The synthesis of furazano- and thiadiazolopyrazine steroids and their antiproliferative activity

Svetlana K. Vorontsova¹, Alexander M. Scherbakov^{2,3}, Mikhail E. Minyaev¹, Leonid G. Menchikov¹, Igor V. Zavarzin¹*

¹ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii Ave., Moscow 119991, Russia; e-mail: zavi@ioc.ac.ru

 ² Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
 24, Build. 15 Kashirskoe shosse, Moscow 115522, Russia; e-mail: alex.scherbakov@gmail.com

³ Gause Institute of New Antibiotics, 11, Build. 1 B. Pirogovskaya, St., Moscow 119021, Russia

SUPPLEMENTARY INFORMATION

Table of contents

1. Experimental Section	
2. NMR spectra	
3. Mass spectra	

1. Experimental Section

¹H, ¹³C NMR experiments were recorded on Bruker AM-300 (300 and 75 MHz, respectively). The chemical shifts (δ) were expressed in ppm and referenced to CDCl₃ (7.27 ppm for ¹H and 77.0 ppm for ¹³C). High-resolution mass spectra were obtained on a Bruker MicroTOF mass spectrometer by electrospray ionization (ESI) using Q-TOF detection. The melting points were determined on a Kofler hot stage apparatus and are uncorrected. TLC was performed using Silicagel 60 F254 plates. The chromatograms were visualized with an UV lamp (254 and 365 nm) and [Ce(SO₄)₂/H₂SO₄] developing solution. Commercial reagents were used without further purification. All reactions were carried out using freshly distilled solvents.

X-ray diffraction data for **1** and **2** were collected at 100K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (shutterless φ - and ω -scan technique), using graphitemonochromatized Mo K_{α}-radiation. The intensity data were integrated with the SAINT program and were semi-empirically corrected for absorption and decay from equivalent reflections by multi-scan methods with SADABS. The structures were solved by direct methods using SHELXT and refined by the full-matrix least-squares minimization method on F^2 using SHELXL-2018. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. A rotating group model was applied for methyl groups. Absolute structure parameters for both structures were determined by the Parsons quotient method. Crystal data, data collection and structure refinement details for **1** and **2** are summarized in Table S1. The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2335159 and 2335160, correspondingly; they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC *via* https://www.ccdc.cam.ac.uk/structures/

Table S1. Crystal data, data collection and structure refinement details for 1 and 2

