В. И. Келарев, М. А. Силин, О. А. Борисова СИНТЕЗ И СВОЙСТВА ПРОИЗВОДНЫХ сим-ТРИАЗИНА

18*. СИНТЕЗ N-ЗАМЕЩЕННЫХ 2,4-ДИАМИНО-6-(БЕНЗОТИАЗОЛИЛ-2-ТИОМЕТИЛ)-сим-ТРИАЗИНОВ

Конденсацией метилового эфира бензотиазолил-2-тиоуксусной кислоты с N-замещенными бигуанидами в присутствии метилата натрия получены 2-амино-4-(RR'-амино)-6-(бензотиазолил-2-тиометил)-сим-триазины. В ряде случаев выделены также 1,1-дизамещенные 5-(бензотиазолил-2-тиоацетил)-бигуаниды, циклизующиеся при кипячении в ДМФА в соответствующие указанные замещенные сим-триазины. Соединения последнего типа синтезированны также взаимодействием 2-амино-4-трихлорметил-6-(бензотиазолил-2-тиометил)-сим-триазина с первичными и вторичными алифатическими и гетероциклическими аминами или реакцией N-замещенных 2,4-диамино-6-хлорметил-сим-триазинов с 2-меркаптобензотиазолом.

Ключевые слова: бензотиазол, бигуаниды, 2,4-диамино-*сим*-триазины, конленсация

В литературе имеются данные, что бензотиазолилзамещенные симтриазины проявляют высокую антимикробную и фунгицидную активность [2–4], а также используются в качестве эффективных антиоксидантов и стабилизаторов для углеводородных топлив, смазочных масел и полимерных материалов [5–8]. Известные методы получения таких бисгетероциклических соединений основаны на взаимодействии хлорзамещенных сим-триазинов с аминами и меркаптанами ряда бензотиазола [2–4, 9–11].

В продолжение наших исследований по синтезу гетерилзамещенных cum-триазинов [11–14] в настоящей работе сообщается о получении N-замещенных 2,4-диамино-cum-триазинов, содержащих бензотиазолил-2-тиометильный фрагмент.

Известно [12, 13, 15], что N-замещенные 2,4-диамино-6-алкил(арил, гетерил)-*сим*-триазины образуются в результате конденсации бигуанидов с производными кислот — хлорангидридами, сложными эфирами, ангидридами, иминоэфирами. В данной работе для синтеза гетероциклов указанного выше типа была использована конденсация метилового эфира бензотиазолил-2-тиоуксусной кислоты (1) с гидрохлоридами N-замещенных бигуанидов 2а–ј в присутствии оснований (метод A).

^{*} Сообщение 17 см. [1].

2–4 а R = Me, R¹ = H; **b** R = R¹ = Me; **c** R = Me, R¹ = $C_{18}H_{37}$; **d** R = R¹ = Bu; **e** R = cyclo- C_6H_{11} , R¹ = H; **f** R = Ph, R¹ = H; **g** R = 4-Me C_6H_4 , R¹ = H; **h** R = R¹ = Ph CH_2 ; **i** RR¹N = морфолино; **j** RR¹N = пиперидино; **k** R = C_8H_{17} , R¹ = H; **l** R = фурфурил, R¹ = H; **7 a** R = R¹ = Me; **b** R = Ph, R¹ = H; **c** R = 4-Me C_6H_4 , R¹ = H; **d** RR¹N = морфолино; **e** RR¹ = пиперидино

Установлено, что лучшие выходы (см. таблицу) N-замещенных 2,4-ди-амино-6-(бензотиазолил-2-тиометил)-сим-триазинов 3а-ј достигаются при кипячении реагентов в метаноле в присутствии метилата натрия при молярном соотношении эфир 1 : гидрохлорид бигуанида 2а-ј : MeONa, равном 1:1:1.25. Следует отметить, что продолжительность реакции и выходы целевых сим-триазинов зависят от природы заместителей в исходных бигуанидах. Например, при использовании гидрохлоридов бигуанидов 2a,b,e,i,j соответствующие 2,4-диамино-сим-триазины образуются с хорошими выходами (78–86%) после кипячения реакционной смеси в метаноле в течение 8–10 ч. сим-Триазины 3f,g были получены с выходами 64–68% после нагревания эфира 1 с N-фенил- (2f) и N-(n-толил)бигуанидом (2g) в течение 15–16 ч. При получении сим-триазинаов 3c,d,h из гидрохлоридов N-метил-N-октадецил- (2c), N,N-дибутил- (2d) и N,N-дибензилбигуанида (2h) было необходимо более продолжительное

