Ю. Л. Зборовский, В. В. Орысык^а, А. А. Добош^а, В. И. Станинец, В. В. Пироженко, А. Н. Чернега

РЕАКЦИИ ГЕТЕРОЦИКЛИЗАЦИИ ПРОИЗВОДНЫХ 2-(2-ПРОПИНИЛТИО)-4(1H)-ХИНАЗОЛИНОНА ПОД ДЕЙСТВИЕМ ЭЛЕКТРОФИЛЬНЫХ И НУКЛЕОФИЛЬНЫХ РЕАГЕНТОВ

Взаимодействие калиевой соли 2-тиохиназолин-4-она с пропаргилгалогенидами приводит к образованию производных 2-пропаргилтиохиназолин-4-она, гетероциклизация которых проходит при действии электрофильных или нуклеофильных реагентов и, в зависимости от природы циклизующего агента, приводит к образованию трициклических систем ангулярного или линеарного строения.

Ключевые слова: ангулярные и линеарные тиазолохиназолиноны, электрофильные и нуклеофильные реагенты, гетероциклизация.

Производные тиазоло[2,3-*b*]хиназолинона линейного строения, полученные конденсацией метилового эфира антраниловой кислоты с пропаргилизотиоцианатами, проявляют высокую физиологическую активность – противовоспалительную, седативную, являются релаксантами мышц и транквилизаторами [1].

С целью разработки новых методов получения производных тиазолохиназолинона мы изучили реакции гетероциклизации 2-пропаргилтиохиназолин-4-онов под действием ряда электрофильных и нуклеофильных реагентов. Последние, в зависимости от их природы, позволяют получать конденсированные гетероциклические системы как линеарного, так и ангулярного строения.

Так, мы установили, что реакция хиназолинона $\mathbf{2}$ с бромом или иодом в уксусной кислоте приводит к образованию гидрополигалогенидов ангулярного 2-галогенметилидендигидротиазолохиназолин-5-она $(\mathbf{3a,b})$. Обработка последних водным раствором ацетата натрия дает соответствующие основания $\mathbf{4a,b}$.

Подобную же циклизацию можно осуществить и под действием этилата натрия. В этом случае образуется тиазолохиназолинон (5) также ангулярного строения.

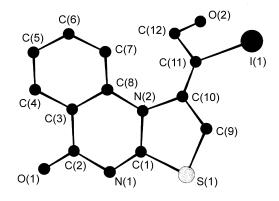
Использование конц. H_2SO_4 в качестве циклизующего агента приводит к образованию тиазолохиназолинона ${\bf 6}$ линеарного строения.

Различное направление рассматриваемых реакций обусловлено, повидимому, различиями в механизмах этих превращений.

3, **4 a** X = Br, **b** X = I; **3 a** n = 3, **b** n = 5

Серная кислота образует соль с участием более основного атома азота соединения 2 N(1), что блокирует этот нуклеофильный реакционный центр на стадии циклизации и, в конечном итоге, приводит к линеарному дигидротиазолохиназолинону 7, который затем изомеризуется в соединение 6. В противоположность этому, метилат натрия депротонирует атом N(3), поэтому промежуточный продукт 8 в этом случае имеет ангулярное строение. Для гетероциклизации, протекающей под действием галогенов, можно предположить синхронный донорно-акцепторный механизм, согласно которому в циклизации участвует наиболее нуклеофильный атом N(1), а молекула галогеноводорода выделяется лишь на последней стадии процесса и поэтому не может влиять на направление реакции.

Гетероциклизацию хиназолинона **9**, в отличие от соединения **2**, удалось осуществить только под действием галогенов.


10, **11 a** X = Br, **b** X = I; **10 a** n = 3, **b** n = 5

Этилат натрия расщепляет этот субстрат с образованием соединения 1, а конц. H_2SO_4 вызывает его осмоление. Попытка использовать в качестве циклизующего агента смесь серной и уксусной кислот также не привела к получению целевого тиазолохиназолинона. В качестве главного продукта реакции в этом случае образуется 2-(4-ацетокси-2-бутинилтио)-4(1H)-хиназолинон.

Состав и строение всех синтезированных соединений подтверждены элементным анализом, ЯМР 1 Н и ИК спектрами, а строение соединений **4a,b, 5, 6, 11b** подтверждено также и спектрами ЯМР 13 С (табл. 1–3).

