Н. М. Пржевальский, Н. С. Скворцова, И. В. Магедов

СИНТЕЗ 1-, 5- И 7-ЗАМЕЩЕННЫХ 3-(N-АЦИЛАМИНО)-2-ФЕНИЛИНДОЛОВ ПО ФИШЕРУ

Взаимодействием арилгидразинов с ω -(N-ациламино)ацетофенонами получены арилгидразоны, которые циклизацией по Фишеру превращены в 3-(N-ациламино)-2-фенилиндолы с заместителями в положениях 1, 5, 6 и 7.

Ключевые слова: арилгидразины, арилгидразоны, 3-(N-ациламино)-индолы.

Ранее [1] описан разработанный нами способ синтеза 2-фенил-3-(N-ациламино)индолов циклизацией по Фишеру, получаемых из арилгидразинов 1 и ациламинокетонов 2 фенилгидразонов ω -(N-ациламино)ацетофенонов 3.

Известно, что заместители различной электронной природы, находящиеся в бензольном ядре или у атома азота арилгидразонов, не оказывают решающего влияния на процесс [3,3]-сигматропной перегруппировки енгидразинов $\mathbf{A} \to \mathbf{B}$ (см. схему) в индолы [2–5]. Вместе с тем, как правило, электронодонорные группы ускоряют, а электроноакцепторные — замедляют процесс индолизации [2, 5].

Мы исследовали электронное и стерическое влияние заместителей в бензольном кольце (R = MeO, Me, Cl, F, NO_2) и при атоме азота ($R^1 = Me$, CH_2Ph , Ph) арилгидразонов ω -(N-ациламино)ацетофенонов **3** на выход 2-фенил-3-(N-ациламино)индолов **4**.

Как было показано ранее [1], N-ацильный заместитель R^2CO в фенилгидразонах 3 (R, R^1 = H) существенно влияет на выход индолов 4, который изменяется в пределах от 16 до 83%. Поэтому, изучая воздействие заместителей R и R^1 в арилгидразонах 3 на протекание реакции индолизации, мы сравнивали выход N-ациламиноиндола 4 с выходом соответствующего незамещенного в положениях 1, 5 и 7 3-(N-ациламино)-2-фенилиндола 4, $R=R^1=H$ (табл. 1), причем все индолы были получены в одинаковых условиях.

В общем случае введение заместителей в бензольное кольцо арилгидразонов 3 уменьшает выходы N-ациламиноиндолов 4. Снижение выхода незначительно для индолов с такими заместителями, как R=5-Me, 5-MeO, 5-F. Гораздо заметнее снижение выхода (более чем в 2 раза) для 5-хлорзамещенного индола 41. Наличие сильного электроноакцепторного заместителя R=4-NO $_2$ в арилгидразоне 3m не позволило нам превратить его в 5-нитро-3-(N-ациламино)индол.

Образующиеся в процессе реакции индолизации N-ациламиноиндолы 4 содержат объемные заместители в положениях 2 и 3, поэтому можно было ожидать, что дополнительные стерические факторы будут существенно влиять на ход реакции. Действительно, использование N-замещенных арилгидразонов 3 ($R = Me, CH_2Ph, Ph$) резко уменьшает выход индолов 4. Такое же влияние оказывает введение *орто*-заместителя в фенильное кольцо арилгидразона 3c (R = 2-Me) на выход индола 4c, что согласуется с данными [3, 5].

В целом влияние заместителей на реакцию образования 3-(N-ациламино)индолов совпадает с наблюдавщимся для других вариантов индолизации [3–5].

Полученные в настоящей работе данные позволяют оценить предложенный метод как перспективный для синтеза производных 3-аминоиндолов.