нагревание (22–24 ч); при этом выходы указанных соединений не превышали 45–52%, а из реакционных смесей в значительных количествах (28–34%) были выделены 1,1-дизамещенные 5-(бензотиазолил-2-тиоацетил)бигуаниды **4c,d,h**. По-видимому, это связано со значительными пространственными затруднениями, вызываемыми объемными заместителями в указанных бигуанидах.

5-Ацилбигуаниды **4c,d,h** при непродолжительном кипячении в ДМФА циклизуются в соответствующие 2,4-диамино-*сим*-триазины **3c,d,h**. В литературе ранее сообщалось [16] об образовании аналогичного 5-ацилбигуанида при взаимодействии эфира 5-нитрофуран-2-карбоновой кислоты с N-(4-нитрофенил)бигуанидом и о его превращении с невысоким выходом в 2-амино-4-(4-нитроанилино)-6-(5-нитрофурил-2)-*сим*-триазин.

При проведении реакции эфира **1** с гидрохлоридами бигуанидов **2b,i** в присутствии эквимолекулярного количества MeONa в кипящем метаноле в течение 8 ч соответствующие *сим*-триазины **3b,i** образовались с невысокими выходами (44–47%), а из реакционных смесей были также выделены значительные количества исходного эфира **1**.

Отметим, что замена метанола на более высококипящие растворители (этанол, диоксан, бутанол-1, метилцеллозольв) не привела к заметному повышению выходов 2,4-диамино-cum-триазинов **3а–j**. В то же время использование в конденсациях эфира **1** с гидрохлоридами бигуанидов **2a,b,f,i** двух эквивалентов метилата натрия приводит к снижению выходов соответствующих cum-триазинов **3a,b,f,i** до 50–54% и образованию неидентифицированных высокоплавких (T_{nn} >300 °C) побочных продуктов, плохо растворимых в большинстве органических растворителей.

Ранее [14, 17, 18] было показано, что взаимодействие 2-амино-4-три-хлорметил-*сим*-триазинов с первичными и вторичными алифатическими аминами приводит к N-замещенным 2,4-диамино-*сим*-триазинам в результате нуклеофильного замещения группы Cl₃C. В данной работе мы использовали этот метод для получения *сим*-триазинов **3b,d,e,i,l**. С этой целью было изучено взаимодействие 2-амино-6-(бензотиазолил-2-тиометил)-4-трихлорметил-*сим*-триазина (5) с алифатическими и гетероциклическими аминами (метод Б).

Исходный трихлорметил-*сим*-триазин **5** синтезирован с выходом 78% конденсацией эквимолекулярных количеств N-(бензотиазолил-2-тиоацетил)гуанидина (**6**) и метилового иминоэфира трихлоруксусной кислоты в абсолютном этаноле. 2-Амино-4-диметиламино-*сим*-триазин **3b** получен с выходом 75% при пропускании газообразного диметиламина в раствор *сим*-триазина **5** в ДМФА при 150–155 °C. Лучший выход (68–80%) N-замещенных 2,4-диамино-*сим*-триазинов **3d,e,i–l** достигается при нагревании (140–155 °C) *сим*-триазина **5** с избытком соответствующих аминов в диоксане или ДМФА под давлением.

