С. С. Катаев, Н. Е. Гаврилова^а, В. В. Залесов

N-(2-ПИРИДИЛ)АМИДЫ 2,4-ДИОКСОБУТАНОВЫХ КИСЛОТ В РЕАКЦИЯХ С ДИАЗОАЛКАНАМИ

Взаимодействием N-(2-пиридил)амидов 4-арил-2,4-диоксобутановых кислот с диазоалканами синтезированы N-(2-пиридил)амиды 4-R-2-алкокси-4-арилбут-2-еновых кислот и 3-алкокси-3-ароилметил-2-оксо-2,3-дигидро-имидазо[1,2-a]пиридины. Обсуждается строение и механизм образования продуктов.

Ключевые слова: диазоалканы, 2-оксо-2,3-дигидроимидазо[1,2-a]пиридины, N-(2-пиридил)амиды 2,4-диоксобутановых кислот, внутримолекулярная циклизация.

Ранее мы сообщали о необычной циклизации N-(2-тиазолил)амидов 4-арил-2,4-диоксобутановых кислот под действием диазометана в производные имидазо[2,1-b]тиазола [1, 2]. В продолжение исследований в области внутримолекулярной циклизации гетериламидов 4-арил-2,4-диоксобутановых кислот под действием диазонуклеофилов в настоящей работе изучено взаимодействие N-(2-пиридил)амидов 4-арил-2,4-диоксобутановых кислот 1a-e с диазометаном и диазоэтаном.

Установлено, что в реакциях амидов **1а-е** с диазометаном образуются N-(2-пиридил)амиды 4-арил-2-метокси-4-оксобут-2-еновых кислот **2а,b** и 3-ароилметил-3-метокси-2-оксо-2,3-дигидроимидазо[1,2-*a*]пиридины **3а-е** с выходами 5–8 и 32–48%, соответственно, а при взаимодействии амидов **1а,b,e** с диазоэтаном получены N-(2-пиридил)амиды 4-арил-4,5-эпокси-2-этоксигекс-2-еновых кислот **4а,b** с выходами 3% и 3-ароилметил-2-оксо-3-этокси-2,3-дигидроимидазо[1,2-*a*]пиридины **5а-с** с выходами 24–45% (см. табл. 1, 2, схему 1).

Согласно спектральным характеристикам амиды 1a—е в растворах полностью енолизованы [3, 4], и соединения 2a, b, таким образом, являются продуктами О-метилирования енольного гидроксила соединений 1a, b. В ИК спектрах амидов 2a, b имеется полоса поглощения кетонного карбонила $C_{(4)}$ =О в области 1670, 1675 см $^{-1}$, вовлеченного в ВВС Н-хелатного типа в исходных соединениях 1a, b, а в спектре ЯМР 1 Н соединения 2a наблюдается синглет протонов метильной группы при 3.95 м. д. О-Этилирование енольного гидроксила амидов 1a, e осуществляется и в реакции с диазоэтаном, но в силу большей, чем у диазометана, нуклеофильности последнего процесс протекает глубже с атакой второй молекулы диазоэтана по кетонному карбонилу $C_{(4)}$ =О уже алкилированного продукта. В ИК спектрах соединений 4a, b отсутствует полоса поглощения кетонного карбонила, а спектры ЯМР 1 Н характеризуются группой сигналов сложной

1, 3 a Ar = Ph, b Ar = 4-MeC_6H_4 , c Ar = 4-MeOC_6H_4 , d Ar = 4-ClC_6H_4 , e Ar = 4-BrC_6H_4 ; 2 a Ar = Ph, b Ar = 4-MeC_6H_4 ; 4 a Ar = Ph, b Ar = 4-BrC_6H_4 ; 5 a Ar = Ph, b Ar = 4-MeC_6H_4 , c Ar = 4-BrC_6H_4

мультиплетности, относящихся к E- и Z-формам данных соединений (табл. 2). Масс-спектр соединения $\mathbf{4a}$ содержит пик молекулярного иона с m/z 324 и интенсивностью 0.12%, а также пики (m/z, $I_{\text{отн}}$, %): 295 (0.6) [M–C₂H₅]⁺, 231 (9.7) [M–NHC₅H₄N]⁺, 203 (8.2) [M–OCNHC₅H₄N], 121 (31.6) [OCNHC₅H₄N]⁺, 105 (100) [C₆H₅CO]⁺, 78 (55.4) [C₅H₄N]⁺, 77 (87.3) [C₆H₅]⁺, что не противоречит предполагаемой структуре.

