В. К. Брель*

СИНТЕЗ ФОСФОНАТНЫХ АНАЛОГОВ НУКЛЕОТИДОВ С 2,5-ДИГИДРО-1,2-ОКСАФОСФОЛЕНОВЫМ УГЛЕРОДНЫМ СКЕЛЕТОМ

Электрофильное галогенирование замещённых диэтил-[4-(6-амино-9*H*-пурин-9-ил)-3-метилбута-1,2-диен-1-ил]фосфонатов протекает как гетероциклизация с участием фосфорильного атома кислорода фосфонатного фрагмента. Продуктами реакции являются 9-[(4-галоген-2-этокси-5-метил-2-оксидо-2,5-дигидро-1,2-оксафосфол-5-ил)-метил]-9*H*-пурин-6-амины, новый тип фосфонатных аналогов нуклеотидов.

Ключевые слова: аденин, кумулены, нуклеотиды, фосфонаты, гетероциклизация, электрофильное галогенирование.

Создание новых эффективных противовирусных препаратов является важным направлением медицинской химии [1]. Наиболее эффективной на настоящий момент методологией конструирования органических молекул с широким спектром противовирусной активности остаётся синтез циклических и ациклических аналогов нуклеозидов и нуклеотидов [2]. Данные соединения представляют собой аналоги природных нуклеотидов, в которых карбогидратная часть заменена изостерным циклическим или ациклическим фрагментом. К настоящему моменту известно достаточно много синтетических аналогов нуклеотидов, в частности имеющих Р-С связь, в которых пуриновые или пиримидиновые гетероциклические основания связаны с атомом фосфора посредством циклического или ациклического спейсера [3]. Недавно [4] нами был осуществлён синтез фосфонатных аналогов пуриновых нуклеотидов 4-6 с 1,2-алкадиеновым углеродным скелетом.

EtO P C
$$\frac{N}{R}$$
 $\frac{N}{R}$ $\frac{N}{R$

1, 4 R = Pr, 2, 5 R = Bu, 3, 6 R = CH₂CH₂OH

Ациклические аналоги нуклеотидов с кумуленовым фрагментом **4–6** интересны в качестве потенциальных биологически активных соединений, а также могут быть использованы как исходные соединения для конструирования нуклеотидов, в которых карбогидратная часть заменена на дигидропиранильный гетероцикл **7** [5].

Развивая начатые исследования в области дизайна фосфонатных аналогов нуклеотидов [4, 5], в настоящей работе мы продолжили изучение реакционной способности 1,2-алкадиенов 1–6 и показали возможность их применения для создания фосфононуклеотидов с 2,5-дигидро-1,2-оксафосфоленовым гетероциклом.

Известно, что 1,2-алкадиенилфосфонаты [6, 7] в условиях электрофильного галогенирования претерпевают гетероциклизацию с участием фосфорильного кислорода, что приводит к образованию неустойчивого фосфорана, который при комнатной температуре элиминирует галогеналкан и превращается в 2,5-дигидро-1,2-оксафосфолен [8]. Поэтому в качестве исходных соединений были использованы ранее синтезированные фосфорилированные аллены 1-3, которые в соответствии с известной процедурой были трансформированы в ациклические нуклеотиды 4-6 [4]. Реакцию галогенирования проводили в хлороформе при температуре $0 \div -5$ °C. Галоген брали в небольшом избытке (5-10%). В случае хлора отдельно готовили раствор в СНСІ3 пропусканием газообразного хлора через охлаждённый хлороформ. Раствор галогена медленно добавляли к раствору фосфонатов 4-6. После галогенирования реакционную смесь перемешивали в течение 1 ч, медленно нагревали до комнатной температуры и отгоняли растворитель. Это приводит к разложению неустойчивых фосфоранов 8-13 и образованию 1,2-оксафосфоленов 14-19, которые являются стабильными соединениями и могут быть выделены в чистом виде колоночной хроматографией.

