С. В. Толкунов, А. И. Хижан, В. И. Дуленко

АНОМАЛЬНАЯ РЕАКЦИЯ БЕКМАНА В РЯДУ ОКСИМОВ 4-АРИЛ-5-ОКСО-2,7,7-ТРИМЕТИЛ-5,6,7,8-ТЕТРАГИДРОХИНОЛИНОВ В ПОЛИФОСФОРНОЙ КИСЛОТЕ

1. НОВЫЙ СИНТЕЗ 2,5,5-ТРИМЕТИЛ-1-ЭТОКСИКАРБОНИЛ-5,6-ДИГИДРО-4H-ПИРИДО[2,3,4-*k,l*]АКРИДИНОВ

Изучены превращения оксимов 4-арилзамещенных-5-оксо-2,7,7-триметил-5,6,7,8-тетрагидрохинолинов в ПФК. Показано, что в зависимости от заместителя в положении 4 хинолинового цикла реакция может протекать по трем направлениям: с ароматизацией насыщенного цикла (ароматизация Земмлера—Вольфа), с образованием азепинонов — нормальных продуктов перегруппировки Бекмана и с образованием пиридоакридинов.

Ключевые слова: оксимы 4-арил-5-оксо-2,7,7-триметил-5,6,7,8-тетрагидрохинолинов, 2,5,5-триметил-1-этоксикарбонил-5,6-дигидро-4H-пиридо-[2,3,4-k,l]акридины, ароматизация Земмлера—Вольфа, перегруппировка Бекмана.

Синтезы азепинонов по реакции Бекмана и Шмидта из конденсированных гетероциклических соединений, содержащих фрагмент димедона, широко используются для получения биологически активных соединений [1–6]. Однако часто реакция Бекмана протекает аномально [7]. Недавно нами сообщалось о перегруппировке оксимов 1-оксо-3,3,6-триметил-1,2,3,4-тетрагидробензофуро- и индоло[2,3-c]хинолинов в ПФК [8]. Причем было показано, что происходит не классическая перегруппировка Бекмана, а миграция метильных групп с ароматизацией ненасыщенного цикла по Земмлеру—Вольфу [9]. Аналогичные превращения описаны для оксимов 3-алкил-4-оксо-1-фенил-4,5,6,7-тетрагидроиндазолов и 5-оксо-5,6,7,8-тетрагидроциннолинов [7, 10]. Цель настоящей работы заключалась в поиске закономерностей протекания реакции Бекмана и ароматизации Земмлера—Вольфа в ряду оксимов 4-арил-7,7-диметил-5-оксо-5,6,7,8-терагидрохинолинов.

Реакция проводилась путем нагревания соответствующих оксимов с десятикратным количеством ПФК при 100 °C в течение 1 ч. Нами показано, что оксимы 2,4,7,7-тетраметил-3-этоксикарбонил-5-оксо-5,6,7,8-тетрагидрохинолина (1) и 3,3-диметил-1-оксо-1,2,3,4,5,6,7,8-октагидроакридина (2) в этих условиях претерпевают ароматизацию Земмлера—Вольфа. Возможное образование изомерных продуктов 3 или 4 и 5 или 6 связано с различным направлением миграции метильных групп. Для доказательства строения образующихся продуктов нами осуществлено восстановительное деаминирование 1-амино-2,3-диметил-5,6,7,8-тетрагидроакридина (5) до 2,3-диметил-5,6,7,8-тетрагидроакридина (7).

Наличие в спектре ЯМР ¹Н соединения **7** трех синглетов ароматических протонов говорит о миграции метильной группы в положение, соседнее с аминогруппой, и образовании в реакции оксимов **1** и **2** с ПФК продуктов **3** и **5**. В противном случае в спектре ЯМР ¹Н акридина **7** имелся бы дублет ароматических протонов.