По данным ТСХ, в реакционной смеси обнаруживается до шести продуктов реакции, но при любом изученном соотношении амид—диазоалкан (1:1, 1:2, 1:4), основными продуктами реакции являются производные имидазо[1,2-a]пиридинов **3a—e**, **5a—c**. ИК спектры соединений **3**, **5** характеризуются наличием полос поглощения двух карбонильных групп в области 1740—1700 и 1700—1650 см $^{-1}$ и отсутствием полосы поглощения амидной группы NH. В спектрах ЯМР 1 Н, помимо сигналов протонов алкоксигрупп и ароматических протонов, присутствует сигнал двух протонов метиленовой группы при хиральном атоме углерода гетероцикла $C_{(3)}$, который в зависимости от использованного растворителя разрешается в виде синглета при 3.66—3.82, дублета при 3.97—4.25 или квадруплета при 4.14—4.59 м. д. Следует отметить, что метиленовые протоны группы EtO, связанной с асимметрическим атомом $C_{(3)}$ в соединениях **5а—c**, диастереотопны и потому их сигналы в спектрах ЯМР 1 Н имеют вид двух квартетов при 3.05—3.18 и 3.45—3.58 м. д.

Таблица 1 **Характеристики синтезированных соединений**

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. пл., °С*	Выход,
		С	Н	N	Hal		%
2a	C ₁₆ H ₁₄ N ₂ O ₃	68.21 68.07	4.94 5.00	9.87 9.92	-	104–106	8
2 b	$C_{17}H_{16}N_2O_3$	68.99 68.91	5.40 5.44	9.36 9.45	_	134–136	5
3 a	C ₁₆ H ₁₄ N ₂ O ₃	68.14 68.08	5.03 5.00	9.84 9.92	_	197.0–197.5 (разл.)	47
3b	C ₁₇ H ₁₆ N ₂ O ₃	68.87 68.91	5.40 5.44	9.43 9.45	_	201.5-203.0 (разл.)	48
3c	$C_{17}H_{16}N_2O_4$	65.46 65.38	<u>5.19</u> 5.16	8.89 8.97	_	174.5–176.0 (разл.)	43
3d	C ₁₆ H ₁₃ ClN ₂ O ₃	60.73 60.67	4.12 4.14	8.78 8.84	11.12 11.19	207–208 (разл.)	39
3 e	C ₁₆ H ₁₃ BrN ₂ O ₃	53.15 53.21	3.65 3.63	7.79 7.76	22.21 22.12	223–224 (разл.)	31
4 a	C ₁₉ H ₂₀ N ₂ O ₃	70.44 70.35	6.20 6.21	8.57 8.64	_	76–78	3
4b	C ₁₉ H ₁₉ BrN ₂ O ₃	<u>56.64</u> 56.59	4.63 4.75	6.83 6.95	19.94 19.81	150–151	3
5a	$C_{17}H_{16}N_2O_3$	68.97 68.91	<u>5.46</u> 5.44	9.39 9.45	_	194–196 (разл.)	43
5b	C ₁₈ H ₁₈ N ₂ O ₃	69.71 69.66	<u>5.89</u> 5.85	8.96 9.03		187.0–187.5 (разл.)	25
5c	C ₁₇ H ₁₅ BrN ₂ O ₃	<u>54.47</u> 54.42	4.06 4.03	7.41 7.47	21.38 21.30	194–195 (разл.)	45

^{*} Перекристаллизовывали из гексана (соединения 2a,b и 4a,b) и бензола (соединения 3a-e и 5a-c).

Масс-спектр соединения **3а** содержит пик молекулярного иона с m/z 282 (I 24%), а также пики (m/z, $I_{\text{отн}}$, %): 267 (9) [M–CH₃]⁺, 205 (7) [M–C₆H₅]⁺, 177 (47) [M–C₆H₅CO]+, 121 (100) [OCNHC₅H₄N]⁺, 105 (61) [M–C₆H₅CO]⁺, 77 (41) [C₆H₅]⁺, что не противоречит предполагаемой структуре.