4-6
$$\frac{\text{Hal}_2}{\text{CHCl}_3}$$
 $0 \, ^{\circ}\text{C}$ $\frac{\text{Hal}}{\text{EtO}_{P-O}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{Hal}}{\text{EtO}_{P-O}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{Hal}}{\text{EtO}_{P-O}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{Hal}}{\text{N}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{Hal}}{\text{N}}$ $\frac{\text{NH}_2}{\text{N}}$ $\frac{\text{NH}_2}{\text$

8, 11, 14, 17 R = Pr; 9, 12, 15, 18 R = Bu; 10, 13, 16, 19 R = $\mathrm{CH_2CH_2OH}$; 8–10, 14–16 Hal = Cl ; 11–13, 17–19 Hal = Br

Строение 1,2-оксафосфоленов **14–19** было установлено с помощью спектроскопии ЯМР 1 Н, 13 С и 31 Р, а состав – с помощью элементного анализа. Так, в спектрах ЯМР 1 Н присутствуют сигналы, указывающие на наличие аденинового фрагмента, сигналы одной этоксигруппы, а также сигналы метильной и СН₂N групп и заместителя R. В спектрах ЯМР 13 С отсутствует сигнал в области 210–209 м. д., характерный для центрального атома углерода кумуленовой системы алленилфосфонатов **4–6**, но появляется сигнал в области 139–147 м. д. с константой спин-спинового взаимодействия $J_{\rm C-P} = 50–55$ Гц. Данный факт указывает на наличие в молекуле атома углерода = C–Br или = C–Cl.

В отличие от замещённых фосфонатов 1–3, реагирующих с аденином с образованием 1,2-алкадиенилфосфонатов, соединение, в молекуле которого отсутствует заместитель R, в аналогичных условиях претерпевает 1,4-дегидро-хлорирование, приводящее к винилацетиленфосфонату [4]. Для синтеза незамещённых 1,2-оксафосфоленов 23, 24 был предложен метод предполагающий использование в качестве исходного соединения фосфонат 20, который получен нами ранее [9].

EtO P
$$=$$
 C $=$ OH $=$

На первой стадии в условиях реакции Мицунобу [10] аллена **20** и 5-хлорпурина получен фосфонат **21**. Замена атома хлора на аминогруппу в пуриновом фрагменте осуществлена по стандартной методике введением азидогруппы [11, 12] с последующим восстановлением трифенилфосфином [12, 13]. Формирование 1,2-оксафосфоленового цикла осуществлялось по приведённым выше схемам галогенированием алленилфосфоната **22**. Строение 1,2-оксафосфоленов **23, 24** установлено методами спектроскопии ЯМР ¹H, ¹³C и ³¹P, а состав – с помощью элементного анализа.

Таким образом, предложен простой и эффективный способ получения новых нуклеотидных аналогов, содержащих 2,5-дигидро-1,2-оксафосфоленовый цикл. Результаты исследования биологических и химических свойств синтезированных соединений будут опубликованы позже.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н, 13 С и 31 Р зарегистрированы на спектрометре Bruker CXP-200 (200, 50 и 81 МГц соответственно) в CDCl₃. Для спектров ЯМР 1 Н и 13 С в качестве внутреннего стандарта использовали ТМС, в спектрах ЯМР 31 Р использовали внешний стандарт – 85% 13 Н в 13 Ро в 13 Ро использовали внешний стандарт – 85% 13 Ро в $^$

Фосфорилированные аллены **1–3** получены в соответствии с методикой [2, 3], пуринсодержащие производные **4–6** – по методике [4], фосфонат **20** – по методике [9]. Используемые в синтезе растворители очищали и осущали по известным методикам [14].