Иначе реагируют в этих условиях оксимы 4-арилзамещенных 5-оксо-2,7,7-триметил-5,6,7,8-терагидрохинолинов. Так, оксим 2,7,7-триметил-3-этоксикарбонил-4-фенил-5-оксо-5,6,7,8-тетрагидрохинолина (8а) дает этоксикарбонил-2,5,5-триметил-5,6-дигидро-4Н-пиридо[2,3,4-*k*,*l*]акридин (9а). Такое протекание процесса связано с атакой промежуточно образующимся нитрениевым катионом 4-фенильного заместителя в исходном оксиме 8а. В спектрах ЯМР ¹Н наблюдаются сигналы, принадлежащие 1,2-дизамещенному фенильному фрагменту. Аналогичный процесс протекает с оксимом 2,7,7-триметил-3-этоксикарбонил-4-(3',4'-диметоксифенил)тетрагидрохинолина (8b), с тем отличием, что попутно происходит деметилирование 4-метоксигруппы. В спектре ЯМР ¹Н пиридоакридина 9b отсутствует сигнал одной из метоксигрупп и присутствует полоса поглощения группы ОН в области 10.35 м. д.

Предполагалось, что введение в бензольное кольцо электроноакцепторного заместителя, например нитрогруппы, будет затруднять электрофильную атаку нитрениевым катионом 4-фенильного заместителя, и поэтому реакция пойдет по классическому пути с образованием азепинона. Однако и в этом случае мы зафиксировали образование пиридоакридина 9с.

Как и в случае соединений 9a,b, для выяснения строения образующихся соединений весьма информативными оказались спектры 9c МР 1 Н. Так, в спектре 9c меняется картина ароматических протонов по сравнению со спектром исходного оксима 8c. Если спектр 9c МР 1 Н исходного соединения содержит сигналы 1,4-дизамещенной

ароматической системы, то в спектре ЯМР 1 Н конечного продукта содержатся сигналы 1,2,4-тризамещенной системы (табл. 1). По аналогичной схеме идут превращения оксимов 4-(2'-хлорфенил)-, 4-(4'-метилтиофенил)-и 4-(3'-бромфенил)-5-оксо-5,6,7,8-тетрагидрохинолинов **9d**-**f**, строение продуктов реакции **9d**-**f** доказано аналогично (табл. 1).

8, **9 a**
$$R^1 = R^2 = R^3 = H$$
, **8b** $R^1 = R^2 = OMe$, $R^3 = H$, **9b** $R^1 = OH$, $R^2 = OMe$, $R^3 = H$;
8, **9 c** $R^1 = NO_2$, $R^2 = R^3 = H$, **d** $R^1 = R^2 = H$, $R^3 = Cl$, **e** $R^1 = SMe$, $R^2 = R^3 = H$, **f** $R^1 = R^3 = H$, $R^2 = Br$

В случае оксима 2,7,7-триметил-4-(2',5'-диметоксифенил)-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолина (**8g**) происходит образование 4,4,7-триметил-8-этоксикарбонил-9-(2',5'-диметоксифенил)-2,3,4,5-тетрагидропиридо[3,2-b]азепинона-2 (**10**), т. е. протекает классическая перегруппировка Бекмана.

В спектре ЯМР ¹Н соединения **10** присутствует полоса поглощения группы HNC=O в области 10.78 м. д. Аналогично ведет себя и оксим 4-(2',3'-диметоксифенил)-5-оксо-5,6,7,8-тетрагидрохинолина (**8h**), давая азепинон **11**. Такое направление реакции, вероятно, связано с некомпланарностью 4-фенильного заместителя в положении 4 в соединениях **8g,h** за счет стерических препятствий, создаваемых 2'-метоксигруппой. Вследствие этого атака фенильного кольца нитрениевым катионом становится невозможной.

 $\label{eq:Tadinu} T\, a\, б\, \pi\, u\, ц\, a\ \, 1$ Спектры ЯМР 1 H $\,$ синтезированных соединений