Для получения N-замещенных 2,4-диамино-*сим*-триазинов **3b,f,g,i,j** мы использовали также взаимодействие N-замещенных 2,4-диамино-6-хлорметил-*сим*-триазинов (**7a–e**) с 2-меркаптобензотиазолом (метод В). Реакции проводились при кипячении (4–5 ч) реагентов в водном этаноле в присутствии небольшого избытка щелочи; в этих условиях указанные выше *сим*-триазины образуются с выходами 78–92%.

Таблица 1

Характеристики синтезированных соединений

Выход, %	(метод полу- чения)	73 (A)	86 (A), 75 (B), 84 (B)	45 (A)	44 (A), 76 (B)	74 (A), 70 (B)
Спектр ЯМР¹Н, 8, м. д. (J, Гц)	Другие протоны	3.36 (3H, ym. c, CH ₃ N)	3.25 (6H, д, J = 2.5, (CH ₃) ₂ N	1.12 (3H, r, CH ₃); 1.32–1.80 (32H, м, CH ₂); 3.50 (3H, c, CH ₃ N); 3.90 (2H, r, CH ₂ N)	1.15 (6H, r, 2CH ₃); 1.35–1.88 (8H, м, 4CH ₂); 3.74 (4H, м, 2CH ₂ N)	1.84–2.38 (11Н, м, СН ₂ , СН)
	Протоны бензтиазоль- ного цикла	1	7.65–7.92	7.90–8.02	7.64–7.75	7.84–8.06
	NH (1H, II. c)	5.64	1	1	1	6.05
	NH ₂ (2H, III. c)	6.38	6.92	6.78	6.54	7.02
	CH ₂ S (2H, c)	3.95	3.90	4.25	4.18	4.04
<i>R_f</i> (система раствори-		0.32 (a)	0.52 (a)	0.20 (a)	0.37 (a)	0.22 (6)
Т. пл., °С*		154.0–155.5	141–143	148–149	56.0–57.5	229–230
	s	20.66 21.05	20.0 <u>2</u> 20.12	11.72	15.95 15.92	<u>17.32</u> 17.20
Найдено, % Вычислено, %	Z	<u>27.81</u> 27.63	<u>26.60</u> 26.41	15.29 15.11	21.10 20.89	<u>22.33</u> 22.58
Найде Вычис	Н	4.02 3.94	4.48 4.40	8.57 8.63	6.41 6.46	5.50 5.37
	C	47.66 47.84	87.88 49.05	64.62 64.74	<u>56.60</u> 56.72	<u>54.92</u> 4.84
ŗ	Брутго- формула			C ₃₀ H ₄₈ N ₆ S ₂	$C_{19}H_{26}N_6S_2$	C ₁₇ H ₂₀ N ₆ S ₂
(3a	3b	36	3d	36	

