С. Г. Кривоколыско, Э. Б. Русанов^а, В. П. Литвинов⁶

ВЗАИМОДЕЙСТВИЕ 2-ОКСО-4-(2-ТИЕНИЛ)-5-ЦИАНО-1,2,3,4-ТЕТРАГИДРОПИРИДИН-6-ТИОЛАТА N-МЕТИЛМОРФОЛИНИЯ С а-БРОМКЕТОНАМИ

При взаимодействии 2-оксо-4-(2-тиенил)-5-циано-1,2,3,4-тетрагидропиридин-6-тиолата N-метилморфолиния с α -бромкетонами в этаноле образуется смесь (1:1) соответствующих 6-алкилтиопиридинов и тиазоло[3,2-*a*]пиридинов, использованная в синтезе замещенных 1-ацил-6-алкилтиопиридинов и тиено[2,3-*b*]пиридинов.

Ключевые слова: 6-алкилтиопиридины, α-бромкетоны, 2-оксо-1,2,3,4тетрагидропиридин-6-тиолат, тиазоло[3,2-*a*]пиридины и тиено[2,3-*b*]пиридины, PCA.

Ранее в результате каскадной гетероциклизации 2-тиофенового альдегида, цианотиоацетамида и кислоты Мелдрума в присутствии N-метилморфолина нами был получен замещенный 2-оксо-1,2,3,4-тетрагидропиридин-6-тиолат N-метилморфолиния (1) [1]. Продолжая исследование свойств частично гидрированных серосодержащих пиридинов, в настоящей работе мы изучили взаимодействие тиолата 1 с α -бромкетонами (2a,b).

С помощью спектров ЯМР ¹Н установлено, что кратковременное нагревание соединений **1** и **2** в этаноле приводит к образованию смеси (1:1) 6-алкилтиопиридинов **3** и тиазоло[3,2-*b*]пиридинов **4**. В то же время, по данным РСА, в результате кристаллизации продукта реакции тиолата **1** и фенацилбромида **2a** образуется исключительно соединение **4a**, последующее растворение которого вновь приводит к эквимолярной смеси соединений **3a** и **4a**. Очевидно, в растворе оба продукта находятся в равновесии. В этой связи, следует заметить, что и при алкилировании изоструктурных аналогов соединения **1** – 4-арил-2-оксо-5-циано-3-этоксикарбонил-1,2,3,4-тетрагидропиридин-6-тиолатов N-метилморфолиния – α -бромкетонами также образуется не смесь *цис*- и *транс*-изомеров 6-алкилтиотетрагидропиридинов, как отмечалось ранее [2], а смесь соединений типа **3** и **4**.

Общий вид молекулы **4a** показан на рис. 1, основные геометрические параметры приведены в табл. 1. Центральная бициклическая система плоская лишь приблизительно – отклонения атомов от среднеквадратичной плоскости достигают 0.28 Å, двугранный угол между циклами $N_{(1)}C_{(1-5)}$ и $S_{(1)}C_{(1)}N_{(1)}C_{(12)}$ составляет 8.3°. При этом, если пятичленный гетероцикл $S_{(1)}C_{(1)}N_{(1)}C_{(12)}$ плоский в пределах 0.10 Å, то шестичленный гетероцикл $N_{(1)}C_{(1-5)}$ заметно искажен в сторону конформации полуванны: модифицированные параметры Кремера–Попла [3] для этого цикла составляют: S = 0.57, $\theta = 46.07^{\circ}$, $\psi = 23.39^{\circ}$.

1591

Тиофеновое S₍₂₎C₍₇₋₁₀₎ и бензольное C₍₁₃₋₁₈₎ кольца в силу стерических условий практически ортогональны центральной бициклической системе - соответствующие двугранные углы составляют 82.3 и 83.4°. Атом N₍₁₎ имеет плоскотригональную конфигурацию связей (сумма валентных углов при этом атоме составляет 360.0(1.2)°). Участие неподеленной электронной пары этого атома в сопряжении с π-системами двойных связей $O_{(1)}=C_{(5)}$ и $C_{(1)}=C_{(2)}$ приводит к заметному укорочению связей $N_{(1)}-C_{(5)}$ 1.386(5) и N₍₁₎-C₍₁₎ 1.386(5) Å по сравнению с интервалом 1.43-1.45 Å, характерным для чисто одинарной связи $N(sp^2)-C(sp^2)$ [4, 5]. Укорочение связи $S_{(1)}$ — $C_{(1)}$ до 1.734(4) Å по сравнению со связью $S_{(1)}$ — $C_{(12)}$ 1.785(6) Å также, по-видимому, в значительной степени обусловлено эффектом $n(S_{(1)}) - \pi^*(C_{(1)} = C_{(2)})$ сопряжения. Из других особенностей структуры соединения 4а следует отметить весьма прочную [6] внутримолекулярную водородную связь О₍₂₎-Н_(О2)····О₍₁₎, замыкающую 6-членный цикл $O_{(1)}H_{(01)}O_{(2)}C_{(11)}N_{(1)}C_{(5)}$. Основные геометрические параметры этой связи H: длина О₍₁₎…О₍₂₎ 2.713(5), О₍₂₎—Н_(О2) 0.76(9), О₍₁₎…Н_(О2) 2.09(9) Å, угол O₍₁₎H_(O2)O₍₂₎ 140(6)°. В кристалле молекулы соединения 4a объединены ван-дер-ваальсовыми силами; укороченных межмолекулярных контактов нет. Кристаллическая упаковка соединения 4а изображена на рис. 2.