Co-	Химические сдвиги, δ , м. д. (КССВ, J , Γ ц)									
еди-	2-CH ₃ (7-CH ₃) (3H, c)	СООС ₂ Н ₅ (3H, т, 2H, кв)	Н аром.	Прочие протоны						
2	-	-	7.78 (1H, c, 9-H)	1.00 (6H, c, 3-, 3-CH ₃); 1.78 (2H, м, 6-CH ₂); 1.86 (2H, м, 7-CH ₂); 2.62 (2H, c, 2-CH ₂); 2.74 (4H, м, 5-, 8-CH ₂); 2.90 (2H, c, 4-CH ₂); 10.73 (1H, c, NOH)						
3	2.44 (2.35)	1.34 (J = 7.0), 4.40 (J = 7.0)	7.06 (1H, c, 8-H)	2.14 (3H, c, 6-CH ₃); 2.85 (3H, c, 4-CH ₃); 5.20 (2H, c, NH ₂)						
5	2.11	-	8.17 (1H, c, 9-H)	1.83 (4H, м, 6-, 7-CH ₂); 2.32 (3H, c, 3-CH ₃); 2.89 (4H, м, 5-, 8-CH ₂); 5.20 (2H, c, NH ₂); 6.95 (1H, c, 4-H)						
7	2.31	-	7.55 (1H, c, 1-H), 7.60 (1H, c, 4-H), 7.80 (1H, c, 9-H)	1.83 (4H, м, 6-, 7-CH ₂); 2.46 (3H, с, 3-CH ₃); 2.89 (4H, м, 5- и 8-CH ₂)						
9a	2.64	1.36 ($J = 7.1$), 4.59 ($J = 7.1$)	7.69 (1H, т, 10-H), 7.87 (1H, т, 9-H), 8.06 (1H, д, <i>J</i> = 8.1, 8-H), 8.15 (1H, д, <i>J</i> = 8.1, 11-H)	1.06 (6H, c, 5-, 5-CH ₃); 3.09 (2H, c, 6-CH ₂); 3.11 (2H, c, 4-CH ₂)						
9b	2.58	1.36 (J = 7.1), 4.59 (J = 7.1)	7.35 (1H, c, 11-H), 7.45 (1H, c, 8-H)	1.04 (6H, c, 5-, 5-CH ₃); 3.02 (2H, c, 6-CH ₂); 3.06 (2H, c, 4-CH ₂); 3.86 (3H, c, OCH ₃); 10.36 (1H, c, 9-OH)						
9c	2.69	1.39 ($J = 7.1$), 4.63 ($J = 7.1$)	8.32 (1H, π , $J = 9.2$ 11-H,), 8.48 (1H, π , π , $J_1=9.2$, $J_2=2.56$, 10-H), 8.73 (1H, π , $J=2.56$, 8-H)	1.10 (6H, c, 5-, 5-СН ₃), 3.18 (4H, c, 4- и 6-СН ₂)						
9d	2.85	1.04 (<i>J</i> = 7.1), 4.18 (<i>J</i> = 7.1)	7.66 (1H, д. д, J_1 = 7.66, J_2 =1.36, 10-H,), 7.78 (1H, т, 9-H), 7.96 (1H, д. д, J_1 = 8.02, J_2 = 1.36, 8-H)	1.04 (6H, c, 5-, 5-CH ₃), 3.06 (2H, c, 6-CH ₂), 3.12 (2H, c, 4-CH ₂)						
9e	2.60	1.35 (<i>J</i> = 7.1), 4.54 (<i>J</i> = 7.1)	7.56 (1H, д. д, $J_1 = 8.80$, $J_2 = 1.96$, 10-H), 7.77 (1H, д, J = 1.96, 8-H), 7.97 (1H, д, $J = 8.80$, 11-H)	1.04 (6H, c, 5-, 5-CH ₃), 2.63 (3H, c, 9-SCH ₃), 3.04 (2H, c, 6-CH ₂), 3.08 (2H, c, 4-CH ₂)						
9f	2.63	1.41 $(J = 7.1)$, 4.54 $(J = 7.1)$	7.97 (2H, c, 8-H и 9-H), 8.21 (1H, c, 11-H)	1.04 (6H, c, 5-, 5-CH ₃), 3.05 (2H, c, 6-CH ₂), 3.10 (2H, c, 4-CH ₂)						
10	(2.69)	0.92 (J = 7.1), 3.95 (J = 7.1)	6.57 (1H, π , $J = 2.8$ 6-H), 6.84 (1H, π . π , $J_1 = 11$, $J_2 = 2.8$, 4-H), 6.90 (1H, π , $J = 11$, 3-H)	0.92 (3H, c, 4-CH ₃), 1.07 (3H, c, 4-CH ₃), 2.42 (2H, c, 3-CH ₂), 2.52 (2H, c, 5-CH ₂), 3.53 (3H, c, OCH ₃), 3.67 (3H, c, OCH ₃), 10.78 (1H, c, NHCO)						
11	(2.42)	0.88 (J = 7.1), 3.92 (J = 7.1)	6.60 (1H, т, 5'-H), 6.97 (1H, д, 4'-H, J = 11), 7.00 (1H, д, 6'-H, J = 11)	0.91 (3H, c, 4-CH ₃), 1.07 (3H, c, 4-CH ₃), 2.53 (2H, д, 5-CH ₂ , J = 3.64), 2.73 (2H, д, 3-CH ₂ , J = 3.64), 3.46 (3H, c, OCH ₃), 3.79 (3H, c, OCH ₃), 10.78 (1H, c, NHCO)						