87 (A) 78 (B)	62 (A), 80 (B)	48 (A)	82 (A), 80 (Б), 92 (B)	76 (A), 70 (B), 88 (B)	64 (B)	76 (Б)	78
6.92-7.04 (5Н, м, Н _{Рћ})	2.04 (3H, c, CH ₃); 6.88–7.04 (4H, M, H _{Ar})	3.25 (4H, c, 2 NCH ₂ H _{Ph}); 6.96- 7.14 (10H, м, H _{Ph})	3.34–3.72 (8Н, м, 4СН ₂)	3.48–3.68 (10Н, м, 5СН ₂)	1.05 (3H, r, CH ₃); 1.30–1.52 (12H, m, 6CH ₂), 3.84 (2H, m, CH ₂ N)	3.52 (2H, c, CH ₂ N); 6.58 (1H, π μ 3-H _{eur} , J ₃₅ = 0.7), 6.84 (1H, π μ 4- H _{eur} , J ₃₄ = 3.3); 7.72 (1H, π μ 5- H _{eur} , J ₄₅ = 1.8)	I
7.74–7.90	7.94-8.10	7.67–7.80	7.88–8.02	7.64–7.98	7.52–7.67	7.58–7.72	7.67–7.84
5.58	5.71	ı	ı	l	5.63	5.55	ı
89.9	6.45	08.9	88.9	6.94	09.9	6.50	89.9
3.88	4.10	3.93	4.33	4.44	3.94	4.20	3.94
0.32 (6)	0.40 (6)	0.50 (6)	0.51 (a)	0.57 (a)	0.44 (6)	0.67 (6)	0.34 (a)
223–224	119-120	254–255	158–159	154–156	162–163	105.0–106.5	172.0-173.5
17.60 17.48	17.05 16.84	13.54 13.62	<u>17.62</u> 17.78	18.08 17.88	16.04 15.82	<u>17.16</u> 17.30	16.18 16.30
<u>22.80</u> 22.95	21.91 22.10	18.01 17.87	<u>23.51</u> 23.33	<u>23.35</u> 23.46	20.77	22.88 22.70	18.02 17.83
3.82	4.12	4.52	4.52	5.03	6.38	3.78	2.04
<u>55.62</u> 55.73	<u>56.95</u> 56.84	63.95 63.83	49.91 50.00	53.44	<u>56.83</u> 56.72	52.02	36.80 36.69
C ₁₇ H ₁₄ N ₆ S ₂	C ₁₈ H ₁₆ N ₆ S ₂	C ₂₅ H ₂₂ N ₆ S ₂	C ₁₅ H ₁₆ N ₆ OS ₂	C ₁₆ H ₁₈ N ₆ S ₂	C ₁₉ H ₂₆ N ₆ S ₂	C ₁₆ H ₁₄ N ₆ OS ₂	C ₁₂ H ₈ Cl ₃ N ₅ S ₂
3f	3g	3h	3i	3j	3k	31	w

* Соединения перекристаллизованы: 3а — из этанола; 3b,e,k,l — из смеси пропанол-2—вода, 1:1.5; 3с — из смеси ацетон—гексан, 3:1; 3d — из бутанола-1; 3f — из смеси ДМФА—вода, 1:2; 3g — из смеси метилцеллозольв—вода, 1.5:1; 3h — из смеси этанол—вода, 4:1; 3i — из смеси диоксан—вода, 2:1; 3j — из смеси бензол—гексан, 3:1; 5 — из смеси пропанол-2—вода, 2:1.

Характеристики синтезированных производных *сим*-триазина **3a–l** и **5** приведены в таблице. Состав и структура этих соединений подтверждены данными элементного анализа, ИК и ЯМР 1 Н спектроскопии. Так, в ИК спектрах наблюдаются максимумы поглощения переменной интенсивности, характерные для валентных (1565–1550, 1530–1520, 1440–1425 см $^{-1}$), дышащих (1115–1110, 1015–1000 см $^{-1}$), внеплоскостных (815–800 см $^{-1}$) и плоскостных (730–695 см $^{-1}$) деформационных колебаний кольца *сим*-триазина [12–14, 18–21]. В спектре трихлорметил-*сим*-триазина **5** эти полосы смещены в низкочастотную область по сравнению со спектрами 2,4-диамино-*сим*-триазинов **3a–l**. Наряду с указанными колебаниями имеются также полосы поглощения, характерные для бензотиазольных фрагментов [20]: 1605–1595, 1530–1515, 1465–1455, 1395–1380 (у конденсированного тиазольного кольца), 1160–1100 (β CH), 1080–1065 (дышащие колебания тиазольного кольца), 950–930 (у CH) и 800–785 см $^{-1}$ (β кольца).

В области валентных колебаний NH в спектрах соединений **3a–l** и **5** имеются две широкие полосы поглощения в интервале 3460–3340 см^{-l} (v_{as} NH) и 3190–3120 см^{-l} (v_{s} NH). Такое положение и форма дублета валентных колебаний NH свидетельствуют о наличии в этих соединениях прочной водородной связи [14, 17, 19]. Интенсивные максимумы поглощения в области 1620–1665 см^{-l} относятся к ножничным колебаниям связи N–H в первичных аминогруппах, что характерно для ассоциированных аминопроизводных *сим*-триазина [12, 14, 22].