Таблица 1 Характеристики синтезированных соединений

Соеди-	Брутто-			айдено, % числено, %			Т. пл., °С
нение	формула	С	Н	Hal	N	S	
2	C ₁₁ H ₈ N ₂ OS	60.52 61.09	3.65 3.73	-	12.90 12.95	14.69 14.83	219–220
3a	$C_{11}H_8Br_4N_2OS$	24.51 24.66	1.40 1.50	58.10 59.64	<u>5.17</u> 5.23	5.81 5.98	189–193
3b	$C_{11}H_8I_6N_2OS$	13.40 13.51	0.79 0.82	75.90 77.88	2.79 2.87	3.20 3.28	173–176
4a	C ₁₁ H ₇ BrN ₂ OS	$\frac{44.74}{44.76}$	$\frac{2.37}{2.39}$	27.12 27.07	9.49 9.49	10.84 10.86	184–186
4b	$C_{11}H_7IN_2OS$	38.41 38.61	2.00 2.06	37.01 37.09	8.09 8.19	9.27 9.37	230–232
5	$C_{11}H_8N_2OS$	61.09 61.09	3.67 3.73	-	12.92 12.95	14.79 14.83	299–300
6	$C_{11}H_8N_2OS$	61.05 61.09	3.69 3.73	-	12.89 12.95	14.75 14.83	167–169
9	$C_{12}H_{10}N_2O_2S$	58.41 58.52	4.00 4.09	-	11.21 11.37	12.82 13.02	216–217
10a	$C_{12}H_{10}Br_4N_2O_2S$	25.21 25.47	1.52 1.78	54.22 56.48	4.85 4.95	5.42 5.67	194–197
10b	$C_{12}H_{10}I_6N_2O_2S$	$\frac{14.10}{14.30}$	0.89 1.00	73.21 75.56	2.65 2.78	3.01 3.18	136–138
11a	$C_{12}H_9BrN_2O_2S$	44.17 44.32	2.54 2.79	24.39 24.57	8.42 8.61	9.59 9.86	188–190
11b	$C_{12}H_9IN_2O_2S$	38.59 38.73	2.30 2.44	34.05 34.10	7.46 7.53	8.43 8.62	213–214

Общий вид молекулы 11b с нумерацией атомов. Атомы водорода не показаны

Следует отметить, что положение полосы поглощения валентных колебаний связи (C=O) карбонильной группы в ИК спектрах тиазолохиназолинонов линейного и ангулярного строения существенно различается. Так, в ИК спектрах линейных производных эта полоса находится в интервале 1695–1670, а ангулярных – в области 1665–1640 см⁻¹ [2, 3]. Это обстоятельство было использовано для идентификации синтезированных веществ. Кроме того, структура соединения **11b** была подтверждена рентгеноструктурным методом (рисунок и табл. 4).

Трициклическая система S(1)N(1)N(2)C(1-10) существенно неплоская (отклонения атомов от среднеквадратичной плоскости достигают 0.45 Å). Центральный шестичленный гетероцикл N(1)N(2)C(1)C(2)C(3)C(8)плоский лишь приблизительно (соответствующие атомы отклоняются от среднеквадратичной плоскости на 0.05-0.11 Å) и слегка искажен в сторону твист-ванны (модифицированные параметры Кремера-Попла [4] S, ψ и θ составляют 0.26, 2.2° и 79.3° соответственно). Бензольное кольно C(3-8) образует с этим циклом двугранный угол 9.4°. Пятичленный гетероцикл S(1)N(2)C(1)C(9)C(10) имеет конформацию конверта: атомы S(1), N(2), C(1) и C(10) копланарны в пределах 0.05 Å, а атом C(9) выходит из данной плоскости на 0.52 Å (двугранный угол между плоскостями S(1)N(2)C(1)C(10) и S(1)C(9)C(10) составляет 30.9°). "Основание" данного конверта S(1)N(2)C(1)C(10) образует с центральным 6-членным гетероциклом двугранный угол 11.3°. Атом N(2) имеет плоскотригональную конфигурацию связей – сумма валентных углов при этом атоме составляет 359.0(1.8)°. Сопряжение между неподеленной электронной парой атома N(2) и π -системами двойной связи C(1)=N(1) и бензольного кольца C(3-8)вызывает укорочение связей N(2)-C(1) и N(2)-C(8) до 1.376(9) и 1.395(8) Å по сравнению со стандартным для одинарных связей $N(sp^2)$ – $C(sp^2)$ значением 1.45 Å [5].