_

Code 1 2 Chemical formula weight 448.51 464.57 Formula weight 448.51 464.57 Temperature, K $100(2)$ $100(2)$ Wavelength, Å 0.71073 0.71073 Crystal system Monoclinic Monoclinic Space group $P2_1$ $P2_1$ Unit cell parameters a , Å $6.67640(10)$ $6.6412(2)$ c, Å $6.67640(10)$ $6.6412(2)$ c , Å g, ° $95.9540(10)$ $97.1860(10)$ $Volume, Å^3$ Volume, Å^3 $1115.52(4)$ $1121.37(6)$ Z Z 2 2 2 2 Calculated density, g·cm ⁻³ 1.335 1.376 492 Crystal size, mm $0.46 \times 0.13 \times 0.09$ $0.59 \times 0.13 \times 0.04$ $\Theta_{min} / \Theta_{max}, °$ $2.166/34.979$ $2.189/34.983$ Index ranges $-14 \le t = 14$, $-14 \le t = 14$, $-14 \le t = 10$, $-30 \le t \le 30$ Number of reflections $-30 \le t \le 30$ $-30 \le t \le 30$ Number of reflections	Table S1. Crystal data, data collection and structure refinement details for 1 and 2			
Formula weight448.51464.57Temperature, K100(2)100(2)Wavelength, Å0.710730.71073Crystal systemMonoclinicMonoclinicSpace group $P2_1$ $P2_1$ Unit cell parameters $a, Å$ 8.8859(2)9.0759(3) $a, Å$ 6.67640(10)6.6412(2) $c, Å$ 18.9053(4)18.7515(6) $β, °$ 95.9540(10)97.1860(10)Volume, Å ³ 1115.52(4)1121.37(6)Z22Calculated density, g·cm ⁻³ 1.3351.376Absorption coefficient (µ), mm ⁻¹ 0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}, °$ 2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-14≤h≤14, $-10≤k≤10,$ $-30≤ ≤30$ $-30< ≤30$ Number of reflections6948069216Collected Independent [R _{im}]9778 [0.0353]9853 [0.0563]Observed with I>σ(I)87078132		-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chemical formula	$C_{25}H_{28}N_4O_4$	$C_{25}H_{28}N_4O_3S$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		448.51	464.57	
$\begin{array}{cccc} Crystal system & Monoclinic & Monoclinic \\ Space group & P2_1 & P2_1 \\ Unit cell parameters & & & & & & & & & & & & & & & & & & &$	Temperature, K	100(2)	100(2)	
Space group Unit cell parameters $P2_1$ $P2_1$ unit cell parameters.a, Å8.8859(2)b, Å6.67640(10)c, Å18.9053(4) β , °95.9540(10)Volume, ų1115.52(4)Z2Calculated density, g·cm³1.335Absorption coefficient (μ), mm¹0.0920.181F(000)476 $\Theta_{min} / \Theta_{max}$, °2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-10≤k≤10,-30≤l≤30Number of reflections69480Collected69480Independent [R _{int}]9778 [0.0353]Observed with I> σ (I)87078132	Wavelength, Å	0.71073	0.71073	
Unit cell parameters8.8859(2)9.0759(3)a, Å8.8859(2)9.0759(3)b, Å6.67640(10)6.6412(2)c, Å18.9053(4)18.7515(6) β , °95.9540(10)97.1860(10)Volume, ų1115.52(4)1121.37(6)Z22Calculated density, g·cm³³1.3351.376Absorption coefficient (μ), mm¹0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}$, °2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-14≤h≤14, $-10≤k≤10,$ $-30≤l≤30$ $-30≤l≤30$ Number of reflectionsCollected6948069216Independent [R _{int}]9778 [0.0353]9853 [0.0563]Observed with I> σ (I)87078132	Crystal system	Monoclinic	Monoclinic	
a, Å8.8859(2)9.0759(3)b, Å6.67640(10)6.6412(2)c, Å18.9053(4)18.7515(6) β , °95.9540(10)97.1860(10)Volume, ų1115.52(4)1121.37(6)Z22Calculated density, g·cm³1.3351.376Absorption coefficient (µ), mm¹0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}, °$ 2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-14≤h≤14, $-10≤k≤10,$ $-30≤l≤30$ $-30≤l≤30$ Number of reflections6948069216Independent [R _{in}]9778 [0.0353]9853 [0.0563]Observed with I> σ (I)87078132	Space group	$P2_1$	$P2_1$	