9-[(5-Метил-2-оксидо-3-пропил-4-хлор-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил)метил]-9*H*-пурин-6-амин (14). К раствору 0.38 г (1.0 ммоль) диэтил-[1-(6-амино-

9*H*-пурин-9-ил)-2-метилгепта-2,3-диен-4-ил]фосфоната (**4**) в 10 мл CHCl₃, при −5 °C и при перемешивании медленно добавляют охлаждённый раствор 0.08 г (1.1 ммоль) Cl₂ в 10 мл СНСІ3. Реакционную смесь перемешивают в течение 2 ч, доводят температуру до 20 °C и ещё перемешивают в течение 1 ч. После упаривания остаток очищают на колонке с силикагелем (элюент CHCl₃-2-PrOH, 10:3), $R_{\rm f}$ 0.44. Выход 0.27 г (71%). Бесцветное масло. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.83 (3H, т, J = 7.4, $CH_2CH_2CH_3$); 1.34 (3H, T, J = 7.4, OCH_2CH_3); 1.47–1.50 (2H, M, $CH_2CH_2CH_3$); 1.51 (3H, c, 5-CH₃); 2.43–2.17 (2H, M, C $\underline{\text{H}}_2$ CH₂CH₃); 4.20 (2H, $\underline{\text{H}}$, $\underline{\text{K}}$, J = 9.2, J = 7.4, OC $\underline{\text{H}}_2$ CH₃); 4.42 (1H, AB система, J = 14.6) и 4.69 (1H, AB система, J = 14.6, CH₂N); 6.70 (2H, уш. c, NH₂); 8.10 (1H, c, H Ar); 8.35 (1H, c, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 14.0 $(CH_2CH_2\underline{C}H_3)$; 17.0 (д, $J_{C,P} = 5.0$, $OCH_2\underline{C}H_3$); 21.1 (д, $J_{C,P} = 3.0$, 5-CH₃); 22.6 $(д, J_{C,P} = 2.0, CH_2CH_2CH_3); 28.2 (д, J_{C,P} = 10.0, CH_2CH_2CH_3); 49.7 (д, J_{C,P} = 5.0, CH_2N);$ 64.3 (д, $J_{C,P} = 6.0$, OCH₂CH₃); 86.6 (д, $J_{C,P} = 1.0$, C-5); 119.2 (С Ar); 129.1 (д, $J_{C,P} = 158.5$, =C-P); 142.5 (C Ar); 147.5 (π , $J_{C,P} = 49.3$, C-4); 150.7 (C Ar); 151.8 (C Ar); 155.2 (С Ar). Спектр ЯМР ³¹Р, δ, м. д.: 32.5. Найдено, %: С 47.00; Н 5.23; N 18.06. C₁₅H₂₁ClN₅O₃P. Вычислено, %: С 46.70; Н 5.49; N 18.15.

9-{[3-(2-Гидроксиэтил)-5-метил-2-оксидо-4-хлор-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил]метил}-9H-пурин-6-амин (16) получен аналогично из диэтил-[6-(6-амино-9H-пурин-9-ил)-1-гидрокси-5-метилгекса-3,4-диен-3-ил]фосфоната (6). Выход 0.24 г (61%). Бесцветное масло. R_f 0.58 (СНС I_3 –2-PrOH, 10:5). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.34 (3H, τ , J = 7.4, OCH $_2$ С \underline{H}_3); 1.51 (3H, τ , 5-CH $_3$); 2.41 (2H, τ , τ , τ = 14.2, τ = 6.2, C \underline{H}_2 СH $_2$ ОН); 3.52 (2H, τ , τ = 6.2, CH $_2$ С \underline{H}_2 ОН); 4.20 (2H, τ , τ = 9.2, τ = 7.4, OC \underline{H}_2 СН $_3$); 4.42 (1H, AB система, τ = 14.6) и 4.69 (1H, AB система, τ = 14.6, CH $_2$ N); 6.61 (2H, уш. τ , NH $_2$); 8.05 (1H, τ , H Ar); 8.32 (1H, τ , H Ar). Спектр ЯМР 13 С, τ , м. д. (τ , τ), 16.8 (τ , τ), τ 0, τ 1 = 5.0, CH $_2$ С τ 1); 21.8 (τ 0, τ 1, τ 2, τ 2, τ 3, 21.2 (τ 3, τ 3, 22.2 (τ 4, τ 3, 23.2 (τ 4, τ 4, 24.3 (τ 4, τ 5, 24.4 (τ 5, 24.4 (τ 6, 24.3 (τ 7, 24.4 (τ 7); 150.5 (τ 8, 25.5 (τ 8, 26.4 (τ 8, 26.