 $T\ a\ б\ \pi\ u\ ц\ a\ \ 2$ Спектральные данные полученных соединений

	·	
Соеди-	Спектр ЯМР 1 Н, δ , м. д. $(J, \Gamma \mathfrak{u})$	ИК спектр, ν (C=O), см ⁻¹
2	3.21 (1H, т, <i>J</i> = 3.0, -C=CH); 4.10 (2H, д, <i>J</i> = 3.0, CH ₂); 7.45 (1H, м, ArH); 7.56 (1H, м, ArH); 7.78 (1H, м, ArH); 8.05 (1H, м, ArH); 12.65 (1H, уш. с, NH)	1680
3a	4.37 (2H, уш. c, CH ₂); 7.30 (1H, уш. c, CHBr); 7.53 (1H, м, ArH); 7.81 (1H, м, ArH); 7.94 (1H, м, ArH); 8.07 (1H, м, ArH)	1715
3b	4.33 (2H, уш. с, CH ₂); 7.20 (1H, уш. с, CHI); 7.52 (1H, м, ArH); 7.80 (1H, м, ArH); 7.92 (1H, м, ArH); 8.06 (1H, м, ArH)	1710
4a	4.35 (2H, уш. с, CH ₂); 7.28 (1H, уш. с, CHBr); 7.51 (1H, м, ArH); 7.78 (1H, м, ArH); 7.92 (1H, м, ArH); 8.05 (1H, м, ArH)	1655
4b	4.32 (2H, уш. с, CH ₂); 7.17 (1H, уш. с, CHI); 7.50 (1H, м, ArH); 7.77 (1H, м, ArH); 7.89 (1H, м, ArH); 8.05 (1H, м, ArH)	1650
5	2.84 (3H, c, CH ₃); 7.01 (1H, c, S–CH); 7.61 (1H, м, ArH); 7.79 (1H, м, ArH); 8.25 (2H, м, ArH)	1640
6	2.80 (3H, c, CH ₃); 6.85 (1H, c, S–CH); 7.43 (1H, м, ArH); 7.54 (1H, м, ArH); 7.80 (1H, м, ArH); 8.15 (1H, м, ArH)	1695
9	4.07 (2H, уш. с, С <u>Н</u> ₂ OH); 4.16 (2H, с, S–CH ₂); 5.17 (1H, т, <i>J</i> = 6.0, OH); 7.49 (2H, м, ArH); 7.77 (1H, м, ArH); 8.05 (1H, м, ArH); 12.61 (1H, уш. с, NH)	1685
10a	3.89 (д) и 4.05 (д) (2H, <i>J</i> = 14, С <u>H</u> ₂ —OH); 4.41 (д) и 4.51 (д) (2H, <i>J</i> = 13, S–CH ₂); 7.44 (2H, м, ArH); 7.76 (1H, м, ArH); 7.99 (1H, м, ArH)	1710
10b	3.70 (д) и 3.93 (д) (2H, <i>J</i> = 14, С <u>Н</u> ₂ —OH); 4.39 (д) и 4.55 (д) (2H, <i>J</i> = 12.5, S–CH ₂); 7.30 (1H, м, ArH); 7.46 (1H, м, ArH); 7.76 (1H, м, ArH); 7.99 (1H, м, ArH)	1710
11a	3.88 (д) и 4.04 (д) (2H, <i>J</i> = 14, С <u>Н</u> ₂ –ОН); 4.39 (д) и 4.50 (д) (2H, <i>J</i> = 13, S–CH ₂); 5.44 (1H, c, OH); 7.43 (2H, м, ArH); 7.75 (1H, м, ArH); 7.98 (1H, м, ArH)	1655
11b	3.71 (д) и 3.94 (д) (2H, $J=14$, С \underline{H}_2 –ОН); 4.37 (д) и 4.54 (д) (2H, $J=13$, S–CH ₂); 5.42 (1H, τ , $J=5$, OH); 7.29 (1H, τ , ArH); 7.45 (1H, τ , ArH); 7.98 (1H, τ , ArH)	1660

 $\begin{tabular}{ll} T а б л и ц а 3 \\ \begin{tabular}{ll} C производных тиазолохиназолинона \end{tabular}$