 $\label{eq:Tadin} T\ a\ б\ \pi\ u\ ц\ a\ 2$ Физико-химические характеристики соединений 3, 5, 7–11

	Б	<u>Найдено, %</u> Вычислено, %				T.		Вы-
Соеди- нение	Бругто- формула	С	Н	N	Hal (S)	Т. пл, °C *	R_f **	ход, %
3	$C_{16}H_{20}N_2O_2$	70.81 70.59	7.23 7.35	10.52 10.29	_	77–78	0.47	48.4
5	$C_{15}H_{18}N_2$	79.91 79.65	7.74 8.02	12.20 12.39	-	230–231	0.3	48
7	$C_{15}H_{17}N$	85.10 85.30	8.10 8.06	6.57 6.64	-	124–125	-	43
8a	$C_{21}H_{24}N_2O_3$	71.84 71.59	7.00 6.86	7.72 7.95	_	187		75
8b	$C_{23}H_{28}N_2O_5$	67.00 66.97	6.81 6.84	7.00 6.78	_	214		80.4
8c	$C_{21}H_{23}N_3O_5$	63.20 63.48	5.93 5.83	10.30 10.58	_	222		48.1
8d	$C_{21}H_{23}CIN_2O_3$	65.43 65.20	6.15 5.99	7.12 7.24	9.32 9.18	210		70.3
8e	$C_{22}H_{26}N_2O_3S$	66.56 66.33	6.37 6.53	7.20 7.04	(8.31) (8.04)	207		94
8f	$C_{21}H_{23}BrN_2O_3$	<u>58.62</u> 58.47	5.15 5.34	6.69 6.50	18.30 18.56	210–211		31
8g	$C_{23}H_{28}N_2O_5$	67.10 66.97	6.87 6.84	6.90 6.78	_	235		78
8h	$C_{23}H_{28}N_2O_5$	67.00 66.97	6.85 6.84	7.00 6.78	_	215		80.4
9a	$C_{21}H_{22}N_2O_2$	75.70 75.45	6.41 6.59	8.52 8.38	_	111–112	0.65	20.8
9b	$C_{22}H_{24}N_2O_4$	69.80 69.47	6.10 6.32	7.20 7.39	_	166	0.52	26
9c	$C_{21}H_{21}N_3O_4$	66.23 66.49	5.31 5.54	11.00 11.08	_	196	0.73	67
9d	$C_{21}H_{21}CIN_2O_2$	<u>68.1</u> 68.39	5.44 5.70	7.81 7.60	9.42 9.63	104	0.75	25
9e	$C_{21}H_{24}N_2O_2S$	<u>69.60</u> 69.47	6.44 6.36	7.52 7.39	(8.60) (8.42)	94	0.55	22
9f	$C_{21}H_{21}BrN_2O_2$	61.25 61.02	5.14 5.12	6.89 6.78	19.48 19.33	204	0.22	35.7
10	$C_{23}H_{28}N_2O_5$	66.72 66.99	6.71 6.84	6.78 6.80	_	227	0.45	46
11	$C_{23}H_{28}N_2O_5$	66.75 66.99	6.64 6.84	6.79 6.80	_	205	0.71	44

^{*} Растворитель для кристаллизации: спирт (соединения 3, 5), ацетон—вода (соединение 9a), бензол—гексан (соединение 9b), ацетон (соединение 9c), ацетон—гексан (соединения 7, 9d–f, 10, 11).

^{**} Элюент: хлороформ-бензол-спирт, 5:10:1 (**3**, **9c**); бензол-изопропиловый спирт, 10:1 (**5**, **9a**,**e**,**f**); бензол-изопропиловый спирт-этилацетат, 8:1:2 (**9b**); этилацетат-бензол, 4:1 (**9d**, **10**, **11**).