В спектрах N-замещенных 2,4-диамино-*сим*-триазинов **3а,e–g,k,l** наблюдаются также слабые полосы поглощения в области 3370–3300 см $^{-1}$ (ν_s NH) и полосы поглощения переменной интенсивности в интервале 1525–1510 см $^{-1}$ (ножничные колебания NH), относящиеся к колебаниям вторичных гетероароматических аминогрупп [11, 13, 14, 18, 23].

В спектрах ЯМР ¹Н синтезированных *сим*-триазинов (см. таблицу) сигналы протонов первичных аминогрупп представлены в виде уширенных синглетов интенсивностью в две протонные единицы в интервале 6.15–7.02 м. д. [12–14]. Сигналам протонов вторичных групп NH в спектрах соединений **За,е-g,k,l** отвечают уширенные синглеты в области 5.50–6.05 м. д., что характерно для аминопроизводных *сим*-триазина такого типа [11, 14]. Протонам бензотиазольных фрагментов отвечают мультиплетные сигналы при 7.40–8.14 м. д. Сигналы протонов тиометиленовых групп в спектрах всех соединений наблюдаются в виде синглетов при 3.88–4.25 м. д.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе Bruker IFS-48 в таблетках КВг или в виде суспензий в вазелиновом масле. Спектры ЯМР 1 Н записаны на спектрометре Bruker WP-250 (250 МГц) в растворе ДМСО- $_6$, внутренний стандарт ТМС. Контроль за ходом реакций и чистотой полученных соединений осуществляли с помощью ТСХ на Al_2O_3 III ст. акт. по Брокману в системах растворителей бензол-метанол, 20:1 (а) и бензол-пропанол-2, 10:1 (б), проявление парами иода.

Характеристики синтезированных соединений приведены в таблице.

Исходные метиловый эфир бензотиазолил-2-тиоуксусной кислоты (1) [24, 25], гидрохлориды N-замещенных бигуанидов $2\mathbf{a}$ – \mathbf{j} [26–28] и N-замещенные 2,4-диамино-6-хлорметил-*сим*-триазины $7\mathbf{a}$ – \mathbf{e} [27, 29] получены по методикам указанных работ.

N-Замещенные 2,4-диамино-6-(бензтиазолил-2-тиометил)-сим-триазины (3a,b,e-g,i-j). А. К перемешиваемому раствору метилата натрия, приготовленному из 0.57 г (25 ммоль) натрия в 75 мл абсолютного метанола, прибавляют порциями 20 ммоль гидрохлорида бигуанида 2a,b,e-g,i-j. Реакционную смесь перемешивают 0.5 ч при 20 °C, затем прибавляют порциями 4.78 г (20 ммоль) эфира 1 и кипятят при перемешивании до исчезновения исходного эфира 1 (8–10 ч при получении сим-триазинов 3a,b,e,i,j; 15–16 ч при получении сим-триазинов 3f,g по данным TCX) и упаривании досуха при пониженном давлении. Остаток промывают водой, сушат и кристаллизуют из подходящего растворителя (см. таблицу).

2-Амино-6-(бензотиазолил-2-тиометил)-4-(N-метилоктадециламино)-6-*сим***-триазин** (**3c**) и **5-(бензотиазолил-2-тиоацетил)-1-метил-1-октадецилбигуанид** (**4c**). А. К перемешиваемому раствору метилата натрия, приготовленному из 0.57 г (25 ммоль) натрия в 100 мл абсолютного метанола, прибавляют порциями 8.07 г (20 ммоль) гидрохлорида бигуанида **2c**. Реакционную смесь перемешивают 0.5 ч при 20 °C, охлаждают до 0 °C, осадок NaCl отфильтровывают и промывают на фильтре 20 мл абсолютного метанола. К фильтрату прибавляют 4.78 г (20 ммоль) эфира **1** и кипятят при перемешивании 22–24 ч (контроль при помощи ТСХ до исчезновения в реакционной смеси исходного эфира **1**), затем охлаждают до –5 °C и выдерживают при этой температуре 0.5 ч. Выпавший осадок отфильтровывают, промывают на фильтре 20 мл холодного метанола, сушат и кристаллизуют из смеси ацетон–гексан, 3:1. Получают 5.0 г (45%) продукта **3c**.