Характеристики синтезированных соединений 4

Со- еди-	-1Н-индол	R	\mathbb{R}^1	R ²	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
не- ние	-11x-migon	K	10	'	формула	С	Н	N		% *
4a	5-Метил-2-фенил-3-(4-хлорбензоиламино)-	5-Me	Н	4-CIC ₆ H ₄	C ₂₂ H ₁₇ CIN ₂ O	73.18 73.23	<u>4.74</u> 4.75	7.69 7.76	167–168	26 (33)
4b	3-(2-Бромбензоиламино)-5-метил-2-фенил-	5-Me	Н	2-BrC ₆ H ₄	C ₂₂ H ₁₇ BrN ₂ O	65.42 65.20	4.15 4.23	6.62 6.91	200–201	41
4c	7-Метил-3-[5-метил-(2-хлорфенил)- 4-изоксазолилкарбониламино]-2-фенил-	7-Me	Н	5-Метил-3-(2-хлорфе- нил)-4-изоксазолил	C ₂₆ H ₂₀ ClN ₃ O ₂	70.56 70.67	4.60 4.56	9.37 9.51	242–243	30 (62)
4d	5,6-Диметил-3-[5-метил-(2-хлорфенил)- 4-изоксазолилкарбониламино-2-фенил-	5-Me 6-Me	Н	5-Метил-3-(2-хлорфе- нил)-4-изоксазолил	$C_{27}H_{22}CIN_3O_2$	71.24 71.13	4.80 4.86	9.17 9.22	257258	28 (62)
4d'	4,5-Диметил-3-[5-метил-(2-хлорфенил)- 4-изоксазолилкарбониламино-2-фенил-	4-Me 5-Me	Н	5-Метил-3-(2-хлорфе- нил)-4-изоксазолил	· · :		* :		:	
4e	(5-Метокси-2-фенил-3-(4-хлорбензоил-амино)-	5-OMe	Н	4-CIC ₆ H ₄	C ₂₂ H ₁₇ CIN ₂ O ₂	70.24 70.12	4.61 4.55	7.43 7.29	140-141	32 (33)
4f	3-Бензилтиоацетиламино-5-метокси-2- фенил-	5-OMe	. Н	PhCH ₂ SCH ₂	$C_{24}H_{22}N_2O_2S$	71.28 71.62	5.36 5.51	7.09 6.96	130–131	30 (44)
4 g	1-Метил-2-фенил-3-(4-хлорбензоиламино)-	H	Me	4-CIC ₆ H ₄	C ₂₂ H ₁₇ CIN ₂ O	73.04 73.23	4.80 4.75	7.72 7.76	180–181	22 (33)
4h	[5-Метил-3-(2-хлорфенил)-4-изоксазо- лилкарбониламино]-1,2-дифенил-	Н	Ph	5-Метил-3-(2-хлорфенил)- 4-изоксазолил	C31H22CIN3O2	73.78 73.88	4.32 4.40	8.12 8.34	125–126	27 (62)
4i	1-Бензил-3-[5-метил-3-(2-хлорфенил)- изоксазолилкарбониламино]-2-фенил-	H	PhCH ₂	5-Метил-3-(2-хлорфе- нил)-4-изоксазолил	C ₃₂ H ₂₄ CIN ₃ O ₂	73.98 74.20	4.62 4.67	7.94 8.11	7879	26 (62)
4j	1-Бензил-2-фенил-3-(2-фуроиламино)-	H	PhCH ₂	2-Фурил	C ₂₆ H ₂₀ N ₂ O ₂	79.28 79.57	5.05 5.14	6.86 7.14	134–135	34
4k	3-Бензоиламино-2-фенил-5-фтор-	5-F .	Н	Ph	C ₂₁ H ₁₅ FN ₂ O	76.22 76.35	4.62 4.58	8.39 8.48	100–101	44 (52)
41	3-(2-Оксо-2Н-3-хроменилкарбонил- амино)-2-фенил-5-хлор-	5-Cl	Н	3-Кумаринил	C ₂₄ H ₁₅ ClN ₂ O ₃	69.39 69.49	3.67 3.64	6.50 6.75	220–221	38 (83)

^{*} В скобках приведены выходы соответствующих не замещенных в положениях 1,5,7 3-ациламино-2-фенилиндолов 4, $R=R^1=H$ [1].