Таким образом, нами показано, что превращение оксимов 5-оксо-7,7-триметил-5,6,7,8-тетрагидрохинолинов в ПФК зависит от заместителей, находящихся в положении 4 тетрагидрохинолинового цикла, и может протекать по нескольким направлениям: с ароматизацией насыщенного цикла (ароматизация Земмлера—Вольфа), с образованием азепинонов — нормальных продуктов перегруппировки Бекмана и с атакой промежуточно образующимся нитрениевым ионом 4-фенильного заместителя и образованием пиридоакридинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записывали на приборе Varian VXR-300 (300 МГц) и на приборе Gemini-200 (200 МГц) в ДМСО- d_{6} , внутренний стандарт ТМС. Контроль за чистотой полученных соединений осуществляли с помощью ТСХ на пластинках Silufol UV-254. Проявление в УФ свете или иодом.

Оксимы **1**, **2**, **8а**–**h** получали известным способом из соответствующих 2,7,7-триметил-3-этоксикарбонил-4-арилзамещенных-5-оксо-5,6,7,8-тетрагидрохинолинов [11–13]. Конфигурацию оксимов не устанавливали.

Общая методика получения соединений (3, 5, 9а–f, 10, 11). Смесь $10 \, \Gamma \, \Pi \Phi K$ и $1 \, \Gamma$ соответствующего оксима нагревают $1 \, \Psi \, \Pi$ ри $100 \, ^{\circ}$ С. Реакционную смесь выливают в $100 \, \text{мл}$ воды, нейтрализуют водным раствором аммиака и выпавший осадок отфильтровывают или экстрагируют хлороформом. Очищают хроматографированием на силикагеле.

2,3-Диметил-5,6,7,8-тетрагидроакридин (7). К раствору 2.26 г (0.01моль) 1-амино-2,3-диметил-5,6,7,8-тетрагидроакридина (**5**) в 20 мл гипофосфорной кислоты при 5 °C прибавляют раствор 0.69 г (0.01 моль) NaNO₂ в 5 мл воды. Смесь выдерживают при комнатной температуре 5 ч. Нагревают 1 ч при 60 °C, охлаждают, нейтрализуют аммиаком, фильтруют. Выход 0.9 г. Кристализуют из смеси ацетон—гексан.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. C. Cortes, R. Martinez, J. G. Avila-Zarraga, J. Heterocycl. Chem., 23, 1617 (1992).
- 2. А. Я. Страков, Д. В. Брутане, Изв. АН Латв ССР. Сер. хим., 225 (1973).
- 3. V. Bardacos, W. Sucrow, Chem. Ber., 111, 853 (1978).
- 4. A. Maquestiau, Y. Van Haverbeke, J. J. Vanden Eynde, N. De Pauw, *Bull. Soc. Chim. Belges*, **89**, 45 (1980).
- C. Dagher, R. Hanna, P. B. Terent'ev, Y. G. Boundel, B. I. Maksimov, N. S. Kulikov, J. Heterocycl. Chem., 20, 989 (1983).
- 6. R. Martinez, G. Lopez, Z. Avila, J. Heterocycl. Chem., 32, 491 (1995).
- 7. A. J. Nunn, F. J. Rowell, J. Chem. Soc., Perkin Trans. 1, 2697 (1973).
- 8. С. В. Толкунов, М. Н. Кальницкий, А. И. Хижан, В. И Дуленко, *XГС*, 1124 (1995).
- 9. К. В. Вацуро, Г. Л. Мищенко, *Именные реакции в органической химии*, Химия, Москва, 1976.
- 10. K. Nagarajan, K. R. Shah, J. Chem. Soc., Chem. Commun., 926 (1973).
- 11. H. J. Antaki, J. Chem. Soc., 4877 (1973).
- 12. Э. И. Станкевич, Э. Э. Гринштейн, Г. Я. Ванаг, ХГС, 583 (1966).
- 13. Э. И. Станкевич, Э. Э. Гринштейн, Г. Я. Дубур, ХГС, 1118 (1966).

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 340114 e-mail: tolkunov@uvika.dn.ua Поступило в редакцию 28.08.2001 После доработки 31.01.2002