Фильтрат упаривают досуха при пониженном давлении, остаток кристаллизуют из смеси пропанол-2–вода, 2:1. Получают 3.9 г (34%) продукта $\mathbf{4c}$, т. пл. 64–66 °C; R_f 0.44 (b). ИК спектр (в КВг), v, см⁻¹: 1625, 1645 (С=N); 1690 (С=O); 3325–3350 (NH). Спектр ЯМР ¹H, δ , м. д.: 8.84 (1H, ш. с, CONH); 7.80–7.72 (4H, м, H аром.); 6.38 (2H, ш. с, NH); 6.04 (1H, ш. с, NH); 4.08 (2H, с, CH₂S); 3.84 (2H, т, CH₂N); 3.45 (3H, с, MeN); 1.87–1.30 (32H, м, 16CH₂); 1.12 (3H, т, CH₃). Найдено, %: C 62.58; H 8.80; N 14.82; S 11.04. $C_{30}H_{50}N_{6}OS_{2}$. Вычислено, %: C 62.71; H 8.71; N 14.63; S 11.15.

Раствор 1.65 г (2.9 ммоль) 5-ацилбигуанида $\bf 4c$ в 15 мл ДМФА кипятят 3 ч, охлаждают до $\bf 20$ °C и выливают в 70 мл ледяной воды. Выпавший осадок отфильтровывают, сушат, кристаллизуют из смеси ацетон–гексан, $\bf 3:1$ и получают $\bf 1.2$ г ($\bf 75\%$) $\bf cum$ -триазина $\bf 3c$.

2-Амино-6-(бензотиазолил-2-тиометил)-4-дибутиламино-*сим***-триазин (3d) и 5-(бензтиазолил-2-тиоацетил)-1,1-дибутилбигуанид (4d)** получают аналогично из гидрохлорида бигуанида **2d**. Из фильтрата выделяют 5-ацилбигуанид **4d**, выход 28%, т. пл. 108-109 °C (гептан–пропанол-2, 4:1); R_f 0.18 (a). Спектр ЯМР 1 Н, δ , м. д.: 9.04 (1H, уш. c, CONH); 7.70–7.61 (4H, м, H apoм.); 6.54 (2H, ш. c, NH); 6.04 (1H, ш. c, NH); 3.90 (2H, c, CH₂S); 3.72 (2H, т, CH₂N); 1.54-1.33 (8H, м, 4CH₂); 1.16 (6H, т, 2CH₃). Найдено, %: C 54.14; H 6.80; N 19.85; S 15.37. $C_{19}H_{28}N_6OS_2$. Вычислено, %: C 54.28; H 6.66; N 20.00; S 15.23.

При кипячении (2 ч) 5-ацилбигуанида **4h** в ДМФА получают $\mathit{сим}$ -триазин **3d**, выход 80%.

2-Амино-6-(бензотиазолил-2-тиометил)-4-дибензиламино-*сим***-триазин (3h) и 5-(бензотиазолил-2-тиоацетил)-1,1-дибензилбигуанид (4h)** получают аналогично из гидрохлорида бигуанида **2h**. Из фильтрата выделяют 5-ацилбигуанид **4h**, выход 30%, т. пл. 154–156 °C (пропанол-2–вода, 1:1); R_f 0.21 (b). ИК спектр (в КВг), v, см $^{-1}$: 1630, 1645 (C=N); 1685 (C=O); 3345–3360 (NH). Найдено, %: С 61.58; Н 5.03; N 17.05; S 13.25. $C_{25}H_{24}N_6OS_2$. Вычислено, %: С 61.47; Н 4.92; N 17.21; S 13.11.

При кипячении (4.5 ч) 5-ацилбигуанида **4h** в ДМФА получают *сим*-триазин **3h**, выход 76%.

