И. М. Базавова, В. Н. Брицун, А. Н. Есипенко, М. О. Лозинский

СИНТЕЗ 4-АМИНО-6-R-4,5-ДИГИДРО-3-ФЕНАЦИЛТИО-1,2,4-ТРИАЗИН-5-ОНОВ И 8Н-3-R-7-АРИЛ-1,2,4-ТРИАЗИНО-[3,4-b][1,3,4]ТИАДИАЗИН-4-ОНОВ

Исследовано взаимодействие 4-амино-6-R-2,3,4,5-тетрагидро-3-тиоксо-1,2,4-триазин-5-онов с галогенкетонами в щелочной среде. При этом образуются 4-амино-6-R-4,5-дигидро-3-фенацилтио-1,2,4-триазин-5-оны, которые затем превращаются в 8H-3-R-7-арил-1,2,4-триазино[3,4-b][1,3,4]тиади-азин-4-оны

Ключевые слова: 4-амино-6-R-2,3,4,5-тетрагидро-3-тиоксо-1,2,4-триазин-5-оны, 4-амино-6-R-4,5-дигидро-3-фенацилтио-1,2,4-триазин-5-оны, 8H-3-R-7-арил-1,2,4-триазино[3,4-b][1,3,4]тиадиазин-4-оны.

4-Амино-6-R-2,3,4,5-тетрагидро-3-тиоксо-1,2,4-триазин-5-оны содержат два реакционных центра — тиоксо- и аминогруппы и могут использоваться для синтеза конденсированных гетероциклов [1–3]. 3-Алкилтио-4-амино-4,5-дигидро-6-R-1,2,4-триазин-5-оны проявляют высокую гербицидную активность, в частности 4-амино-6-(*трет*-бутил)-4,5-дигидро-3-метилтио-1,2,4-триазин-5-он применяется в сельском хозяйстве как гербицид [4, 5]. Поэтому исследование химических свойств и получение новых производных 4-амино-6-R-2,3,4,5-тетрагидро-3-тиоксо-1,2,4-триазин-5-онов актуальны.

Нами установлено, что взаимодействие 4-амино-6-R-2,3,4,5-тетрагидро-3-тиоксо-1,2,4-триазин-5-онов $1\mathbf{a}$ — \mathbf{c} с галогенкетонами $2\mathbf{a}$ — \mathbf{e} в щелочной среде приводит к образованию 4-амино-6-R-4,5-дигидро-3-фенацилтио-1,2,4-триазин-5-онов $3\mathbf{a}$ — \mathbf{f} с выходом 55—91%, которые затем превращаются в 8H-3-R-7-арил-1,2,4-триазино[3,4-*b*][1,3,4]тиадиазин-4-оны $4\mathbf{a}$ — \mathbf{d} с выходом $4\mathbf{8}$ —93%.

В спектрах ЯМР 1 Н тиоэфиров **3a**—**f** характеристическими являются сигналы групп SCH₂CO и NH₂ (соответственно, 4.75—4.90 и 6.04—6.18 м. д.), а в ИК спектрах имеются полосы поглощения карбонильных групп (1690—1700 и 1650—1680 см $^{-1}$) и первичной аминогруппы (3200—3300 см $^{-1}$). В спектрах ЯМР 1 Н продуктов гетероциклизации **4a**—**d** наблюдаются сигналы группы SCH₂ (4.35—4.45 м. д.), а в ИК спектрах отсутствуют полосы поглощения групп C=O (1650—1680 см $^{-1}$) и NH₂.

Следует отметить, что заместители, находящиеся в триазиновом и бензольном кольцах, существенно влияют на процесс гетероциклизации. Так, при перекристаллизации из 2-пропанола тиоэфир $\bf 3a$ на $\bf 40\%$ (по данным спектроскопии $\bf 3MP$ $^1{\rm H}$) переходит в продукт $\bf 4a$, а полное превращение в триазинотиадиазин $\bf 4a$ происходит при кипячении тиоэфира $\bf 3a$ в толуоле.

