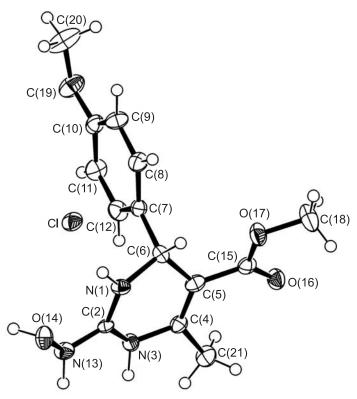
СИНТЕЗ 2-ГИДРОКСИИМИНО-1,2,3,4-ТЕТРАГИДРОПИРИМИДИНОВ

Ключевые слова: гидроксииминопроизводные, тетрагидропиримидины, ингибиторы, Zn-содержащие ферменты.

Интерес к эфирам 2-имино-1,2,3,4-тетрагидропиримидин-5-карбоновых кислот обусловлен прежде всего тем, что они являются структурными субъединицами ряда морских алкалоидов (батзелладин В), проявляющих широкий спектр биологической активности [1]. Соединения этого класса, содержащие при экзоциклическом атоме азота гидроксильную группу, до сих пор не были описаны. Между тем некоторые гидроксииминосоединения других классов известны в качестве ингибиторов Zn-содержащих ферментов. Так, амидоксимы известны как ингибиторы гистоновых деацетилаз [2], гидроксамовые кислоты и их гетероциклические аналоги — как ингибиторы матриксных металлопротеиназ [3].


Мы предлагаем достаточно простую и удобную синтетическую схему, позволяющую получать эфиры 2-гидроксиимино-1,2,3,4-тетрагидропиримидин-5-карбоновых кислот **2a**,**b** с приемлемыми выходами.

$$\begin{array}{c} \text{MeO} \\ \text{Me} \\ \text{Me} \\ \text{NH}_2 \\ \text{NH}_3 \\ \text{NH}_4 \\ \text{NH}_4 \\ \text{NH}_5 \\ \text{NH}_5 \\ \text{NH}_6 \\ \text{NH}_6 \\ \text{NH}_7 \\ \text{NH$$

Структура полученных соединений ${\bf 2a,b}$ подтверждена данными спектроскопии ЯМР 1 Н и 13 С, ИК спектроскопии, элементного анализа, а также рентгеноструктурным анализом соединения ${\bf 2b}$ (рисунок).

 $\mathbf{a} R = H, \mathbf{b} R = OMe$

ИК спектры зарегистрированы на спектрометре Shimadzu FTIR IR Prestige-21 в таблетках КВг. Спектры ЯМР 1 Н и 13 С записаны на спектрометре Varian 400 (400 и 100 МГц соответственно) в ДМСО- d_6 относительно сигналов растворителя (2.50 м. д. для ядер 1 Н, 39.5 м. д. для ядер 13 С). Элементный анализ проведён на аппарате Carlo Erba Elemental Analyzer EA 1108. Температуры плавления определены на приборе SRS OptiMelt. Для колоночной хроматографии использовался силикагель 0.035–0.070 мм (Acros).

Строение молекулы соединения 2b в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Соединения **1a,b** получены трёхкомпонентной конденсацией Биджинелли с использованием фосфорно-молибденовой кислоты в качестве катализатора [4], их физико-химические характеристики и спектральные данные соответствуют литературным [4, 5].

(2Е)-N-Гидрокси-6-метил-5-метоксикарбонил-4-фенил-3,4-дигидропиримидин-**2(1***H***)-иминий хлорид (2a)**. Раствор 1.99 г (7.58 ммоль) соединения **1a** и 1.62 г (11.39 ммоль) метилиодида в 25 мл абс. ТГФ перемешивают при комнатной температуре в течение 1 сут., затем упаривают досуха при пониженном давлении. Остаток растворяют в 8 мл безводного ДМФА, добавляют 2.63 г (37.9 ммоль) H_2 NOH·HCl, 5.36 г (53.06 ммоль) Et_3 N и перемешивают в течение 1 сут при комнатной температуре. Реакционную смесь выливают в 250 мл H₂O и экстрагируют EtOAc (3 × 50 мл). Экстракт сушат над Na₂SO₄, концентрируют при пониженном давлении. Продукт выделяют колоночной хроматографией на силикагеле (элюент CH₂Cl₂-МеОН, 15:1) в виде основания и сразу же переводят в гидрохлорид, пропуская через элюат газообразный HCl в течение нескольких минут. После выпаривания растворителя продукт перекристаллизовывают из МеОН. Выход 1.13 г (50%). Бесцветные призмы. Т. пл. 220–222 °C (с разл.). ИК спектр, v, см⁻¹: 950 (N–O), 1690 (C=N), 1730 (C=O), 3450 (O–H). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.40 (3H, c, 6-CH₃); 3.59 (3H, c, COOCH₃); 5.42 (1H, μ , J = 2.8, 4-CH); 7.25–7.44 (5H, μ , H Ph); 9.92 (1H, μ); 0.91 (1H, μ); 0.92 (1H, μ); 0.93 (1H, μ); 0.95 (10.55 (1H, уш. c, NH); 10.96 (1H, уш. c, NH); 11.41 (1H, уш. c, OH). Спектр ЯМР ¹³С, δ, м. д.: 17.5 (6-CH₃); 51.5 (COOCH₃); 51.7 (C-4); 102.9 (C-5); 126.5; 128.2; 128.8; 141.7; 144.7 (С-2); 151.2 (С-6); 164.9 (С=О). Найдено, %: С 52.46; Н 5.37; N 13.98. C₁₃H₁₆ClN₃O₃. Вычислено, %: С 52.44; Н 5.42; N 14.11.