N-(Бензотиазолил-2-тиоацетил)гуанидин (6). К перемешиваемому раствору метилата натрия, приготовленному из 0.57 г (25 ммоль) натрия в 80 мл абсолютного метанола, прибавляют 2.38 г (25 ммоль) гидрохлорида гуанидина. Реакционную смесь кипятят при перемешивании 0.5 ч, охлаждают до 20 °C, прибавляют по каплям раствор 5.97 г (25 ммоль) эфира **1** в 50 мл абсолютного метанола, кипятят при перемешивании 6 ч и упаривают досуха при пониженном давлении. Остаток промывают бензолом (3 × 10 мл) и кристаллизуют из водного этанола. Получают 5.50 г (87%) гуанидина **6**, т. пл. 97–98.5 °C (с разл.); R_f 0.42 (а). Найдено, %: С 45.19; Н 3.94; N 20.87; S 24.34. $C_9H_{10}N_4OS_2$. Вычислено, %: С 45.10; Н 3.78; N 21.04; S 24.07.

2-Амино-6-(бензтиазолил-2-тиометил)-4-трихлорметил-cum**-триазин** (5). Смесь 3.81 г (15 ммоль) гуанидина 6 и 2.64 г (15 ммоль) метилового иминоэфира трихлоруксусной кислоты в 45 мл абсолютного метанола кипятят при перемешивании 3 ч, охлаждают

до 20 °C и выливают в 150 мл ледяной воды. Выпавший осадок отфильтровывают, сушат, кристаллизуют из смеси пропанол-2–вода, 2:1, и получают 4.59 г *сим*-триазина **5**.

2-Амино-6-(бензотиазолил-2-тиометил)-4-диметиламино-*сим***-триазин** (**3b**). Б. В перемешиваемый раствор 1.96 г (5 ммоль) *сим*-триазина **5** в 40 мл безводного ДМФА при 150-155 °C в течение 1ч пропускают ток сухого диметиламина. Растворитель удаляют при пониженном давлении, остаток промывают эфиром (2 × 15 мл), кристаллизуют из смеси пропанол-2–вода, 1:1.25, и получают 1.19 г *сим*-триазина **3b**.

2-Амино-6-(бензотиазолил-2-тиометил)-4-циклогексиламино-cum-триазин (3e). Б. Смесь 3.14 г (8 ммоль) cum-триазина 5 и 5.54 г (56 ммоль) циклогексиламина в 45 мл безводного диоксана выдерживают в запаянной ампуле 6 ч при 140–145 °С. После охлаждения до 20 °С содержимое ампулы выливают в 150 мл ледяной воды. Выпавший осадок отфильтровывают, промывают на фильтре водой, сушат, кристаллизуют из смеси пропанол-2–вода, 1:1.5, и получают 2.08 г cum-триазина 3e.

Аналогично из *сим*-триазина **5** и дибутиламина, морфолина, пиперидина, октиламина или фурфуриламина синтезируют соответствующие *сим*-триазины **3d,i-e**.

N-Замещенные 2,4-диамино-6-(бензотиазолил-2-тиометил)-сим-триазины (3b,f,g,i,j). В. К перемешиваемому раствору 0.88 г (22 ммоль) NaOH в 60 мл 50% этанола прибавляют порциями 3.34 г (20 ммоль) 2-меркаптобензотиазола. Реакционную смесь перемешивают 20 мин при 20 °C, прибавляют порциями 25 ммоль хлорметил-сим-триазина 7а-е, кипятят при перемешивании 4 ч и упаривают досуха при пониженном давлении. Остаток кристаллизуют из подходящего растворителя (см. таблицу) и получают сим-триазины 3b,f,g,i,j.