1a, 3a-c, d, 4a-d R = t-Bu; 1b, 3e R = Me; 1c, 3f R = Ph; 2a, 3a, e, f, 4a Ar = Ph; 2b-4b Ar = m-O₂NC₆H₄; 2c-4c Ar = p-ClC₆H₄; 2d, 3d Ar = p-MeOC₆H₄; 2e, 4d Ar = p-FC₆H₄

Соединение **4d** образуется сразу же при взаимодействии триазина **1a** с *n*-фтор-2-бромацетофеноном **2e** на холоду, и нам не удалось выделить из реакционной массы 4-амино-6-*трет*-бутил-4,5-дигидро-3-(*n*-фторфенацил)тио-1,2,4-триазин-5-он, который, по всей видимости, является интермедиатом в данной реакции. При взаимодействии триазина **1a** с *м*-нитро-2-бромацетофеноном **2b** образуется смесь соединений **3b** и **4b** (2:1), а полное превращение тиоэфира **3b** в продукт **4b** протекает при перекристаллизации соединения **3b** из ацетонитрила.

Таблица 1 Характеристики синтезированных соединений 3a-f, 4a-d

Соеди-	Брутто- формула	Найдено, % Вычислено, % С Н N		Т. пл., °С	Выход, %	
-			Н			
3a	$C_{15}H_{18}N_4O_2S$	56.51	<u>5.54</u>	17.48	144–145	65
3b*	C ₁₅ H ₁₇ N ₅ O ₄ S	56.60 49.32	5.66 4.50	17.61 19.11	145–146	55
• • • • • • • • • • • • • • • • • • • •	013111/1/3045	49.59	4.68	19.28	1.5 1.0	
3c	$C_{15}H_{17}CIN_4O_2S$	51.28	4.97	15.98	141-142	79
		51.06	4.82	15.89		
3d	$C_{16}H_{20}N_4O_3S$	<u>55.31</u>	<u>5.61</u>	16.30	159–160	81
	G H N O G	55.17	5.75	16.09	101 102	0.1
3e	$C_{12}H_{12}N_4O_2S$	52.29 52.17	4.22 4.35	$\frac{20.36}{20.29}$	181–182	91
3f	C ₁₇ H ₁₄ N ₄ O ₂ S	60.20	3.93	16.41	209-210	89
31	C1/11/41/4025	60.36	4.14	16.57	207 210	07
4a	C ₁₅ H ₁₆ N ₄ OS	60.30	5.48	18.82	186-187	73
		60.00	5.33	18.67		
4b	$C_{15}H_{15}N_5O_3S$	<u>52.11</u>	4.39	20.41	212-214	86
		52.17	4.35	20.29		
4c	C ₁₅ H ₁₅ ClN ₄ OS	53.55	4.56	16.53	203–205	48
4.3	C II EN OC	53.81	4.48	16.74	100 200	0.2
4d	C ₁₅ H ₁₅ FN ₄ OS	56.76 56.60	4.79 4.72	17.45 17.61	199–200	93
	1	30.00	4.72	17.61		

^{*} Образуется также соединение 4b с выходом 27%.

Образование триазинотиадиазина **4c** протекает в более жестких условиях — при нагревании тиоэфира **3c** в толуоле с добавкой пиперидинацетата в течение 1 ч. Превратить тиоэфиры **3d—f** в соответствующие триазинотиадиазины нам не удалось даже при нагревании их в смеси толуол—уксусный ангидрид, так как в мягких условиях (90 °C, 1 ч) реакция не идет, а в более жестких (120 °C, 3 ч) протекает неоднозначно с образованием смеси неидентифицированных продуктов.

Такое различие в реакционной способности тиоэфиров **3** объясняется тем, что электронодонорные группы (СН₃О, Н, Сl), находящиеся в арильном кольце, пассивируют карбонильную группу по отношению к нуклеофильному агенту (аминогруппе) вследствие уменьшения положительного заряда на карбонильном атоме углерода. Наличие электроноакцепторных групп (NO₂) уменьшает электронную плотность на карбонильном атоме углерода, что способствует атаке группы С=О аминогруппой. Существенное влияние на скорость гетероциклизации оказывает также заместитель в триазиновом кольце: чем большими электронодонорными свойствами он обладает (*t*-Bu > Me, Ph), тем выше нуклеофильность и, соответственно, реакционная способность аминогруппы, а наличие карбонильной группы в положении 4 триазинового кольца уменьшает нуклеофильность аминогруппы, связанной с этим кольцом.