9-[(4-Бром-5-метил-2-оксидо-3-пропил-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил)метил]-9*H*-пурин-6-амин (17). К раствору 0.38 г (1.0 ммоль) фосфоната **4** в 10 мл CHCl₃, при -5 °C и при перемешивании медленно добавляют раствор 0.18 г (1.1 ммоль) Вг₂ в 10 мл CHCl₃. Реакционную смесь перемешивают в течение 2 ч, доводят температуру до 20 °C и ещё перемешивают в течение 1 ч. После упаривания остаток очищают хроматографически (силикагель, CHCl₃–2-PrOH, 10:4), $R_{\rm f}$ 0.42. Выход 0.26 г (60%). Жёлтое масло. Спектр ЯМР 1 H, δ , м. д. (J, Γ ц): 0.88 (3H, т, J = 7.2, CH₂CH₂CH₃); 1.34 (3H, т, J = 7.2, OCH₂CH₃); 1.48 (3H, c, 5-CH₃); 1.53–1.57 (2H, м, CH₂CH₂CH₃); 2.44–2.19 (2H, м, CH₂CH₂CH₃); 4.19 (2H, д. к, J = 9.4, J = 7.2,

ОС \underline{H}_2 СН₃); 4.35 (1H, AB система, J=14.6) и 4.76 (1H, AB система, J=14.6, С \underline{H}_2 N); 6.43 (2H, уш. c, NH₂); 8.08 (1H, c, H Ar); 8.37 (1H, c, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 14.1 (С \underline{H}_2 С \underline{H}_3); 17.1 (д, $J_{C,P}=5.0$, ОС \underline{H}_2 С \underline{H}_3); 21.1 (д, $J_{C,P}=3.0$, 5-C \underline{H}_3); 23.1 (д, $J_{C,P}=2.0$, С \underline{H}_2 С \underline{H}_2 С \underline{H}_3); 30.2 (д, $J_{C,P}=10.0$, С \underline{H}_2 С \underline{H}_3); 50.2 (д, $J_{C,P}=5.0$, С \underline{H}_2 N); 64.3 (д, $J_{C,P}=6.0$, ОС \underline{H}_2 С \underline{H}_3); 87.3 (д, $J_{C,P}=4.0$, C-5); 119.2 (C Ar); 133.1 (д, $J_{C,P}=150.5$, C-3); 139.0 (д, $J_{C,P}=49.3$, C-4); 142.4 (C Ar); 150.7 (C Ar); 152.8 (C Ar); 155.2 (C Ar). Спектр ЯМР ³¹Р, δ , м. д.: 32.4. Найдено, %: С 41.60; H 4.87; N 16.36. С₁₅ \underline{H}_2 1ВгN₅О₃Р. Вычислено, %: С 41.87; H 4.92; N 16.28.

9-{{4-Бром-3-(2-гидроксиэтил)-5-метил-2-оксидо-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил]метил}-9H-пурин-6-амин (19) получен аналогично из фосфоната 6. Выход 0.25 г (59%). Бесцветные кристаллы. Т. пл. 176–178 °C. $R_{\rm f}$ 0.47 (CHCl₃–2-PrOH, 10:5). Спектр ЯМР ¹H, δ , м. д. (J, Γ и): 1.34 (3H, т, J = 7.2, OCH₂C $\underline{\rm H}_3$); 1.48 (3H, c, 5-CH₃); 2.42 (2H, д. т, J = 13.5, J = 6.2, C $\underline{\rm H}_2$ CH₂OH); 3.59 (2H, т, J = 6.2, CH₂C $\underline{\rm H}_2$ OH); 4.19 (2H, д. к, J = 9.4, J = 7.2, OC $\underline{\rm H}_2$ CH₃); 4.35 (1H, AB система, J = 14.6) и 4.76 (1H, AB система, J = 14.6, CH₂); 6.25 (2H, уш. c, NH₂); 8.09 (1H, c, H Ar); 8.32 (1H, c, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ и): 16.8 (д, $J_{\rm C,P}$ = 6.0, OCH₂CH₃); 21.8 (д, $J_{\rm C,P}$ = 2.0, 5-CH₃); 31.2 (д, $J_{\rm C,P}$ = 9.0, $\underline{\rm CH}_2$ CH₂OH); 49.3 (д, $J_{\rm C,P}$ = 5.0, CH₂N); 60.5 (д, $J_{\rm C,P}$ = 6.0, CH₂OH); 62.5 (д, $J_{\rm C,P}$ = 6.0, OCH₂CH₃); 84.4 (д, $J_{\rm C,P}$ = 4.0, C-5); 119.0 (C Ar); 134.2 (д, $J_{\rm C,P}$ = 149.0, C-3); 139.1 (д, $J_{\rm C,P}$ = 50.8, C-4); 142.1 (C Ar); 150.3 (C Ar); 152.6 (C Ar); 155.2 (C Ar). Спектр ЯМР ³¹Р, δ , м. д.: 33.0. Найдено, %: C 38.72; H 4.40; N 16.09. C₁₄H₁₉BrN₅O₄P. Вычислено, %: C 38.91; H 4.43; 16.20.