Спектр ЯМР 13 С соединения **3b** содержит следующие сигналы (δ , м. д.): 21.15 (n- $\underline{C}H_3$ C $_6H_4$); 43.4 ($C_{(3)}$ - $\underline{C}H_2$); 52.40 ($C_{(3)}$ - $O\underline{C}H_3$); 92.15 ($C_{(3)}$), 112.40, 116.49, 128.65, 129.65, 134.0, 134.40, 143.40, 144.90 (C аром.); 169.15 ($C_{(9)}$), 182.65 ($C_{(2)}$ =O), 193.90 (C=O). Присутствие в спектре сигнала атомов углерода амидного карбонила гетероцикла ($C_{(2)}$ =O) и кетонного карбонила при 182.5 и 193.9 м. д. позволяет отвергнуть для соединения **3b** и соединений **3**, **5** альтернативную структуру 5,5-дизамещенных тетрагидро-2,3-пирролдионов (C4), в которых кетонный карбонил енолизован (C5].

Образование соединений **3**, **5** начинается, по-видимому, с протонирования диазоалкана атомом водорода енольного гидроксила и перегруппировки 2-пиридиламидного фрагмента в пиридонимидный с образованием интермедианта (C). Нуклеофильность "внутреннего" образовавшегося NH-нуклеофила выше, чем нуклеофильность диазоалкана, вторая молекула которого может принимать участие в дальнейших превращениях карбонильного субстрата, а его атака направлена на стерически более доступный и электрофильный атом $C_{(2)}$. Образование имидазольного цикла сопровождается разрушением кратной связи $C_{(2)}$ = $C_{(3)}$, элиминированием азота и миграцией атома водорода к атому $C_{(3)}$.

О-Алкилирование енольного гидроксила и циклизация, по-видимому, являются согласованными процессами, поскольку О-метильные производные 2-пиридиламидов **2а,b** не циклизуются под действием диазоалканов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре UR-20 в виде пасты в вазелиновом масле, спектры ЯМР 1 Н — на приборе Bruker WR-80 SY (80 МГц) для растворов в ДМСО- d_6 и CDCl $_3$, внутренний стандарт ТМС. Масс-спектры сняты на МХ-1320, ионизирующее напряжение 70 эВ. УФ спектры записаны на спектрофотометре СФ-46 для растворов в этаноле. ТСХ выполнена на пластинах Silufol UV-254, в системе ацетон—спирт.

N-(2-Пиридил)амиды 4-арил-2-метокси-4-оксобут-2-еновых кислот (2а,b), 3-метокси-3-(2-бензоилметил)-2-оксо-2,3-дигидроимидазо[1,2-a]пиридины (3a–e). К раствору 10 ммоль соединения 1a–e в 30 мл бензола прибавляют раствор 10 ммоль диазометана в 15 мл эфира. Реакционную смесь перемешивают 3 ч при -5–0 °C, охлаждают, осадок продукта 3a–e отфильтровывают. Фильтрат упаривают, перекристаллизацией остатка выделяют продукт 2a,b.