Спектры ЯМР 1Н соединений 4

Со- еди- не- ние	Химические сдвиги, δ , м. д. (КССВ, J , Γ ц)*								
	Индольный цикл	2-Фенил	R ²	R ¹	R	NH, уш. с.			
4a	7,33 (1H, д, J= 8.8, H-7); 7.24 (1H, с, H-4); 7.04 (1H, д, J= 8.8, H-6)	7.72 (2H, д, <i>J</i> = 8.0, H-2, H-6); 7.44 (2H, м, H-3, H-5); 7.34 (1H, м, H-4)	7.95 (2H, д, <i>J</i> = 7.9, H-2, H-6); 7.54 (2H, д, <i>J</i> = 7.9, H-3, H-5)	8.49 (1H, c)	2.40 (3H, c, CH ₃)	10.55			
4b	7.43 (1H, c, H-4); 7.35 (1H, м, H-7); 7.06 (1H, д, <i>J</i> = 7.6, H-6)	7.82 (2H, д, <i>J</i> = 6.6, H-2, H-6); 7.51 (2H, м, H-3, H-5); 7.40 (1H, м, H-4)	7:72 (1H, д, <i>J</i> = 7.6, H-5); 7.64 (1H, д, <i>J</i> =7.3, H-3); 7.50–7.40 (2H, м, H-4, H-5)	8.22 (1H, c)	2.45 (3H, c, CH ₃)	9.55			
4c	7.19 (1H, т, <i>J</i> = 7.3, H-5); 6.99 (2H, д, <i>J</i> = 7.3, H-4, H-6)	7.65–7.46 (9Н, м, С	₆ H ₅ , H-3, H-4, H-5, H-6) 2.51 (3H, c, CH ₃)	9.50 (1H, c)	2.70 (3H, c, CH ₃)	10.98			
4d	7.14 (1H, c, H-4); 7.01 (1H, c, H-7)								
4d'	7.08 (1H, д, J = 8.4, H-6); 6.90 (1H, д, J = 8.4, H-7)	7.71–7.33 (1	8Н, м, Н аром.)	9.56 (1H, c); 9.42 (1H, c)	2.73 (3H, c, CH ₃); 2.67 (3H, c, CH ₃); 2.31 (6H, c, CH ₃); 2.26 (3H, c, CH ₃); 2.24 (3H, c, CH ₃)	11.20; 11.07			
4e	7.34 (1H, д, J = 8.2, H-7); 6.92 (1H, д, J = 2.2, H-4); 6.83 (1H, д. д, J = 8.2, J = 2.2, H-6)	7.71 (2H, д, <i>J</i> = 8.2, H-2, H-6); 7.42 (3H, м, H-3, H-4, H-5)	7.97 (2H, д, J = 8.8, H-2, H-6); 7.55 (2H, д, J = 8.8, H-3, H-5)	8.53 (1H, c)	3.77 (3H, c, OCH ₃)	9.57			
		,							