b, Å c, Å b, Å c, Å f, ° Volume, Å ³ Z Calculated density, g·cm ⁻³ Absorption coefficient (µ), mm ⁻¹ F(000) $\Theta_{min} / \Theta_{max}$, ° Index ranges Collected Collected Independent [R _{int}] Observed with I>\sigma(I) $\Theta_{min} / \Theta_{max}$, Θ_{max} , Θ_{ma	Unit cell parameters			
c, Å β, \circ 18.9053(4)18.7515(6) β, \circ 95.9540(10)97.1860(10)Volume, ų1115.52(4)1121.37(6)Z22Calculated density, g·cm³1.3351.376Absorption coefficient (µ), mm¹0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}, \circ$ 2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14, -10≤k≤10, -30≤l≤30-10≤k≤10, -30≤l≤30Number of reflections Collected Independent [R _{int}] Observed with I>σ(I)9778 [0.0353]9853 [0.0563] 8707	a, Å	8.8859(2)	9.0759(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b, Å	6.67640(10)	6.6412(2)	
Volume, $Å^3$ 1115.52(4)1121.37(6)Z22Calculated density, g·cm ⁻³ 1.3351.376Absorption coefficient (µ), mm ⁻¹ 0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}$, °2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-14≤h≤14, $-10 \le k \le 10$,-30 ≤ $l \le 30$ -30 ≤ $l \le 30$ Number of reflections6948069216Collected6948069216Independent [R _{int}]9778 [0.0353]9853 [0.0563]Observed with I>\sigma(I)87078132	c, Å	18.9053(4)	18.7515(6)	
Volume, $Å^3$ 1115.52(4)1121.37(6)Z22Calculated density, g·cm ⁻³ 1.3351.376Absorption coefficient (µ), mm ⁻¹ 0.0920.181F(000)476492Crystal size, mm0.46×0.13×0.090.59×0.13×0.04 $\Theta_{min} / \Theta_{max}$, °2.166 / 34.9792.189 / 34.983Index ranges-14≤h≤14,-14≤h≤14, $-10 \le k \le 10$,-30 ≤ $l \le 30$ -30 ≤ $l \le 30$ Number of reflections6948069216Collected6948069216Independent [R _{int}]9778 [0.0353]9853 [0.0563]Observed with I>\sigma(I)87078132	β, °	95.9540(10)	97.1860(10)	
$\begin{array}{c} \hline Calculated density, g \cdot cm^{-3} & 1.335 & 1.376 \\ Absorption coefficient (µ), mm^{-1} & 0.092 & 0.181 \\ F(000) & 476 & 492 \\ Crystal size, mm & 0.46 \times 0.13 \times 0.09 & 0.59 \times 0.13 \times 0.04 \\ \Theta_{min} / \Theta_{max}, ^{\circ} & 2.166 / 34.979 & 2.189 / 34.983 \\ Index ranges & -14 \le h \le 14, & -14 \le h \le 14, \\ -10 \le k \le 10, & -10 \le k \le 10, \\ -30 \le 1 \le 30 & -30 \le 1 \le 30 \\ \end{array}$ Number of reflections Collected & 69480 & 69216 \\ Independent [R_{int}] & 9778 [0.0353] & 9853 [0.0563] \\ Observed with I > \sigma(I) & 8707 & 8132 \\ \hline \end{array}	Volume, Å ³	1115.52(4)	1121.37(6)	
$\begin{array}{cccc} Absorption \mbox{ coefficient } (\mu), \mbox{ mm}^{-1} & 0.092 & 0.181 \\ F(000) & 476 & 492 \\ Crystal size, \mbox{ mm} & 0.46 \times 0.13 \times 0.09 & 0.59 \times 0.13 \times 0.04 \\ \Theta_{min} / \Theta_{max}, ^{\circ} & 2.166 / 34.979 & 2.189 / 34.983 \\ Index \mbox{ ranges} & -14 \le h \le 14, & -14 \le h \le 14, \\ & -10 \le k \le 10, & -10 \le k \le 10, \\ & -30 \le l \le 30 & -30 \le l \le 30 \\ \end{array}$ Number of reflections $\begin{array}{c} Collected & 69480 & 69216 \\ Independent \mbox{ [R}_{int}\mbox{]} & 9778 \mbox{ [0.0353]} & 9853 \mbox{ [0.0563]} \\ Observed \mbox{ with } I > \sigma(I) & 8707 & 8132 \\ \end{array}$	Z	2	2	
$\begin{array}{c} F(000) & 476 & 492 \\ Crystal size, mm & 0.46 \times 0.13 \times 0.09 & 0.59 \times 0.13 \times 0.04 \\ \Theta_{min} / \Theta_{max}, ^{\circ} & 2.166 / 34.979 & 2.189 / 34.983 \\ Index ranges & -14 \le h \le 14, & -14 \le h \le 14, \\ & -10 \le k \le 10, & -10 \le k \le 10, \\ & -30 \le 1 \le 30 & -30 \le 1 \le 30 \end{array}$ Number of reflections $\begin{array}{c} Collected & 69480 & 69216 \\ Independent [R_{int}] & 9778 [0.0353] & 9853 [0.0563] \\ Observed with I > \sigma(I) & 8707 & 8132 \end{array}$	Calculated density, $g \cdot cm^{-3}$	1.335	1.376	