Диэтил-[3-метил-4-(6-хлор-9*H*-пурин-9-ил)бута-1,2-диен-1-ил]фосфонат (21). К раствору 0.22 г (1.0 ммоль) диэтил-(4-гидрокси-3-метилбута-1,2-диен-1-ил)фосфоната (**20**), 0.79 г (3.0 ммоль) PPh₃ и 0.42 г (2.7 ммоль) 6-хлорпурина в 20 мл ТГФ, добавляют 0.5 мл (3.0 моль) диэтил азодикарбоксилата при 0 °С, реакционную смесь перемешивают при комнатной температуре в течение 12 ч. Растворитель удаляют в вакууме, остаток очищают колоночной хроматографией на силикагеле, элюент CHCl₃-MeOH, 10:1, R_f 0.52. Выход 0.19 г (54%). Бесцветное масло. Спектр ЯМР 1 H, δ , м. д. (J, Γ ц): 1.30 (3H, д. т, J = 7.0, J = 7.2, OCH_2CH_3); 1.31 (3H, т, J = 7.2, OCH_2CH_3); 1.87 (3H, д. д, J = 2.2, J = 7.0, $=CCH_3$); 4.01 (2H, д. к, J = 7.8, J = 7.2, OCH_2CH_3); 4.04 (2H, д. к, J = 7.8, J = 7.2, OCH_2CH_3); 4.95 (2H, д. д, J = 3.0, J = 6.8, CH₂N); 5.30-5.34 (1H, м, P-CH=); 8.37 (1H, с, H Ar); 8.76 (1H, с, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 15.8 (д, $J_{C,P} = 6.5$, =C- $\underline{C}H_3$); 16.6 (д, $J_{C,P} = 2.5$, $OCH_2\underline{C}H_3$); 16.7 (д, $J_{\text{C.P}} = 2.5$, OCH₂CH₃); 45.7 (μ , $J_{\text{C.P}} = 7.0$, CH₂N), 62.6 (μ , $J_{\text{C.P}} = 8.0$, OCH₂CH₃), 62.7 (μ , $J_{C,P} = 8.0$, OCH₂CH₃), 83.9 (μ , $J_{C,P} = 194.0$, P-CH=); 98.6 (μ , $J_{C,P} = 17.0$, =C-Me); 131.6; 146.1; 151.3; 152.2; 152.4; 209.6 (=C=). Спектр ЯМР ³¹Р, δ , м. д.: 15.0. Найдено, %: С 47.00; H 5.15; N 15.62. С₁₄H₁₈ClN₄O₃P. Вычислено, %: С 47.13; H 5.09; N 15.71.