 $\label{eq:Table} T\ a\ б\ \pi\ u\ ц\ a\ 2$ Спектральные характеристики соединений 3, 4

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР 1 Н (ДМСО- ${\sf d}_6$), ${\sf \delta}$, м. д. (J , Γ ц)
3a	3300 (NH ₂), 2950, 1700	1.31 (9H, c, (CH ₃) ₃ C); 4.80 (2H, c, SCH ₂ CO); 6.06 (2H, c, NH ₂);
	(C=O), 1650 (C=O), 1610, 1540, 1480	7.58–7.69 (3H, м, C_6H_5); 8.06 (2H, д, $J = 8.3$, C_6H_5)
3b	3300 (NH ₂), 2950, 1700	1.33 (9H, c, (CH ₃) ₃ C); 4.88 (2H, c, SCH ₂ CO); 6.08 (2H, c, NH ₂);
	(C=O), 1680 (C=O), 1620, 1550, 1480	7.91 (1H, τ , $J = 8.4$, m -NO ₂ C ₆ H ₄); 8.58 (2H, τ , $J = 8.4$, m -NO ₂ C ₆ H ₄); 8.87 (1H, τ , $J = 8.4$, $M = 10^{-2}$ C ₆ H ₄);
3c	3200 (NH ₂), 3000, 1700	1.31 (9H, c, (CH ₃) ₃ C); 4.78 (2H, c, SCH ₂ CO); 6.07 (2H, c, NH ₂);
	(C=O), 1650 (C=O),	7.67 (2H, д, J=10.5, p-ClC ₆ H ₄); 8.10 (2H, д, J=10.5, p-ClC ₆ H ₄)
	1600, 1530, 1470	
3d	3300 (NH ₂), 2950, 1700	1.34 (9H, c, (CH ₃) ₃ C); 3.87 (3H, c, CH ₃ O); 4.75 (2H, c, SCH ₂ CO);
	(C=O), 1680 (C=O), 1610, 1540, 1480	6.04 (2H, c, NH ₂); 7.07 (2H, д, <i>J</i> = 11.3, <i>p</i> -CH ₃ OC ₆ H ₄); 8.03 (2H, д, <i>J</i> = 11.3, <i>p</i> -CH ₃ OC ₆ H ₄)
3e	3300 (NH ₂), 3000, 1690	2.21 (3H, c, CH ₃); 4.75 (2H, c, SCH ₂ CO); 6.05 (2H, c, NH ₂);
	(C=O), 1650 (C=O),	7.59–7.65 (3H, м, C_6H_5); 8.04 (2H, д, $J = 8.8$, C_6H_5)
	1600, 1550, 1490	
3f	3300 (NH ₂), 3100, 1700 (C=O), 1680 (C=O),	4.88 (2H, c, SCH ₂ CO); 6.18 (2H, c, NH ₂); 7.47–7.76 (6H, м, С ₆ H ₅); 8.08 (4H, д, С ₆ H ₅)
	1600, 1510, 1460	8.08 (4П, Д, С6П5)
4a	3000, 1720 (C=O),	1.41 (9H, c, (CH ₃) ₃ C); 4.36 (2H, c, SCH ₂); 7.61 (3H, M, C ₆ H ₅);
	1610, 1520, 1470	$8.03 (2H, д, J = 8.8, C_6H_5)$
4b	2950, 1700 (C=O),	1.40 (9H, c, (CH ₃) ₃ C); 4.45 (2H, c, SCH ₂); 7.90 (1H, T, <i>J</i> = 8.4,
4c	1610, 1540, 1480 3000, 1700 (C=O),	<i>m</i> -NO ₂ C ₆ H ₄); 8.44 (2H, д, <i>m</i> -NO ₂ C ₆ H ₄); 8.82 (1H, с, <i>m</i> -NO ₂ C ₆ H ₄) 1.40 (9H, с, (CH ₃) ₃ C); 4.35 (2H, с, SCH ₂ C); 7.70 (2H, д, <i>J</i> = 11.0,
40	1600, 1520, 1460	$p\text{-CIC}_6\text{H}_4$); 8.05 (2H, μ , J = 11.0, μ -CIC $_6\text{H}_4$)
4d	3000, 1700 (C=O),	1.39 (9H, c, (CH ₃) ₃ C); 4.37 (2H, c, SCH ₂); 7.45 (2H, $_{\rm T}$, $_{\rm J}$ = 13.0,
	1600, 1590, 1530, 1470	<i>p</i> -FC ₆ H ₄); 8.17 (2H, м, <i>p</i> -FC ₆ H ₄)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на приборе Varian-300 (300 МГц), внутренний стандарт ТМС, ИК спектры — на приборе Specord IR-75 в таблетках КВг.

