- **3-(2,4-Динитрофенил)гидразоны 5-арилфуран-2,3-дионов 2а-с.** Раствор 5 ммоль соответствующей кислоты **1а-с** [3, 4] в 5–7 мл уксусного ангидрида нагревают при 80–90 °C в течение 15–20 мин. После охлаждения выпавший осадок отфильтровывают и промывают эфиром.
- **3-(2,4-Динитрофенил)**гидразон **5-фенилфуран-2,3-диона (2а).** Выход 1.63 г (92%). Т. пл. 277–278 °C (разл.). ИК спектр (вазелиновое масло), ν , см⁻¹: 3215 (NH), 1808 (СО_{лактон}), 1668, 1638, 1541, 1462. Спектр ЯМР ¹Н (80 МГц, ДМСО-d₆), δ , м. д.: 7.15 (1H, с, C₍₄₎H); 7.26–8.67 (8H, гр. с, Ph, C₆H₃); 8.82 (1H, с, NH). Найдено, %: С 53.89; Н 3.14; N 15.64. С₁₆H₁₀N₄O₆. Вычислено, %: С 54.24; Н 2.85; N 15.81.
- **3-(2,4-Динитрофенил)**гидразон 5-*n*-толилфуран-2,3-диона (2b). Выход 1.71 г (93%). Т. пл. 266–267 °C (разл.). ИК спектр (вазелиновое масло), ν , см⁻¹: 3223 (NH), 1802 (СО_{лактон}), 1665, 1632, 1547, 1460. Спектр ЯМР ¹Н (80 МГц, ДМСО-d₆), δ , м. д.: 7.13 (1H, c, C₍₄₎H); 7.18–8.62 (7H, гр. с, C₆H₄, C₆H₃); 8.88 (1H, c, NH). Найдено, %: С 55.68; Н 3.43; N 15.07. С₁₇Н₁₂N₄O₆. Вычислено, %: С 55.44; Н 3.28; N 15.21.
- **3-(2,4-Динитрофенил)**гидразон 5-*п*-хлорфенилфуран-2,3-диона (2c). Выход 1.70 г (88%). Т. пл. 284–285 °C (разл.). ИК спектр (вазелиновое масло), ν , см⁻¹: 3251 (NH), 1791 (СО_{лактон}), 1644, 1536, 1460. Спектр ЯМР ¹H (80 МГц, ДМСО-d₆), δ , м. д.: 7.22 (1H, c, C₍₄₎H); 7.10–8.55 (7H, гр. с, C₆H₄, C₆H₃); 9.15 (1H, c, NH). Найдено, %: С 49.72; H 2.50; Cl 8.91; N 14.63. С₁₆H₉ClN₄O₆. Вычислено, %: С 49.44; H 2.33; Cl 9.12; N 14.41.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Е. Рубцов, В. В. Залесов, ХГС, 1130 (2001).
- 2. А. Е. Рубцов, Р. Р. Махмудов, Н. В. Ковыляева, Н. И. Просяник, А. В. Бобров, В. В. Залесов, *Хим.-фарм. журн.*, **36**, № 11, 31 (2002).
- 3. Т. М. Широнина, Е. Н. Козьминых, Н. М. Игидов, В. О. Козьминых, *Перспективы* развития естественных наук в высшей школе. Органическая химия. Биологически активные вещества. Новые материалы. Тр. междунар. науч. конф., Пермский гос. ун-т, Пермь, 2001, 1, 145.
- 4. Т. М. Широнина, Автореф. дис. канд. фарм. наук, Пермь, 2002.

В. О. Козьминых, А. О. Беляев, Е. Н. Козьминых

Пермский государственный педагогический университет, Пермь 614990, Россия e-mail: kvo@pi.ccl.ru

Поступило в редакцию 03.05.2003

ВЗАИМОДЕЙСТВИЕ β-НИТРО- И β-ГАЛОГЕН-β-НИТРОЭТЕНИЛФОСФОНАТОВ С ФУРАНОМ

Ключевые слова: нитроэтенилфосфонаты, фосфорилированные нитрооксабициклогептены, фуран, диеновый синтез.

Сопряженные нитроалкены, активно вступают в реакцию Дильса—Альдера в качестве диенофилов и широко используются для конструирования фрагментов природных соединений и биологически активных веществ [1–3]. Повышенный интерес к поведению в этих реакциях β-нитроэтенил-фосфонатов, в молекулах которых при кратной связи присутствуют одновременно два сильных вицинально расположенных электроно-акцептора – нитро- и фосфорильная функции, связан с их высокой реакционной способностью [4, 5] и возможностью синтеза на их основе новых функционализированных карбо- и гетеробициклических структур, в том числе и кислородсодержащих.