(2E)-N-Гидрокси-6-метил-5-метоксикарбонил-4-(4-метоксифенил)-3,4-дигидропиримидин-2(1H)-иминий хлорид (2b). Получают из 0.59 г (2 ммоль) соединения

1b аналогично соединению **2a**. Выход 0.29 г (44%). Бесцветные призмы. Т. пл. 194–196 °C (с разл.). ИК спектр, v, см $^{-1}$: 950 (N–O), 1690 (C=N), 1730 (C=O), 3450 (O–H). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 2.39 (3H, c, 6-CH $_{3}$); 3.58 (3H, c, COOCH $_{3}$); 3.73 (3H, c, ArOC $_{13}$); 5.36 (1H, д, J = 2.3, 4-CH); 6.79–7.01 (2H, м, H Ar); 7.09–7.32 (2H, м, H Ar); 9.85 (1H, уш. c, NH); 10.51 (1H, уш. c, NH); 10.91 (1H, уш. c, NH); 11.35 (1H, уш. c, OH). Спектр ЯМР 13 С, δ , м. д.: 17.5 (6-CH $_{3}$); 51.2 (C-4); 51.5 (COO $_{13}$); 55.2 (C ArO $_{13}$); 103.0 (C-5); 114.1; 127.9; 133.7 (C Ar); 144.4 (C-2); 151.2 (C-6); 159.1 (C Ar); 164.8 (C=O). Найдено, %: C 51.22; H 5.39; N 12.69. C_{14} H $_{18}$ ClN $_{3}$ O $_{4}$. Вычислено, %: C 51.30; H 5.54; N 12.82.

Рентгеноструктурное исследование соединения 2b. Монокристаллы соединения 2b ($C_{14}H_{18}ClN_3O_4$, M 327.77) получены кристаллизацией из водно-метанольного раствора. Параметры элементарной ячейки и интенсивности 3632 независимых отражений с $I > 2\sigma(I)$ измерены при температуре 190 К на автоматическом рентгеновском дифрактометре Bruker-Nonius Kappa CCD (МоК α -излучение, λ 0.71073 Å). Кристаллы соединения 2b ромбические: a 8.6118(2), b 14.3429(4), c 25.133(1) Å; V 3104.4(2) ų; Z 8; $d_{\text{выч}}$ 1.403 г/см³; пространственная группа $Pbc2_1$. Структура расшифрована прямым методом [6] и уточнена полноматричным МНК по программе SHELX [7, 8]. Окончательное значение факторов расходимости R 0.064 и $wR(F^2)$ 0.160. Кристаллографические характеристики, координаты атомов и их тепловые параметры, длины связей, значения валентных углов в молекуле соединения 2b депонированы в Кембриджском банке структурных данных (депонент ССDС 890695).

Работа выполнена при финансовой поддержке Европейского социального фонда (№ 2009/0203/1DP/1.1.1.2.0/09/APIA/VIAA/023).

СПИСОК ЛИТЕРАТУРЫ

- 1. A. S. Franklin, S. K. Ly, G. H. Mackin, L. E. Overman, A. J. Shaka, *J. Org. Chem.*, **64**, 1512 (1999).
- 2. C. B. Botta, W. Cabri, E. Cini, L. De Cesare, C. Fattorusso, G. Giannini, M. Persico, A. Petrello, F. Rondinelli, M. Rodriquez, A. Russo, M. Taddei, *J. Med. Chem.*, **54**, 2165 (2011).
- 3. D. T. Puerta, M. O. Griffin, J. A. Lewis, D. Romero-Perez, R. Garcia, F. J. Villareal, S. M. Cohen, *J. Biol. Inorg. Chem.*, **11**, 131 (2006).
- 4. M. M. Heravi, K. Bakhtiari, F. F. Bamoharram, Catal. Commun., 7, 373 (2006).
- 5. C. Ramalingan, Y.-W. Kwak, Tetrahedron, 64, 5023 (2008).
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *J. Appl. Cryst.*, 38, 381 (2005).
- 7. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).
- 8. G. M. Sheldrick, *SHELXS/L-97. Programs for Crystal Structure Determination*, University of Göttingen, Göttingen, 1997.

И. В. Возный, Д. П. Степанов, А. Ф. Мишнёв, Р. Жалубовскис*

Латвийский институт органического синтеза, ул. Айзкрауклес, 21, Рига LV-1006, Латвия e-mail: raivis@osi.lv Поступило 9.07.2012

XΓC. - 2012. - №. 11. - C. 1846