4-Амино-6-R-4,5-дигидро-3-фенацилтио-1,2,4-триазин-5-оны 3а-f (общая методика) и 8H-3-(*трем*-бутил)-7-(*п*-фторфенил)-1,2,4-триазино[3,4-*b*][1,3,4]тиадиазин-4-он (4d). К раствору, содержащему 10 ммоль соответствующего 4-амино-6-R-3-тиоксо-1,2,4-триазин-5-она 1 и 10 ммоль гидроксида калия в 10 мл этанола, приливают раствор 10 ммоль α-галогенкетона 2 в 10 мл этанола. Смесь нагревают 20 мин при 80 °С, затем выдерживают 24 ч при 15 °С. Раствор разбавляют 50 мл воды, осадок отфильтровывают, сущат и перекристаллизовывают из этанола. Выходы и температура плавления соединений 3а-f и 4d приведены в табл. 1.

8Н-3-(*прет*-Бутил)-7-фенил-1,2,4-триазино[3,4-*b*][1,3,4]тиадиазин-4-он (4а). Раствор 3.18 г (10 ммоль) соединения **3а** в 100 мл толуола кипятят 1.5 ч, затем отгоняют 90 мл толуола. Остаток охлаждают. Выпавший осадок сушат и перекристаллизовывают из этанола.

8H-3-(*трет*-Бутил)-7-(*м*-нитрофенил)-1,2,4-триазино[3,4-*b*][1,3,4]тиадиазин-4-он (4b). Растворяют 3.63 г (10 ммоль) соединения **3b** в 50 мл ацетонитрила, раствор кипятят 5 мин и охлаждают. Выпавший осадок отфильтровывают, промывают эфиром и сушат.

8Н-3-(*трет*-Бутил)-7-(*п*-хлорфенил)-1,2,4-триазино[3,4-*b*][1,3,4]тиадиазин-4-он (4c). Раствор 3.53 г (10 ммоль) соединения **3c** и 0.5 ммоль пиперидинацетата в 80 мл толуола кипятят 3 ч, затем отгоняют 70 мл толуола. Остаток охлаждают. Выпавший осадок сушат и перекристаллизовывают из этанола.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Dornow, H. Menzel, P. Marx, Chem. Ber., 97, 2173 (1964).
- S. Bala, R. P. Gupta, M. L. Sachdeva, A. Singh, H. K. Pujari, *Indian. J. Chem.*, 16B, 481 (1978).
- 3. M. Mizutani, I. Sanemitsu, J. Heterocycl. Chem., 19, 1577 (1982).
- E. Kranz, K. Findeisen, R. Schmidt, L. Eue, Eur. Pat. Appl. EP 49416 (1982); Chem. Abstr., 97, 72392 (1982).
- 5. Н. Н. Мельников, Пестициды, Химия, Москва, 1987, 660.

Институт органической химии HAH Украины, Киев 02094 e-mail: ioch. kie @ukrpack.net

Поступило в редакцию 13.02.2001