Нами впервые исследовано взаимодействие бис(2-хлорэтил)- β -нитроэтенилфосфонатов 1, 2 с фураном. Оказалось, что реакция протекает в очень мягких условиях (\sim 20 °C, в бензоле) при соотношении нитроалкенфуран 1:2 и завершается образованием фосфорилированных нитрооксабициклогептенов 3, 4. Вещества 3, 4 выделены с помощью колоночной хроматографии (силикагель Chemapol 100/200, элюенты – хлороформ, эфир) в виде масел, которые представляют собой смесь эндо- и экзостереоизомеров 3a,b, 4a,b в соотношении 3a–3b 3:2; 4a–4b 3:1.

1–4 R = CH₂CH₂Cl; **1**, **3a**,**b** X = H, **2**, **4a**,**b** X = Br

Состав соединений **3**, **4** подтвержден данными элементного анализа, строение установлено методами ИК и ЯМР 1 Н, 31 Р спектроскопии: конфигурационная принадлежность и соотношение эндо/экзо-изомеров определены на основе сопоставления значений КССВ ($J_{\rm PH}, J_{\rm HH}$) и интегральных интенсивностей, а также с привлечением в качестве модельных структур однотипных 3-нитро-4-фенилсульфонил-7-оксабицикло[2.2.1]-5-гептенов с известной конфигурацией [6].

ИК спектры получены на спектрометре ИнфраЛЮМ ФТ-02 (в CHCl₃, c 0.1–0.001 моль). Спектры ЯМР 1 Н и 31 Р (в CDCl₃) зарегистрированы на спектрометре Bruker AC-200 (200 МГц), для спектров ЯМР 31 Р внешний стандарт — 85% фосфорная кислота. Значения R_f определяли на пластинах Silufol UV-254 в смеси растворителей гексан–ацетон, 3:2, хроматограммы проявляли УФ светом.

Исходные 2-нитро- и 2-бром-2-нитроэтенилфосфонаты 1, 2 синтезировали по известным методикам [7, 8].

Бис(2-хлорэтил)-3-нитро-7-оксабицикло[2.2.1]-5-гептен-2-илфосфонат (**3**). Выход 60% (маслообразное вещество), R_f 0.1. ИК спектр, \mathbf{v} , см⁻¹: 1620 (C=C), 1561, 1367 (NO₂), 1253 (P=O), 1085, 1030 (P=O=C). Изомер **3a**, эндо-NO₂. Спектр ЯМР ¹H, $\mathbf{\delta}$, м. д. (J, Γ u): 5.38 (1H, д. д., $^3J_{\mathrm{HP}} = 15$, $J_{1,6} = 1.8$, $H_{(1)}$); 5.34 (1H, д. д. д., $^3J_{\mathrm{HP}} = 5.8$, $J_{2,3} = 4.0$, $J_{3,4} = 5.2$, $H_{(3)}$); 5.40 (1H, д. д. д., $J_{3,4} = 5.2$, $J_{4,5} = 1.5$, $H_{(4)}$); 6.50 (1H, д. д., $J_{5,6} = 5.2$, $J_{5,4} = 1.5$, $H_{(5)}$); 6.32 (1H, д. д., $J_{5,6} = 5.2$, $J_{1,6} = 1.8$, $H_{(6)}$); 4.38 (5H, м., 2 OCH₂ и $H_{(2)}$); 3.73 (4H, м., 2 CH₂CI). Спектр ЯМР ³¹Р, $\mathbf{\delta}$, м. д.: 23.5.

экзо-Изомер **3b**. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 5.35 (1H, д. д. д. \mathfrak{A} , $^{3}J_{HP}=15$, $J_{1,2}=3.5$, $J_{1,6}=1.7$, $H_{(1)}$); 4.75 (1H, д. д. д. $^{2}J_{HP}=10.5$, $J_{2,3}=3.6$, $J_{1,2}=3.5$, $H_{(2)}$); 4.70 (1H, д. д. д. $^{3}J_{HP}=4.0$, $J_{2,3}=3.6$, $J_{3,4}=2.5$, $H_{(3)}$); 5.54 (1H, д. д. $J_{3,4}=2.5$, $J_{4,5}=1.5$, $H_{(4)}$); 6.75 (1H, д. д. $J_{5,6}=5.8$, $J_{5,4}=1.5$, $H_{(5)}$); 6.68 (1H, д. д. $J_{5,6}=5.8$, $J_{6,1}=1.7$, $H_{(6)}$); 4.38 (4H, м. 2 OCH₂); 3.73 (4H, м. 2 CH₂CI). Спектр ЯМР 31 Р, δ , м. д.: 25.5. Найдено, %: С 34.52, 34.50; H 4.09, 4.10; N 4.14, 4.15; Р 8.94, 8.94. $C_{10}H_{14}Cl_{2}NO_{5}$ Р. Вычислено, %: С 34.68; H 4.05; N 4.05; Р 8.96.