Соеди-	Химические сдвиги, δ , м. д.					
нение	C-1	C-2	C-3	C-3a	C-5	C-5a
4a	137.28	31.64	_	165.37	168.14	118.06
4b	141.63	30.68	_	161.64	162.17	122.90
5	135.88	105.67	_	163.96	167.85	118.89
6	_	104.81	134.54	_	160.27	117.44
11b	134.40	39.94	_	165.99	168.46	117.86

Окончание таблицы 3

Соеди-	Химические сдвиги, б, м. д.					
нение	C-6, 7, 8, 9	C-9a	C-10a	-C-X	-CH ₂ OH	-CH ₃
4a	133.91, 127.92, 126.18, 116.48	138.21	-	97.88	_	-
4b	137.91, 134.82, 127.20, 115.37	148.56	-	91.91	-	-
5	132.98, 128.17, 126.97, 116.84	138.21	-	_	-	19.29
6	134.60, 126.48, 125.26, 124.77	147.47	159.84	_	-	17.99
11b	133.11, 127.22, 125.42, 116.72	138.64	-	100.05	64.77	

 ${\rm T}\ {\rm a}\ {\rm f}\ {\rm \pi}\ {\rm u}\ {\rm ц}\ {\rm a}\ {\rm 4}$ Основные длины связей (d) и валентные углы (ω) в молекуле соединения 11b

Связь	d, Å	Угол	ω, град.
I(1)–C(11)	2.092(7)	C(1)–S(1)–C(9)	91.9(4)
S(1)–C(1)	1.737(7)	C(1)-N(1)-C(2)	117.8(6)
S(1)-C(9)	1.819(9)	C(1)-N(2)-C(8)	119.1(6)
O(1)–C(2)	1.22(1)	C(1)-N(2)-C(10)	113.2(6)
O(2)-C(12)	1.39(1)	C(8)-N(2)-C(10)	126.7(6)
N(1)–C(1)	1.29(1)	S(1)–C(1)–N(1)	122.6(6)
N(1)-C(2)	1.40(1)	S(1)–C(1)–N(2)	111.8(5)
N(2)-C(1)	1.376(9)	N(1)-C(1)-N(2)	125.7(7)
N(2)-C(8)	1.395(9)	N(1)-C(2)-C(3)	117.6(7)
N(2)-C(10)	1.436(9)	C(2)–C(3)–C(8)	119.7(7)
C(2)–C(3)	1.483(12)	N(2)-C(8)-C(3)	116.5(7)
C(3)–C(8)	1.396(11)	S(1)-C(9)-C(10)	103.5(5)

 $\label{eq:Tabnula} \mbox{Tabnula 5}$ Координаты атомов и эквивалентные изотропные тепловые параметры $U_{\mbox{\tiny 3KB}}(\mbox{Å}^2 \times 10^3)$ в структуре 11b

Атом	x	у	z	$U_{\scriptscriptstyle m 9KB}$
I(1)	1.19963(7)	0.19093(2)	0.92273(7)	0.0551
S(1)	0.5712(3)	0.20760(9)	0.4123(3)	0.0595
O(1)	0.0600(9)	0.0777(3)	0.4760(11)	0.0805
O(2)	0.934(1)	0.1810(2)	1.1761(8)	0.0636
N(1)	0.293(1)	0.1375(3)	0.4446(8)	0.0536
N(2)	0.6170(9)	0.1240(2)	0.6459(8)	0.0469
C(1)	0.4756(11)	0.1512(3)	0.5050(9)	0.0470
C(2)	0.2331(12)	0.0895(3)	0.5232(11)	0.0543
C(3)	0.3863(11)	0.0506(3)	0.6412(11)	0.0528
C(4)	0.3377(13)	-0.0042(3)	0.6914(11)	0.0585
C(5)	0.4801(14)	-0.0408(3)	0.7917(12)	0.0621
C(6)	0.6722(13)	-0.0234(3)	0.8432(12)	0.0588
C(7)	0.7265(12)	0.0300(3)	0.7975(11)	0.0527
C(8)	0.5804(11)	0.0685(3)	0.700(1)	0.0497
C(9)	0.8194(12)	0.1850(3)	0.5371(11)	0.0522
C(10)	0.8013(11)	0.1534(3)	0.699(1)	0.0458
C(11)	0.9206(11)	0.1565(3)	0.870(1)	0.0469
C(12)	0.8780(12)	0.1377(3)	1.043(1)	0.0522
1260	ı	1		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-10 в таблетках KBr; спектры ЯМР 1 Н и 13 С получены на приборе Varian-VXR (300 МГц) в ДМСО- d_6 , внутренний стандарт ТМС.

