiley & Sons, New York, 1993.

- 5. V. J. Gatto, K. A. Arnold, A. M. Viscariello, S. R. Miller, C. R. Morgan, G. W. Gokel, J. Org. Chem., 51, 5373 (1986).
- A. R. Katritzky, O. V. Denisko, S. A. Belykov, O. F. Schall, G. W. Gokel, J. Org. Chem., **61**, 7578 (1996).
- 7. D. J. Chadwick, I. A.Cliffe, I. O. Sutherland, R. F. Newton, J. Chem. Soc. Perkin Trans. 1, No. 8, 1707 (1984).
- 8. H. Tsukube, T. Inoue, K. Hori, J. Org. Chem., **59**, 8047 (1994).
- A. R. Katritzky, S. A. Belykov, A. E. Sorochinsky, P, J. Steel, O. F. Schall, G. W. Gokel, J. Org. Chem., 61, 7578 (1996).
- 10. M. W. Hosseini, A. J. Blacker, J. M. Lehn, J. Chem. Soc. Chem. Commun., No. 9, 596 (1988).
- 11. B. D. White, D. M. Dishong, C. Minganti, K. A. Arnold, D. M. Goll, G. W. Gokel, Tetrahedron Lett., 26, 151 (1985).
- 12. J. S. Bradshaw, K. E. Krakowiak, H. An, R. M. Izat, Tetrahedron, 46, 1163 (1990).
- 13. Y. Inoue, C. Fujiwara, K. Wada, A. Tai, T. Hakushi, J. Chem. Soc. Chem. Commun., No. 6, 393 (1987).
- 14. A. V. Bogatsky, N. G. Lukyanenko, S. S. Basok, L. K. Ostrovskaya, Synthesis, No. 2, 138 (1984).
- 15. Синтезы органических препаратов, под ред. Б. А. Казанского, Изд-во иностр. лит., Москва, 1949, 1, 143.

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 65080 e-mail: physchem@paco.net

Поступило в редакцию 14.02.2001