Бис(2-хлорэтил)-3-бром-3-нитро-7-оксабицикло[2.2.1]-5-гептен-2-илфосфонат (4). Выход 80%, R_f 0.23. ИК спектр, $\mathbf v$, см $^{-1}$: 1616 (C=C), 1568, 1367 (NO $_2$), 1260 (P=O), 1084, 1030 (P-O-C). Изомер **4a**, эндо-NO $_2$. Спектр ЯМР 1 Н, δ , м. д. (J, Γ и): 5.85 (1H, д. д. д. д. $^3J_{\mathrm{PH}}$ = 16.8, $J_{1,2}$ = 2.5, $J_{1,6}$ = 2.5, $H_{(1)}$); 4.68 (4H, д. д., $^2J_{\mathrm{HP}}$ = 13.0, $J_{1,2}$ = 2.5, $H_{(2)}$); 6.45 (1H, д. д. $J_{4,5}$ = 2.5, $H_{(4)}$); 7.14 (1H, д. д. $J_{5,6}$ = 5.7, $J_{5,4}$ = 2.5, $H_{(5)}$); 7.03 (1H, д. д. $J_{5,6}$ = 5.7, $J_{6,1}$ = 2.5, $H_{(6)}$); 4.45 (4H, м. 2 OCH $_2$); 3.72 (4H, м. 2 CH $_2$ Cl). Спектр ЯМР 31 Р, δ , м. д.: 16.5. экзо-Изомер **4b**. Спектр ЯМР 1 Н, δ , м. д.: 5.93 (1H, д. д. д. $^3J_{\mathrm{HP}}$ = 18.0, $J_{1,2}$ = 2.0, $J_{1,6}$ = 2.5, $H_{(1)}$); 5.30 (1H, д., $^2J_{\mathrm{HP}}$ = 15.0, $J_{1,2}$ = 2.0, $H_{(2)}$); 6.50 (1H, д. $J_{4,5}$ = 2.5, $H_{(4)}$); 7.14 (1H, д. д. д. $J_{5,6}$ = 5.7, $J_{5,4}$ = 2.5, $H_{(5)}$); 7.03 (1H, д. д., $J_{5,6}$ = 5.7, $J_{1,6}$ = 2.5, $H_{(6)}$); 4.45 (4H, м. 2 OCH $_2$); 3.72 (4H, м. 2 CH $_2$ Cl). Спектр ЯМР 31 Р, δ , м. д.: 18.5. Найдено, %: C 28.18, 28.20; H 3.15, 3.20; N 3.28, 3.29; P 7.32, 7.30. $C_{10}H_{13}$ BrCl $_2$ NO $_6$ P. Вычислено, %: C 28.30; H 3.07; N 3.30; P 7.31.

СПИСОК ЛИТЕРАТУРЫ

- 1. V. V. Perekalin, E. S. Lipina, V. M. Berestovitskaya, D. A. Efremov, *Nitroalkenes* (Conjugated Nitro Compounds), J. Wiley and Sons, London, 1994, 131.
- 2. Г. Фойер, *Химия нитро- и нитрозогрупп*, Мир, Москва, 1973, **2**, 117.
- 3. N. Ono, The nitro group in organic synthesis, Wiley-VCH, New York, 2001, 231.
- 4. Г. М. Баранов, В. В. Перекалин, *Успехи химии*, **61**, 2215 (1991).
- V. M. Berestovitskaya, L. I. Deyko, J. E. Botata, V. V. Perekalin, *Phosphorus, Sulfur and Silicon*, 111, 754/122 (1996).
- 6. N. Ono, A. Kamimura, L. Kaji, J. Org. Chem., 53, 251 (1988).
- Ж. Э. Ботата, Л. И. Дейко, Т. К. Костина, Г. М. Баранов, В. М. Берестовицкая, ЖОХ, 65, 160 (1995).
- 8. Г. М. Баранов, В. В. Перекалин, *ЖОХ*, **57**, 793 (1987).

А. А. Кужаева^а, Н. А. Анисимова^а, Л. И. Дейко, Г. А. Беркова, В. М. Берестовицкая

Российский государственный педагогический университет, Санкт-Петербург 191186, Россия e-mail: chemis@herzen.spb.ru

^аГорно-Алтайский государственный университет, Горно-Алтайск 649700, Республика Алтай, Россия e-mail: zoot@gasu.gornu.ru

XΓC. - 2003. - № 8.- C. 1264

Поступило в редакцию 09.12.2002