СПИСОК ЛИТЕРАТУРЫ

- 1. А. П. Козлов, В. В. Рябова, Г. А. Козлова, Ю. С. Андрейчиков, *ЖОрХ*, **33**, 406 (1997).
- 2. Е. Н. Козьминых, А. О. Беляев, В. О. Козьминых, Р. Р. Махмудов, Т. Ф. Одегова, *Хим.*-фарм. журн., **36**, № 11, 28 (2002).
- 3. В. О. Козьминых, Н. М. Игидов, Е. С. Березина, Е. Н. Козьминых, Ю. С. Касаткина, *Изв. АН, Сер. хим.*, 1564 (2000).
- 4. Е. С. Березина, В. О. Козьминых, Н. М. Игидов, С. С. Ширинкина, Е. Н. Козьминых, Р. Р. Махмудов, Е. В. Буканова, *ЖОрХ*, **37**, 574 (2001).

В. О. Козьминых, Е. В. Буканова, А. О. Беляев, Е. Н. Козьминых

Пермский государственный педагогический университет, Пермь 614990, Россия e-mail: kvo@pi.ccl.ru

Поступило в редакцию 11.07.2003

ТАУТОМЕРИЯ СИСТЕМЫ ИЗОКСАЗОЛИДИН – 1,2,4-ТРИАЗОЛИДИН-3-ТИОН

Ключевые слова: изоксазолидины, 1,2,4-триазолидин-3-тионы, кольчато-кольчатая таутомерия.

Продукты конденсации 5-гидрокси-3,3,5-триметилизоксазолидина (1) с 4-фенилтиосемикарбазидом и 2-метил-4-фенилтиосемикарбазидом имеют преимущественно изоксазолидиновое или 1,2,4-триазолидиновое строение и не проявляют склонности к кольчато-кольчатым таутомерным превращениям в растворах [1]. Обнаружить указанное явление удалось при изучении строения соединений 2а,b — продуктов реакции соединения 1 с производными 4-метил- и 2,4-метилтиосемикарбазида.

Соединения **2a,b** образуются после непродолжительного кипячения исходных реагентов в метаноле в присутствии каталитических количеств уксусной кислоты.

В кристаллическом состоянии соединения ${\bf 2a,b}$ имеют триазолидиновое строение ${\bf C}$, что подтверждается их спектрами ЯМР $^{13}{\bf C}$ в твердой фазе. 1428

Эта же форма является единственной для соединения 2a в растворах как малополярных, так и полярных растворителей. Кольчато-кольчатое таутомерное равновесие типа $A \rightleftharpoons C$ наблюдалось нами для соединения 2b – производного 2,4-диметилтиосемикарбазида. Так, при его растворении спектрально фиксируется появление дополнительной циклической формы, которой на основании данных [1] следует приписать изоксазолидиновое строение A. Таутомерное равновесие устанавливается в течение 3 сут, зависит от полярных свойств используемого растворителя — переход от $CDCl_3$ к основным апротонным растворителям (пиридин- d_5 , ДМСО- d_6 , ДМФА- d_7) и приводит к увеличению содержания 1,2,4-триазолидиновой формы C.

Таутомерия $\mathbf{A} \rightleftharpoons \mathbf{C}$ служит новым примером кольчато-кольчатых равновесий в ряду 5-функционально-замещенных изоксазолидинов, отдельные случаи которых наблюдались нами ранее [1, 2].

Спектры ЯМР 1 H (в CDCl $_{3}$) и 13 C (в ДМСО-d $_{6}$) снимали на спектрометрах Bruker CXP 100 (25 МГ $_{\Pi}$), АС 200 (200 МГ $_{\Pi}$) и АМ 500 (125 МГ $_{\Pi}$).

Соединение 1 получали по методу [3].

4,5-Диметил-5-(2-метил-2-гидроксиаминопропил)-1,2,4-триазолидин-3-тион (2а). Выход 50%. Т. пл. 136–138 °C. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): форма **C** (100%) – 1.44 (3H, c, CH₃); 1.51 (3H, c, CH₃); 1.86 (3H, c, 5-CH₃); 2.20; 2.34 (AB-система, 2H, J_{AB} = 13, CH₂); 3.08 (3H, c, 4-CH₃); 4.83 (1H, уш. c, NH); 7.13 (2H, уш. c, OH + NHC=S). Спектр ЯМР ¹³С, δ , м. д.: форма **C** (100%) – 21.1 и 24.2 (2CH₃); 28.4 (5-CH₃); 31.2 (4-CH₃); 54.2 (CH₂); 65.8 (C–N); 92.3 (C₍₅₎); 179.4 (C₍₃₎). Найдено,%: C 43.97; H 8.28; N 25.70. C₈H₁₈N₄OS. Вычислено, %: C 44.01; H 8.31; N 25.66.

2,4,5-Триметил-5-(2-метил-2-гидроксиаминопропил)-1,2,4-триазолидин-3-тион (2b). Выход 45%. Т. пл. 189–192 °C. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): форма **A** (20%) – 1.24 (6H, c, 3,3-(CH₃)₂); 1.46 (3H, c, 5-CH₃); 1.84; 2.09 (АВ-система, 2H, J_{AB} = 13, 4-H); 3.10 (3H, д, CH₃N); 3.62 (3H, c, CH₃N); 4.32 (1H, уш. c, NH); форма **C** (80%) – 1.40 (3H, c, CH₃); 1.50 (3H, c, CH₃); 1.89 (3H, c, 5-CH₃); 2.24; 2.39 (АВ-система, 2H, J_{AB} =13, CH₂); 3.08 (3H, c, 4-CH₃); 3.58 (3H, c, 2-CH₃); 4.43 (1H, уш. c, NH); 6.89 (1H, уш. c, NH); 7.46 (1H, уш. c, OH). Спектр ЯМР ¹³С, δ , м. д.: форма **A** (10%) – 20.8 (3,3-(CH₃)₂); 27.5 (5-CH₃); 38.7 (CH₃N); 53.4 (C₍₄₎); 60.9 (C₍₃₎); 100.4 (C₍₅₎); 177.8 (C=S); форма **C** (90%) – 21.4 (CH₃); 24.8 (CH₃); 28.8 (5-CH₃); 31.8 (4-CH₃); 42.2 (2-CH₃); 54.5 (CH₂); 65.9 (C–N); 93.1 (C₍₅₎); 183.8 (C₍₃₎). Найдено,%: C 46.49; H 8.71; N 24.07. C₉H₂₀N₄OS. Вычислено, %: C 46.52; H 8.68; N 24.11.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Ю. Ершов, ХГС, 828 (2002).
- 2. А. Ю. Ершов, А. В. Грибанов, В. А. Гиндин, А. И. Кольцов, *ЖОрХ*, **31**, 1054 (1995).
- 3. A. Belly, F. Petrus, J. Verducci, Bull. Soc. Chim. France, 1395 (1973).

А. Ю. Ершов, Н. В. Кошмина^а, М. В. Мокеев, А. В. Грибанов

Институт высокомолекулярных соединений PAH, Санкт-Петербург 199004 e-mail: ershov@hq.macro.ru Поступило в редакцию 11.04.2003

^aСанкт-Петербургский государственный университет, Санкт-Петербург 198504, Россия

 $X\Gamma C. - 2003. - N_{2}9. - C.$ 1428