Диэтил-[4-(6-амино-9H-пурин-9-ил)-3-метилбута-1,2-диен-1-ил]фосфонат (22). К раствору 0.71 г (2.0 ммоль) хлорпроизводного **21** в 10 мл ДМФА добавляют 1.3 г

(20 ммоль) NaN₃ и при перемешивании нагревают в течение 4 ч при 80 °C, затем в течение 48 ч при комнатной температуре. Реакционную смесь охлаждают, в вакууме отгоняют растворитель, прибавляют 10 мл H₂O и водную фазу экстрагируют Et₂O $(3 \times 10 \text{ мл})$. Экстракт сушат над Na₂SO₄, фильтруют и добавляют 2.6 г (10 ммоль) PPh₃. Реакционную смесь нагревают до кипения, выдерживают в течение 2 ч и оставляют на ночь. Для гидролиза к реакционной смеси добавляют 5 мл H₂O и при комнатной температуре перемешивают в течение 3 ч. После удаления растворителя в вакууме, остаток хроматографируют на силикагеле, элюент СНСІ3-МеОН, 8:1, $R_{\rm f}$ 0.44. Выход 0.28 г (42%). Бесцветное масло. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.30 (3H, т, J = 7.2, OCH₂CH₃); 1.32 (3H, т, J = 7.2, POCH₂CH₃);1.88 (3H, д. д, J = 2.0, J = 7.0, =C-CH₃); 4.08-4.20 (4H, м, 2OCH₂CH₃); 4.89 (2H, д. д, J = 3.0, J = 6.8, CH₂N); 5.30-5.34 (1H, м, P-CH=); 6.30 (2H, уш. c, NH₂); 8.10 (1H, c, H Ar); 8.30 (1H, c, H Ar). Спектр ЯМР 13 С, δ , м. д. (J, Γ п): 15.5 (д, $J_{C,P}=6.0$, =C-CH₃); 16.4 (д, $J_{C,P}=2.0$, $2POCH_2CH_3$); 45.1 (д, $J_{C,P} = 7.0$, CH_2N), 62.6 (д, $J_{C,P} = 8.0$, $2POCH_2CH_3$), 83.0 (д, $J_{C,P} = 198.0$, P-CH=); 98.2 (μ , $J_{C,P} = 17.0$, =C-Me); 118.0 (C Ar); 142.0 (C Ar); 150.3 (C Ar); 152.6 (C Ar); 155.4 (C Ar); 211.0 (=C=). Спектр ЯМР ³¹Р, δ, м. д.: 14.2. Найдено, %: С 49.77; Н 5.84; N 20.62. С₁₄H₂₀N₅O₃P. Вычислено, %: С 49.85; Н 5.98; N 20.76.

9-[(5-Метил-2-оксидо-4-хлор-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил)метил]-9*Н*-пурин-6-амин (23) получен из соединения 22 по методике получения оксафосфолена 14. Выход 0.21 г (62%). Бесцветные кристаллы. Т. пл. 182–186 °C. $R_{\rm f}$ 0.4 (CHCl₃–МеОН, 10:1). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 1.34 (3H, т, J = 7.4, OCH₂CH₃); 1.51 (3H, c, 5-CH₃); 4.2 (2H, д. к, J = 9.2, J = 7.0, OCH₂CH₃); 4.42 (1H, AB система, J = 14.6) и 4.69 (1H, AB система, J = 14.6, CH₂N); 6.17–6.22 (1H, м, P–CH=); 6.70 (2H, уш. c, NH₂); 8.10 (1H, c, H Ar); 8.35 (1H, c, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 17.0 (д, $J_{\rm C,P}$ = 5.0, POCH₂CH₃); 21.0 (д, $J_{\rm C,P}$ = 3.0, CH₃); 49.3 (д, $J_{\rm C,P}$ = 5.0, CH₂N); 64.8 (д, $J_{\rm C,P}$ = 6.0, POCH₂CH₃); 89.0 (д, $J_{\rm C,P}$ = 1.0, C-5); 119.2 (C Ar); 139.3 (д, $J_{\rm C,P}$ = 160.5, C-3); 142.4 (C Ar); 147.8 (д, $J_{\rm C,P}$ = 50.0, C-4); 150.6 (C Ar); 151.8 (C Ar); 155.2 (C Ar). Спектр ЯМР ³¹Р, δ , м. д.: 32.5. Найдено, %: С 41.74; H 4.80; N 20.30. С₁₂H₁₅CIN₅O₃P. Вычислено, %: С 41.93; H 4.40; N 20.38.