Рентгеноструктурное исследование монокристалла соединения 11b с линейными размерами $0.25 \times 0.35 \times 0.45$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Си K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{\text{max}} = 60^{\circ}$, сегмент сферы $0 \le h \le 9$, $0 \le k \le 26$, $-9 \le l \le 9$). Всего было собрано 2043 отражения, из которых 1821 являются симметрически независимыми (*R*-фактор усреднения 0.044). Кристаллы соединения 11b моноклинные, $a = 7.292(2), b = 22.975(3), c = 7.760(1) \text{ Å}, \beta = 109.59(2)^{\circ}, V = 1224.8 \text{ Å}^3, M = 372.18, Z = 4,$ $d_{\text{выч}} = 2.02 \text{ г/см}^3$, $\mu = 223.16 \text{ см}^{-1}$, пространственная группа $P2_1/c$. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [6]. В уточнении использовано 1589 отражений с $I > 3\sigma(I)$ (163 уточняемых параметра, число отражений на параметр 9.7). Атомы водорода посажены геометрически и включены в расчет с фиксированными позиционными и тепловыми параметрами. При уточнении была использована весовая схема Чебышева [7] с параметрами 6.12, -2.94, 2.74, -2.03 и -1.39. Окончательные значения факторов расходимости R = 0.057 и $R_W = 0.063$, GooF = 1.095. Остаточная электронная плотность из разностного ряда Фурье 0.65 и –1.29 e/Å³. Координаты атомов приведены в табл. 5. Полный набор кристаллографических данных для структуры 11b депонирован в Кембриджском банке структурных данных (рег. № CCDC 155073).

2-(2-Пропинилтио)-4(1H)-хиназолинон (2). К раствору 10.8 г (50 ммоль) калиевой соли 2-меркапто-4(1H)-хиназолинона 1 в смеси 65 мл этанола и 15 мл воды добавляют 6.1 мл 80% раствора пропаргилбромида в толуоле. Реакционную смесь кипятят на водяной бане в течение 45 мин. Кристаллический осадок после охлаждения отфильтровывают, промывают водой, спиртом и высушивают. Перекристаллизовывают его из смеси этанол—ДМФА, 4:1. Выход хиназолинона 2 9.07 г (84%).

2-(4-Гидрокси-2-бутинилтио)-4(1H)-хиназолинон (9) получают из калиевой соли **1** и 1-хлор-2-бутин-4-ола аналогично соединению **2** и перекристаллизовывают из смеси этанол—диоксан, 1:1. Выход 79%.

Трибромид 1-бромметилиден-1,2-дигидро-5H-тиазоло[3,2-а]хиназолин-5-ония (3а). В 70 мл ледяной уксусной кислоты при температуре 50–60 °C растворяют 0.432 г (2 ммоль) соединения 2. К полученному раствору при температуре 18–20 °C добавляют по каплям при перемешивании раствор 0.21 мл (4 ммоль) брома в 15 мл ледяной уксусной кислоты. Смесь перемешивают еще 2 ч и оставляют на 12 ч для кристаллизации. Мелкокристаллический осадок соли 3а оранжевого цвета промывают на фильтре уксусной кислотой, эфиром и сушат. Выход 0.98 г (92%).

Пентаиодид 1-иодметилиден-1,2-дигидро-5H-тиазоло[3,2-а]хиназолин-5-ония (3b). К раствору 0.432 г (2 ммоль) соединения 2 в 70 мл ледяной уксусной кислоты при 18–20 °С добавляют при перемешивании раствор 1.52 г (6 ммоль) иода в 110 мл СН₃СООН. Через 1 сут выделяется мелкокристаллический осадок коричневого цвета, который отфильтровывают, промывают спиртом, эфиром и сушат. Выход соли 3b 1.85 г (95%).

1-Бромметилиден- и 1-иодметилиден-1,2-дигидро-5Н-тиазоло[3,2-а]хиназолин-5-он (4а) и (4b). К раствору 2 ммоль соответствующей соли 3а или 3b в 15–20 мл ДМСО добавляют 20–25 мл 20% водного раствора ацетата натрия, перемешивают и оставляют на 2 ч. Образовавшийся мелкокристаллический осадок белого цвета отфильтровывают, промывают водой, спиртом, эфиром и сушат. Хиназолиноны 4a и 4b перекристаллизовывают из этанола и смеси этанол–диоксан, 1:1, соответственно. Выход соединения 4a 0.38 г (65%), соединения 4b 0.48 г (70%).