4f	7.30 (1H, д, J = 2.2, H-4); 6.91 (1H, д, J = 8.7, H-7); 6.83 (1H, д, J = 8.7, H-6)	7.94 (2H, д, J = 8.7, H-2, H-2); 7.47 (2H, д, J = 8.7, H-3, H-5); 7.30 (1H, м, H-4)	8.00 (2Ḥ, д, <i>J</i> = 8.2, H-3, H-5); 7.67 (1Ḥ, м, H-4); 7.53 (2Ḥ, д, <i>J</i> = 8.2, H-2, H-6); 3.89 (2Ḥ, с,	8.22 (1H, c)	3.79 (3H, c, OCH ₃)	9.53
	οιος (11, μ, σ οιν, 11 ογ		CH ₂ -CO); 3.30 (2H, c, CH ₂ -C ₆ H ₅)			
		7.53-7.45 (9Н, м, Н инд., Н аром	.)	3.71 (3H, c, CH ₃)		8.35
4g	7.28 (1H, μ , μ , J = 7.1, J = 8.0, H-5); 7.13 (1H, μ , μ , J = 7.1, J = 7.7, H-6)		7.83 (2H, д, <i>J</i> = 7.6, H-2, H-6)			
4h	1	7.52-7.17 (18H, м, F	1 инд., Н аром.)	•	-	7.70
			2.62 (3H, c, CH ₃)			ľ
4i	7.40 (1H, м, H-4); 7.17 (1H, д. д. J = 7.1, J = 8.0, H-6); 7.10 (1H, д. д. J = 7.1, J = 7.3, H-5)	7.40–7.30 (5H, м, С ₆ H ₅)	7.40–7.30 (4H, м, H-3, H-4, H-5, H-6); 2.57 (3H, c, CH ₃)	7.19–7.20 (3H, м, H-3, H-4, H-5); 6.85 (2H, д, J=7.5, H-2, H-6); 5.32 (2H, c, CH ₂)		7.60
4j	7.50-7.35 (9Н, м	I , Н инд., Н аром.)	7.09 (1H, д, J = 3.4, H-3); 7.06 (1H, д, J = 1.7, H-5); 6.58 (1H, д. д, J = 3.4, J = 1.7, H-4)	7.20 (3H, M, H-3,H-4, H-5); 6.90 (2H, д, J = 7.8, H-2, H-6); 5.38 (2H, c, CH ₂)	<u> </u>	8.30
4k	7.45 (1H, м, H-7); 7.17 (1H, д. д. д. J _{H-F} = 9.9, J = 2.5, H-4); 6.98 (1H, д. д. д. J _{H-F} = 10.2, J = 9.0, J = 2.5, H-6)	7.74 (2H, д, <i>J</i> = 7.8, H-2, H-6); 7.60–7.50 (3H, м, H-3, H-4, H-5)	7.97 (2H, д, <i>J</i> = 7.8, H-2, H-6); 7.60 (2H, м, H-3, H-5); 7.50 (1H, м, H-4)	8.52 (IH, c)		9.75
41	7.50 (1H, м, H-4); 7.43 (1H, д, J = 9.2, H-7); 7.18 (1H, д, J = 9.2, H-6)	7.76 (2H, д, <i>J</i> = 7.8, H-2, H-6); 7.48 (2H, м, H-3, H-5); 7.38 (1H, м, H-4)	8.98 (1H, с, H-4); 7.89 (1H, д, J = 8.3, H-8); 7.80-7.65 (3H, м, H-5, H-6, H-7)	9.84 (1H, c)		10.32

^{*} Спектр соединения **4d¹** снят в ДМСО-d₆.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н соединений **3** и **4** записаны на приборе Bruker WM-250 (250 МГц) в CD $_{3}$ CN. Контроль за ходом реакций осуществляли методом ТСХ на пластинах Silufol в системе CCl $_{4}$ -EtOAc, 6:1.

Использованы коммерческие N-(4-метилфенил)-, N-(2-метилфенил)-, N-(3,4-диметилфенил)-, N-метил-N-фенил-, N,N-дифенил-, N-бензил-N-фенил-, N-(4-фторфенил)-, N-(4-хлорфенил)- и N-(4-нитрофенил)гидразины фирм Lancaster и Aldrich. Натриевая соль 2-(4-метоксифенил)гидразинсульфокислоты синтезирована по методике [6].

Константы и выходы синтезированных аминоиндолов 4 приведены в табл. 1, спектры ЯМР 1 H – в табл. 2.

Общая методика синтеза ω-(N-ациламино)ацетофенонов 2, их константы и физикохимические характеристики приведены в работе [1].

Общая методика получения арилгидразонов 3. Смесь 0.05 моль гидрохлорида гидразина 1, 0.05 моль ациламинокетона 2 и 0.05 моль АсОNа в минимальном объеме ЕtOH (5–10 мл) кипятят с обратным холодильником 2 ч. Образовавшийся осадок NaCl отфильтровывают от горячего раствора. Фильтрат упаривают, оставшееся масло кристаллизуют (гидразоны 3a,c,d,k,m), либо без дальнейшей очистки перегруппировывают в аминоиндолы 4 (гидразоны 3b,e,f,h,i,j,l).