Таблица 2

Спектральные характеристики соединений 2-5

Соеди- нение	R_f	ИК спектр, v, см ⁻¹	УФ спектр, λ _{max} , нм (lg ε)	Растворитель	Хиимические сдвиги, δ , м. д. (КССВ, J , Γ ц)
2a	0.84	1670 (C=O), 1711 (NH <u>CO</u>), 3375 (NH)	209; 229; 312	ДМСО-d ₆	3.95 (3H, c, CH ₃ O); 6.82 (1H, c, =CH); 7.42 (9H, м, 5H _{Ph} , 4H _{Het}); 9.58 (1H, c, NH)
2 b	-	1675 (C=O), 1712 (NH <u>CO</u>), 3382 (NH)	203; 226; 324		-
3a	0.21	1650 (C=O), 1723 (C=O лактам.), 3080 (CH)	251 (4.47), 361 (3.84)	CDCl ₃ CDCl ₃ + F ₃ CCOOH CDCl ₃ + ДМСО-d ₆ , 1:1	3.12 (3H, c, CH ₃ O); 3.82 (2H, c, CH ₂); 7.51 (9H, м, 5H _{Ph} , 4H _{Het}) 3.12 (3H, c, CH ₃ O); 4.25 (2H, д, CH ₂ , <i>J</i> = 8); 7.52 (9H, м, 5H _{Ph} , 4H _{Het}) 3.22 (3H, c, CH ₃ O); 4.59 (2H, κ, CH ₂ , <i>J</i> = 6); 7.51 (9H, м, 5H _{Ph} , 4H _{Het})
3b	0.16	1700 (C=O), 1740 (C=O лактам.), 3030 (CH)	257 (4.91), 358 (3.94)	CDCl ₃	2.32 (3H, c, CH ₃); 3.12 (3H, c, CH ₃ O); 3.75 (2H, c, CH ₂); 7.35 (8H, M, 4H _{Ar} , 4H _{Het})
3c	0.16	1670 (C=O), 1712 (C=O лактам.), 3012 (CH)	261 (4.3), 280 (4.24), 361 (3.74)	CDCl ₃ CDCl ₃ + F ₃ CCOOH	3.11 (3H, c, CH ₃ O); 3.71 (2H, c, CH ₂); 3.85 (3H, c, <u>CH</u> ₃ OC ₆ H ₄); 7.22 (8H, M, 4H _{Ar} , 4H _{Het}) 3.11 (3H, c, CH ₃); 3.85 (3H, c, <u>CH</u> ₃ OC ₆ H ₄); 4.18 (2H, c, CH ₂); 7.22 (8H, M, 4H _{Ar} , 4H _{Het})
3d	0.16	1680 (C=O), 1714 (C=O лактам.), 3012 (CH)	256 (4.50), 363 (3.79)	CDCl ₃ CDCl ₃ + F ₃ CCOOH CDCl ₃ + ДМСО-d ₆ , 1:1 CDCl ₃ + ДМСО-d ₆ , (1:1) + + F ₃ CCOOH	3.08 (3H, c, CH ₃ O); 3.66 (2H, c, CH ₂); 7.38 (8H, м, 4H _{Ar} , 4H _{Het}) 3.18 (3H, c, CH ₃ O); 4.16 (2H, c, CH ₂); 7.45 (8H, м, 4H _{Ar} , 4H _{Het}) 3.05 (3H, c, CH ₃ O); 3.97 (2H, д, CH ₂ , <i>J</i> = 6); 7.55 (8H, м, 4H _{Ar} , 4H _{Het}) 3.18 (3H, c, CH ₃ O); 4.53 (2H, к, CH ₂ , <i>J</i> = 6); 7.60 (8H, м, 4H _{Ar} , 4H _{Het})