$\begin{array}{c} \text{Crystal size, mm} & 0.46 \times 0.13 \times 0.09 & 0.59 \times 0.13 \times 0.04 \\ \Theta_{\text{min}} / \Theta_{\text{max}},^{\circ} & 2.166 / 34.979 & 2.189 / 34.983 \\ \text{Index ranges} & -14 \le h \le 14, & -14 \le h \le 14, \\ & -10 \le k \le 10, & -10 \le k \le 10, \\ & -30 \le l \le 30 & -30 \le l \le 30 \end{array}$ Number of reflections Collected & 69480 & 69216 \\ Independent [R_{int}] & 9778 [0.0353] & 9853 [0.0563] \\ Observed with I>\sigma(I) & 8707 & 8132 \end{array}	Absorption coefficient (μ), mm ⁻¹	0.092	0.181	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F(000)	476	492	
$ \begin{array}{cccc} \mbox{Index ranges} & -14 \le h \le 14, & -14 \le h \le 14, \\ & -10 \le k \le 10, & -10 \le k \le 10, \\ & -30 \le l \le 30 & -30 \le l \le 30 \\ \end{array} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Crystal size, mm	0.46×0.13×0.09	0.59×0.13×0.04	
$ \begin{array}{cccc} \mbox{Index ranges} & -14 \le h \le 14, & -14 \le h \le 14, \\ & -10 \le k \le 10, & -10 \le k \le 10, \\ & -30 \le l \le 30 & -30 \le l \le 30 \\ \end{array} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\Theta_{\min} / \Theta_{\max}$, °	2.166 / 34.979	2.189 / 34.983	
$\begin{array}{c} -30 \leq l \leq 30 & -30 \leq l \leq 30 \\ \hline \text{Number of reflections} & & & & \\ \hline \text{Collected} & 69480 & 69216 \\ \hline \text{Independent} [R_{int}] & 9778 [0.0353] & 9853 [0.0563] \\ \hline \text{Observed with } I > \sigma(I) & 8707 & 8132 \\ \hline \end{array}$		-14≤h≤14,	-14≤h≤14,	
Number of reflections 69480 69216 Collected 69480 69216 Independent [R_{int}] 9778 [0.0353] 9853 [0.0563] Observed with I> σ (I) 8707 8132		-10≤k≤10,	-10≤k≤10,	
Collected6948069216Independent $[R_{int}]$ 9778 [0.0353]9853 [0.0563]Observed with I> σ (I)87078132		-30≤l≤30	-30≤l≤30	
Independent [R_{int}]9778 [0.0353]9853 [0.0563]Observed with I> σ (I)87078132	Number of reflections			
Observed with $I > \sigma(I)$ 8707 8132	Collected	69480	69216	
	Independent [R _{int}]	9778 [0.0353]	9853 [0.0563]	
Completeness to $\Theta_{\text{full}} / \Theta_{\text{max}}$ 0.997 / 0.998 0.999 / 0.999	Observed with $I \ge \sigma(I)$	8707	8132	
	Completeness to $\Theta_{\text{full}} / \Theta_{\text{max}}$	0.997 / 0.998	0.999 / 0.999	
T _{max} / T _{min} 0.8625 / 0.7794 0.8022 / 0.7024	T _{max} / T _{min}	0.8625 / 0.7794	0.8022 / 0.7024	
Data / restraints / parameters 9778 / 1 / 301 9853 / 1 / 301		9778 / 1 / 301	9853 / 1 / 301	
Goodness-of-fit on F^2 1.054 1.069		1.054	1.069	
R1 / wR2 for reflections with I>σ(I) 0.0399 / 0.1011 0.0518 / 0.1137		0.0399 / 0.1011	0.0518 / 0.1137	
R1 / wR2 for all data 0.0483 / 0.1080 0.0726 / 0.1283	R1 / wR2 for all data	0.0483 / 0.1080	0.0726 / 0.1283	
Absolute structure parameter $0.01(19)$ $0.00(4)$		0.01(19)	0.00(4)	
Residual electron density ($\Delta \rho_{max} / \Delta \rho_{min}$), $\bar{e} \cdot A^{-3}$ 0.391 / -0.210 0.541 / -0.444	Residual electron density ($\Delta \rho_{max} / \Delta \rho_{min}$), $\bar{e} \cdot Å^{-3}$	0.391 / -0.210	0.541 / -0.444	

1. NMR spectra

¹H NMR spectrum of **1**.

¹³C NMR spectrum of **1**.

¹H NMR spectrum of **2**.

¹³C NMR spectrum of **2**.

4. Mass spectra

Mass-spectra of 1.

Mass-spectra of 2.