4-Метилфенилгидразон ω-(4-хлорбензоиламино)ацетофенона (3a, R = 4-Ме, R¹ = H, R² = 4-ClC₆H₄). Выход 66%. Т. пл. 86–85 °C (EtOH). Спектр ЯМР ¹H, δ , м. д. (J, Γ п): 9.53 (1H, c, NH); 7.78 (2H, д, J = 8.4, C_6H_4 –Cl-p, o- и o'-H); 7.58 (2H, д, J = 8.4, C_6H_4 –Cl-p, m- и m'-H); 7.50 (2H, д, J = 6.6, N– C_6H_4 –CH₃-p, o- и o'-H); 7.49–7.35 (5H, м, C_6H_5 –C=N); 7.20 (1H, уш. c, NH–C=O); 7.01 (2H, д, J = 8.4, N– C_6H_4 –CH₃-p, m- и m'-H); 4.46 (2H, д, J = 6.2, CH₂); 2.17 (3H, c, CH₃). Найдено, %: С 69.86; H 5.37; N 11.26. $C_{22}H_{20}$ ClN₃O. Вычислено, %: С 69.93; H 5.33; N 11.12.

2-Метилфенилгидразон ω -[5-метил-3-(2-хлорфенил)изоксазол-4-карбониламино]-ацетофенона (3c, R = 2-Me, R¹ = H, R² = 5-метил-3-(2-хлорфенил)-4-изоксазолил). Выход 60%. Т. пл. 90–91 °C (*i*-PrOH). Спектр ЯМР ¹H, δ , м. д. (J, Γ п): 9.51 (1H, c, NH); 7.68 (2H, д, J = 6.9, C_6H_5 —C=N, o- и o'-H); 7.53 (1H, д, J = 8.3, C_6H_4 —Cl-o, m-H); 7.40—7.35 (7H, м. CH аром.); 7.16 (1H, м. C_6H_4 —Cl-o, p-H); 7.14 (2H, д, J = 8.3, C_6H_4 —Cl-o, o'-H); 6.79 (1H, м. C_6H_4 —Cl-o, m'-H); 6.73 (1H, уш. c, NH—C=O); 4.47 (2H, д, J = 6.1, CH₂); 2.63 (3H, c, CH₃-изоксазол.); 2.21 (3H, c, CH₃-Ph). Найдено, %: C 68.11; CH 5.02; CH 12.38. CC₂₆H₂₃CIN₄O₂. Вычислено, %: C 68.04; CH 5.05; CH 12.21.

3,4-Диметилфенилгидразон ω -[5-метил-3-(2-хлорфенил)изоксазол-4-карбониламино]ацетофенона (3d, R = 3,4-Me₂, R¹ = H, R² = 5-метил-3-(2-хлорфенил)-4-изоксазолил). Выход 70%. Т. пл. 115–116 °C (ЕtOH). Спектр ЯМР ¹H, δ , м. д. (J, Γ п): 9.54 (1H, c, NH); 7.67 (2H, д, J = 8.1, C_6H_5 -C=N, o- и o'-H); 7.46 (1H, м, C_6H_4 -Cl-o, o'-H); 7.40-7.30 (5H, м, CH apom.); 7.20 (1H, д, J = 8.1, C_6H_4 -Cl-o, m-H); 7.00 (1H, д, J = 8.5, N- C_6H_3 -Me₂, m'-H); 6.86 (1H, c, N- C_6H_3 -Me₂, o-H); 6.84 (1H, д, J = 8.5, N- C_6H_3 -Me₂, o'-H-5); 6.76 (1H, уш. с, NH-C=O); 4.42 (2H, д, J = 6.4, CH₂); 2.64 (3H, c, CH₃-изоксазол.); 2.23 (3H, c, CH₃-Ph); 2.19 (3H, c, CH₃-Ph). Найдено, %: C 68.65; H 5.30; N 12.01. $C_{27}H_{25}$ ClN₄O₂. Вычислено, %: C 68.57; H 5.33; N 11.85.