СПИСОК ЛИТЕРАТУРЫ

- В. И. Келарев, В. Н. Кошелев, Н. В. Белов, Р. А. Караханов, О. В. Малова, XTC, 667 (1995).
- 2. C. F. Vaz, S. K. Bhumgara, V. Nadkarny, Indian J. Chem., 14B, 709 (1976).
- 3. T. Dabhi, V. H. Shah, A. R. Parkh, Indian J. Pharm. Sci., 54, No. 3, 109 (1992).
- 4. P. S. Desai, K. R. Desai, J. Indian Chem. Soc., 71, No. 3, 155 (1994).
- 5. В. И. Келарев, В. Н. Кошелев, И. А. Голубева, О. В. Малова, *Стабилизаторы и модификаторы органических материалов на основе производных сим-триазина*, ЦНИИТЭнефтехим, Москва, 1996.
- 6. M. Camenzind, Eur. Pat. 5959771; Chem. Abstr., 112, 120434 (1994).
- 7. В. И. Келарев, О. Г. Грачева, М. А. Силин, В. Н. Кошелев, И. А. Голубева, *Нефтепереработка и нефтехимия*, № 12, 29 (1997).
- 8. В. И. Келарев, И. А. Голубева, О. Г. Грачева, М. А. Силин, *Нефтепереработка и нефтехимия*, № 8, 22 (1998).
- 9. V. Nakamura, M. Saito, K. Mori, Nippon Gomu Kyokaishi, 53, 244 (1980).
- 10. W. F. Beech, J. Chem. Soc. (C), 466 (1967).
- 11. В. И. Келарев, Г. В. Морозова, В. Н. Кошелев, Н. В. Белов, А. М. Куатбеков, *Изв. вузов. Химия и хим. технол.*, **40**, № 3, 83 (1997).
- 12. В. И. Келарев, Р. А. Караханов, А. С. Кокосова, Г. Д. Ганкин, ХГС, 1250 (1992).
- 13. В. Н. Кошелев, В. И. Келарев, Р. А. Караханов, С. Н. Шалкаров, *ЖОрХ*, **31**, 291 (1995).
- В. И. Келарев, В. Н. Кошелев, Г. В. Морозова, Р. А. Караханов, А. С. Ремизов, XГС, 214 (1995).
- 15. E. M. Smolin, L. Rappoport, s-Triazine and Derivatives, Intersci., New York, London, 1959.
- 16. W. R. Sherman, J. Org. Chem., 26, 88 (1961).
- 17. В. И. Келарев, А. Диби, А. Ф. Лунин, ХГС, 1557 (1985).
- В. И. Келарев, Ф. Лаауад Яхья, Р. А. Караханов, И. А. Голубева, Т. П. Вишнякова, О. В. Малова, XTC, 681 (1988).
- 19. А. И. Финкельштейн, Е. Н. Бойцов, Успехи химии, 31, 1496 (1962).
- 20. Физические методы в химии гетероциклических соединений, под ред. А. Р. Катрицкого, Мир, Москва, Ленинград, 1966.
- 21. V. E. Allenstein, W. Rodzum, H. Weidheim, Z. Anorg. Allg. Chem., 408, No. 1, 53 (1974).
- 22. А. И. Финкельштейн, Оптика и спектроскопия, 5, 264 (1959).
- 23. В. И. Келарев, Р. А. Караханов, Ю. Н. Поливин, А. М. Куатбеков, А. С. Ремизов,

- А. И. Микая, ХГС, 1271 (1993).
- 24. А. Й. Рутавичюс, С. П. Йокубайтите, ХГС, 40 (1984).
- 25. M. I. Husain, V. Kumar, Indian J. Chem., 31B, 673 (1992).
- 26. S. L. Shapiro, V. A. Parrino, L. Freedmann, J. Am. Chem. Soc., 81, 3728 (1959).
- 27. P. C. Das, B. B. Patra, A. N. Bose, U. P. Basu, *Indian J. Chem.*, **6**, 691 (1968).
- 28. М. А. Силин, В. И. Келарев, О. Г. Грачева, И. А. Голубева, Н. А. Григорьева, *Башк. хим. журн.*, **5**, № 2, 14 (1998).
- 29. S. L. Shapiro, E. Isaacs, V. A. Parrino, L. Freedmann, J. Org. Chem., 25, 384 (1960).

Российский государственный университет нефти и газа им. И. М. Губкина, Москва 117917 e-mail: himeko@dol.ru Поступило в редакцию 02.08.2000