9-[(4-Бром-5-метил-2-оксидо-2-этокси-2,5-дигидро-1,2-оксафосфол-5-ил)метил]-9*Н*-пурин-6-амин (24) получен из соединения 22 по методике получения оксафосфолена 17. Выход 0.19 г (50%). Бесцветные кристаллы. Т. пл. 210–214 °C (с разл.). $R_{\rm f}$ 0.32 (CHCl₃–MeOH, 10:1). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 1.34 (3H, τ , J = 7.2, OCH₂CH₃); 1.48 (3H, c, 5-CH₃); 4.19 (2H, д. к, J = 9.4, J = 7.2, OCH₂CH₃); 4.35 (1H, AB система, J = 14.6) и 4.76 (1H, AB система, J = 14.6, CH₂N); 6.17–6.23 (1H, м, P–CH=); 6.43 (2H, уш. с, NH₂); 8.08 (1H, с, H Ar); 8.37 (1H, с, H Ar). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 17.0 (д, J_{C,P} = 5.0, OCH₂CH₃); 20.5 (д, J_{C,P} = 3.0, 5-CH₃); 50.9 (д, J_{C,P} = 5.0, CH₂N); 64.0 (д, J_{C,P} = 6.0, OCH₂CH₃); 87.0 (д, J_{C,P} = 4.0, C-5); 119.1 (C Ar); 139.0 (д, J_{C,P} = 54.6, C-4); 142.4 (C Ar); 143.1 (д, J_{C,P} = 156.0, C-3); 150.7 (C Ar); 152.8 (C Ar); 155.2 (C Ar). Спектр ЯМР ³¹Р, δ , м. д.: 32.4. Найдено, %: C 37.01; H 3.75; N 18.13. C₁₂H₁₅BrN₅O₃P. Вычислено, %: C 37.13; H 3.90; N 18.04.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 12-03-00162).

СПИСОК ЛИТЕРАТУРЫ

- 1. E. De Clercq, J. Clin. Virol., 30, 115 (2004).
- 2. E. De Clercq, A. Holý, Nat. Rev. Drug Discovery, 4, 928 (2005).
- 3. E. De Clercq, Biochem. Pharmacol., 82, 99 (2011).
- V. K. Brel, V. K. Belsky, A. I. Stash, V. E. Zavodnik, P. J. Stang, *Org. Biomol. Chem.*, 1, 4220 (2003).

- 5. J. Dietz, J. Renner, U. Bergsträßer, P. Binger, M. Regitz, *Eur. J. Org. Chem.*, **2003**, 512 (2003).
- 6. R. S. Macomber, J. Am. Chem. Soc., 99, 3072 (1977).
- 7. Т. С. Михайлова, Х. М. Ангелов, А. В. Догадина, В. И. Захаров, В. М. Игнатьев, Б. И. Ионин, А. А. Петров, *Журн. общ. химии*, **47**, 2701 (1977).
- 8. C. M. Angelov, Phosphorus Sulfur Relat. Elem., 15, 177 (1983).
- 9. V. K. Brel, Synth. Commun., 29, 3869 (1999).
- 10. O. Mitsunobu, Synthesis, 1 (1981).
- J. A. Lee, H. R. Moon, H. O. Kim, K. R. Kim, K. M. Lee, B. T. Kim, K. J. Hwang, M. W. Chun, K. A. Jacobson, L. S. Jeong, *J. Org. Chem.*, 70, 5006 (2005).
- 12. J. D. Sutherland, J. N. Whitfield, *Tetrahedron*, **53**, 11595 (1997).
- 13. V. Vaněk, M. Buděšínský, M. Rinová, I. Rosenberg, Tetrahedron, 65, 862 (2009).
- 14. А. Вейсбергер, Э. Проскауэр, Д. Риддик, Э. Тупс, *Органические растворители*, Изд-во иностр. лит., Москва, 1958.

Институт физиологически активных веществ РАН, Северный проезд, 1, Черноголовка 142432, Россия e-mail: brel@ipac.ac.ru Поступило 1.02.2012