4-Фторфенилгидразон ω -(бензоиламино)ацетофенона (3k, R = 4-F, R¹ = H, R² = Ph). Выход 56%. Т. пл. 168–169 °C (ЕtOH). Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 10.20 (1H, c, NH): 7.91 (2H, д, J = 7.5, CO–C₆H₅, o- и o'-H); 7.83 (2H, д, J = 7.5, C₆H₅–C=N, o- и o-H); 7.74 (1H, уш. c, NH–C=O); 7.55 (1H, м, CO–C₆H₅, p-H); 7.45–7.42 (4H, м, C₆H₅–C=N, m- и m'-H, CO–C₆H₅, m- и m'-H); 7.32 (1H, д, J = 6.9, C₆H₅–C=N, p-H); 7.21 (2H, д, J = 8.5, N–C₆H₄–F-p, o- и o'-H); 7.03 (2H, м, N–C₆H₄–F-p, m- и m'-H); 4.61 (2H, д, J = 6.3, CH₂). Найдено, %: С 72.28; H 5.20; N 11.96. С₂₁H₁₈FN₃O. Вычислено, %: С 72.61; H 5.22; N 12.10.

4-Нитрофенилгидразон ω -[3,4-диметоксифенил)ацетиламино]ацетофенона (3m, R = 4-NO₂, R¹ = H, R² = 3,4-(MeO)₂C₆H₃CH₂). Выход 70%. Т. пл. 168–169 °C (*i*-PrOH). Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 10.79 (1H, c, NH); 8.12 (2H, д, J = 8.80, N–C₆H₄–NO₂-p, m- m m'-H); 7.87 (2H, д, J = 8.25, C₆H₅–C=N, o- n o'-H); 7.40 (4H, м, C₆H₅–C=N, m-, m'- n p-H, NH–C=O); 7.16 (2H, д, J = 8.80, N–C₆H₄–NO₂-p, o- n o'-H); 6.78 (3H, м, CH₂–C₆H₃–(OMe)₂); 4.42 (2H, д, J = 6.05, CH₂); 3.72 (3H, c, OCH₃); 3.65 (3H, c, OCH₃); 3.54 (2H, c, CO–CH₂). Найдено, %: C 64.72; H 5.46; N 12.40. С₂₄H₂₄N₄O₅. Вычислено, %: C 64.28; H 5.39; N 12.49.

Получение индолов 4. А. К раствору 0.03 моль гидразона **3** в 10 мл ЕtOH добавляют раствор 0.09 моль тионилхлорида в 10 мл ЕtOH и смесь кипятят с обратным холодильником 4 ч. Образовавшийся NH_4Cl отфильтровывают. Спирт упаривают, остаток кристаллизуют, либо выделяют индолы **4a**–**d**,**g**–**m** колоночной хроматографией (силикагель L 100×250 мкм, элюент CCl_4 –EtOAc, 6:1).

Б. К раствору 0.04 моль натриевой соли 2-(4-метоксифенил)гидразинсульфокислоты и 0.03 моль ω -(4-хлорбензоиламино)ацетофенона или ω -(бензилтиоацетиламино)ацетофенона в <math>10 мл EtOH добавляют раствор 0.09 моль тионилхлорида в 10 мл EtOH и кипятят смесь с обратным холодильником в течение 8 ч. Образовавшийся осадок отфильтровывают. Спирт отгоняют, индолы $4\mathbf{e},\mathbf{f}$ выделяют колоночной хроматографией (условия те же, что при получении индолов из гидразонов). Затем перекристаллизовывают полученное масло из i-PrOH.

СПИСОК ЛИТЕРАТУРЫ

- 1. H. M. Пржевальский, H. C. Скворцова, И. В. Магедов, XTC, 1210 (2002).
- 2. Н. М. Пржевальский, Л. Ю. Костромина, И. И. Грандберг, ХТС, 867 (1988).
- 3. D. L. Hughes, Org. Prep. and Proced. Int., 25, 607 (1993).
- 4. R. J. Sundberg, Indoles, Acad. Press, 1996.
- 5. B. Robinson, The Fischer Indole Synthesis, J. Wiley and Sons, New York, 1982.
- 6. J. Altschul, Ber., 25, 1842 (1892).

Московская сельскохозяйственная академия им. К. А. Тимирязева, Москва 127550, Россия e-mail: ibs@ibisc.msk.ru.

Поступило в редакцию 28.12.2001 После доработки 25.07.2002