1-Метил-5Н-тиазоло[3,2-а]хиназолин-5-он (5). К 8 мл 7% раствора этилата натрия в этаноле при 10–15 °C прибавляют 0.432 г (2 ммоль) соединения **2**, тщательно перемешивают до полного растворения осадка и оставляют раствор при 18–20 °C. Через 1 сут кристаллический осадок отфильтровывают, промывают водой и высушивают. Перекристаллизовывают из смеси этанол–ДМФА, 1:1. Выход соединения **5** 0.35 г (80%).

3-Метил-5Н-тиазоло[2,3-b]**хиназолин-5-он (6)**. В 5 мл конц. H_2SO_4 при 0 °C растворяют 0.432 г (2 ммоль) соединения **2**. Раствор оставляют при 18–20 °C на 12 ч, а затем выливают в 50 мл воды, охлажденной до 0 °C. Через 12 ч образовавшийся

мелкокристаллический осадок хиназолинона **6** отфильтровывают, промывают водой и высушивают. Перекристаллизовывают из смеси этанол–диоксан, 1:1. Выход соединения **6** 0.32 г (75%).

Трибромид 1-(1-бром-2-гидроксиэтилиден)-1,2-дигидро-5H-тиазолю[3,2-а]хиназолин-5-ония (10а). К суспензии 0.49 г (2 ммоль) соединения 9 в 50 мл ледяной уксусной кислоты при непрерывном перемешивании в течение 2 ч добавляют по каплям раствор 0.21 мл (4 ммоль) брома в 25 мл СН₃СООН, после чего перемешивание продолжают еще 2 ч. Через 15 ч образовавшееся мелкокристаллическое вещество красно-оранжевого цвета отделяют фильтрованием, промывают эфиром и сушат на воздухе. Выход соли 10а 1.04 г (92%).

Пентаиодид 1-(1-иод-2-гидроксиэтилиден)-1,2-дигидро-5H-тиазоло[3,2-а]хиназолин-5-ония (10b). К суспензии 0.49 г (2 ммоль) соединения 9 в 60 мл ледяной уксусной кислоты при непрерывном перемешивании в течение 3 ч добавляют по каплям раствор 1.52 г (6 ммоль) иода в 140 мл СН₃СООН. Перемешивание продолжают еще 2 ч. Через 30 ч образовавшийся мелкокристаллический осадок соли 10b черного цвета отделяют фильтрованием, промывают эфиром и сушат на воздухе. Выход соли 10b 1.80 г (90%).

Основания 11а и 11b. К раствору 2 ммоль соли 10а или 10b в 20 мл ДМСО добавляют 15–20 мл 20% водного раствора ацетата натрия. Соответствующие основания выкристаллизовываются из раствора в течение 12–14 ч. Для того чтобы освободить полученные основания от смолообразных примесей, их растирают с 50–60 мл ацетона.

1-(1-Бром-2-гидроксиэтилиден)-1,2-дигидро-5H-тиазоло[3,2-a]хиназолин-5-он (11а). Выход 0.42 г (65%).

1-(1-Иод-2-гидроксиэтилиден)-1,2-дигидро-5H-тиазоло[3,2-a]хиназолин-5-он (11b). Выход 0.54 г (72 %).

СПИСОК ЛИТЕРАТУРЫ

- F. Gerard, M. Jean Pierre, P. Jean Varie, Fr. Demande Pat. 2393001; Chem. Abstr., 91, 175390 (1979).
- L. I. Giannola, S. Polazzo, L. Lamartina, L. R. Sanseverino, P. Sabatino, J. Chem. Soc., Perkin Trans. 1, 2095 (1986).
- 3. M. Gutschow, S. Leistner, Synthesis, 1488 (1995).
- 4. H. C. Зефиров, В. А. Палюлин, *ДАН*, **252**, 111 (1980).
- 5. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, CRYSTALS. Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 7. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Институт органической химии НАН Украины, Киев 02094 Поступило в редакцию 27.02.2001

^аУжгородский национальный университет, Ужгород 88000, Украина