i	Ī	1	1	1	i
3e	0.17	1680 (C=O), 1716	258 (4.57), 362 (3.83)	CDCl ₃	3.15 (3H, c, CH ₃ O); 3.78 (2H, c, CH ₂); 7.65 (8H, м, 4H _{Ar} , 4H _{Het})
		(C=O лактам.), 3012 (CH)		CDCl ₃ + F ₃ CCOOH	3.11 (3H, c, CH ₃ O); 4.12 (2H, c, CH ₂); 7.51 (8H, м, 4H _{Ar} , 4H _{Het})
4a	0.83*	1690 (C=O), 3380 (NH)	237 (4.45), 275 (4.35), 312 (4.08)	CDCl ₃	1.25 (6H, м, <u>CH₃CH₂, <u>CH</u>₃CH); 3.52 (2H, к, CH₃<u>CH₂, J</u> = 7); 4.49 (1H, к, CH₃<u>CH</u>, J = 6); 7.55 (10H, м, 5H_{Ph}, 4H_{Het}, =CH); 9.28, 9.41 (1H, два c, 2:3, NH)</u>
4b	0.49*; 0.81	1690 (C=O), 3320 ш (NH)	197, 236, 276, 335	CDCl ₃	1.27 (6H, м, <u>CH₃CH₂, <u>CH</u>₃CH); 3.50 (2H, к, CH₃<u>CH₂, J</u> = 7); 4.40 (1H, к, CH₃<u>CH</u>, J = 6); 7.66 (9H, м, 4H_{Ar}, 4H_{Het}, =CH); 9.31, 9.58 (1H, два c, 1:4, NH)</u>
5a	0.24	1675 (C=O), 1720 (C=O лактам.), 3080 (СН)	251 (4.43), 362 (3.81)	CDCl ₃ CDCl ₃ + F ₃ CCOOH	1.11 (3H, τ, CH ₃ , $J = 8$); 3.05 (1H, κ, CH ₃ <u>CH</u> ₂ , $J = 8$); 3.55 (1H, κ, CH ₃ <u>CH</u> ₂ , $J = 8$); 3.78 (2H, c, CH ₂); 7.55 (9H, м, 5H _{PH} , 4H _{Het}) 1.14 (3H, τ, CH ₃ , $J = 8$); 3.15 (1H, κ, CH ₃ <u>CH</u> ₂ , $J = 8$); 3.50 (1H, κ, CH ₃ <u>CH</u> ₂ , $J = 8$); 4.25 (2H, κ, CH ₂ , $J = 4$); 7.63 (9H, м, 5H _{PH} , 4H _{Het})
5b	0.18*	1685 (C=O), 1700 (C=O лактам.), 3045 (CH)	257 (4.61), 362 (3.90)	CDCl ₃ CDCl ₃ + F ₃ CCOOH	1.11 (3H, τ, $\underline{\text{CH}}_3\text{CH}_2$, $J=8$); 2.34 (3H, c, CH ₃); 3.06 (1H, κ, CH ₃ $\underline{\text{CH}}_2$, $J=8$); 3.45 (1H, κ, CH ₃ $\underline{\text{CH}}_2$, $J=8$); 3.74 (2H, c, CH ₂); 7.33 (8H, м, 4H _{Ar} , 4H _{Het}) 1.12 (3H, τ, $\underline{\text{CH}}_3\text{CH}_2$, $J=8$); 2.34 (3H, c, CH ₃); 3.09 (1H, κ, CH ₃ $\underline{\text{CH}}_2$, $J=8$); 3.49 (1H, κ, CH ₃ CH ₂ , $J=8$); 4.18 (2H, κ, CH ₂ , $J=3$); 7.55 (8H, м, 4H _{Ar} , 4H _{Het})
5c	0.23*	1670 (C=O), 1710 (C=O лактам.)	257 (4.41), 357 (3.33)	CDCl ₃ CDCl ₃ + F ₃ CCOOH	1.10 (3H, τ, CH ₃ , <i>J</i> = 7); 3.11 (1H, κ, CH ₂ , <i>J</i> = 7); 3.48 (1H, κ, CH ₂ , <i>J</i> = 7); 3.71 (2H, c, CH ₂); 7.85 (8H, м, 4H _{Ar} , 4H _{Het}); 1.18 (3H, τ, <u>CH₃CH₂</u> , <i>J</i> = 8); 3.18 (1H, κ, CH ₂ , <i>J</i> = 8); 3.58 (1H, κ, CH ₂ , <i>J</i> = 8); 4.14 (2H, κ, CH ₂ , <i>J</i> = 4); 7.80 (8H, м, 4H _{Ar} , 4H _{Het})

 $^{^{*}}$ Значания R_f , полученные в этаноле, в остальных случаях — в ацетоне.

N-(2-Пиридил)амиды 4-арил-4,5-эпокси-2-этоксигекс-2-еновых кислот (4а,b), 3-ароил-метил-3-этокси-2-оксо-2,3-дигидроимидазо[1,2-a]пиридины (5а-c). К раствору 10 ммоль соединения 1а,b,e в 30 мл бензола прибавляют раствор 20 ммоль диазоэтана в 30 мл эфира. Реакционную смесь перемешивают 3 ч при -5-0 °C, охлаждают, осадок продукта 5a-c отфильтровывают. Фильтрат упаривают, остаток продукта 4a,b перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. Н. Кашин, В. В. Залесов, в кн. *Актуальные тенденции в органическом синтезе на пороге новой эры*, Тез. докл. II Междунар. конф. молодых ученых, С.-Петербург, 1999, 80
- 2. H. E. Гаврилова, В. В. Залесов, Д. Н. Кашин, *XГС*, 853 (2002).
- 3. А. В. Милютин, Л. Р. Амирова, Ф. Я. Назметдинов, Р. Р. Махмудов, А. Л. Голованенко, Ю. С. Андрейчиков, В. Э. Колла, *Хим.-фарм. журн.*, **30**, № 5, 47 (1996).
- А. В. Милютин, Л. Р. Амирова, И. В. Крылова, Ф. Я. Назметдинов, Г. Н. Новоселова, Ю. С. Андрейчиков, В. Э. Колла, Хим.-фарм. журн., 31, № 1, 32 (1997).
- 5. Ю. С. Андрейчиков, В. Л. Гейн, О. И. Иваненко, А. Н. Масливец, *ЖОрХ*, **22**, 2208 (1986).

Пермский государственный университет, Пермь 614000, Россия Поступило в редакцию 12.06.2000 После доработки 30.07.2001

^аНПО "Биомед", Пермь 614089, Россия e-mail: analisbio@permonline.ru