При кипячении смеси пиридинов **3**, **4** в уксусной кислоте в присутствии избытка NaNO₂ получены соответствующие сульфиды **5**, которые в данных условиях образуются в результате дегидрирования и ацилирования соединения **3**. При добавлении к той же смеси изомеров **3** и **4** в этаноле эквимолярного количества водного раствора КОН протекает конкурирующая циклизация по Торпу с участием активированной метиленовой группы 6-алкилтиозаместителя и цианогруппы пиридина **3а**, приводящая к гидрированному тиено[2,3-b]пиридину **6**.

Рис. 1. Общий вид молекулы соединения **4a** с нумерацией атомов (для упрощения из атомов водорода показан лишь атом, участвующий в образовании внутримолекулярной связи)

Рис. 2. Кристаллическая структура соединения 4а (проекция bc)

Таблица 1

Связь	<i>d</i> , Å	Угол	ω, град.	Угол	ω, град.
S(1)-C(1)	1.734(4)	$C_{(1)} - S_{(1)} - C_{(12)}$	93.5(2)	$C_{(7)}$ - $C_{(3)}$ - $C_{(2)}$	115.8(4)
$S_{(1)}-C_{(12)}$	1.785(6)	$C_{(5)} - N_{(1)} - C_{(1)}$	122.9(4)	O ₍₁₎ -C ₍₅₎ -N ₍₁₎	120.7(4)
$N_{(1)}-C_{(1)}$	1.386(5)	C(5)-N(1)-C(11)	120.1(4)	O(1)-C(5)-C(4)	124.6(4)
N(1)-C(5)	1.386(5)	$C_{(1)} - N_{(1)} - C_{(11)}$	117.0(4)	N(1)-C(5)-C(4)	114.5(4)
$C_{(1)} - C_{(2)}$	1.339(6)	$C_{(2)}-C_{(1)}-N_{(1)}$	122.6(4)	$O_{(2)}-C_{(11)}-N_{(1)}$	110.2(4)
C(2)-C(3)	1.528(6)	$C_{(2)} - C_{(1)} - S_{(1)}$	125.9(3)	O ₍₂₎ -C ₍₁₁₎ -C ₍₁₃₎	111.9(4)
$C_{(3)} - C_{(4)}$	1.497(6)	$N_{(1)}-C_{(1)}-S_{(1)}$	111.4(3)	N ₍₁₎ -C ₍₁₁₎ -C ₍₁₃₎	110.7(4)
C(4)-C(5)	1.500(6)	$C_{(1)} - C_{(2)} - C_{(6)}$	118.6(4)	O ₍₂₎ -C ₍₁₁₎ -C ₍₁₂₎	105.3(4)
O(1)-C(5)	1.205(5)	$C_{(1)} - C_{(2)} - C_{(3)}$	119.3(4)	$N_{(1)}-C_{(11)}-C_{(12)}$	105.7(4)
$O_{(2)} - C_{(11)}$	1.409(6)	$C_{(6)} - C_{(2)} - C_{(3)}$	121.7(4)	$C_{(13)}-C_{(11)}-C_{(12)}$	112.7(4)
N(1)-C(11)	1.491(6)	$C_{(4)} - C_{(3)} - C_{(7)}$	111.8(4)	$C_{(11)}$ - $C_{(12)}$ - $S_{(1)}$	109.8(3)
$C_{(11)} - C_{(12)}$	1.526(6)	$C_{(4)} - C_{(3)} - C_{(2)}$	108.0(4)		

Основные длины связей (d) и валентные углы (w) в молекуле соединения 4a

Таблица 2

Координаты атомов (×10⁴) и эквивалентные изотропные (изотропный для атома $H_{(O2)}$) тепловые параметры $U_{_{ЭКВ}}$ (× 10³) в структуре 4а

Атом	x	У	z	$U_{ m экв}$, Å 2
S ₍₁₎	3105(1)	2388(2)	2244(1)	59(1)
S ₍₂₎	7122(2)	5472(2)	1147(1)	72(1)
O(1)	3787(3)	895(4)	-326(2)	56(1)
O(2)	1549(3)	1223(4)	75(3)	60(1)
N(1)	3674(3)	1599(4)	924(2)	42(1)
N(2)	6029(5)	4473(5)	3167(3)	68(1)
C ₍₁₎	4160(4)	2387(5)	1640(3)	35(1)
C(2)	5329(4)	2992(5)	1837(3)	40(1)
C ₍₃₎	6247(5)	2630(6)	1325(3)	52(1)
C ₍₄₎	5468(4)	2441(6)	452(3)	50(1)
C(5)	4272(4)	1542(5)	301(3)	41(1)
C ₍₆₎	5733(5)	3809(6)	2575(3)	47(1)
C ₍₇₎	7336(5)	3672 (5)	1398(3)	46(1)
C ₍₈₎	8580(5)	3313 (5)	1600(3)	46(1)
C ₍₉₎	9358(5)	4511(7)	1534(3)	60(2)
C(10)	8718(5)	5720(6)	1295(3)	57(2)
C ₍₁₁₎	2426(4)	839(5)	828(3)	43(1)
C(12)	1872(5)	1473(7)	1488(4)	71(2)
C(13)	2623(4)	-787(5)	908(3)	37(1)
C ₍₁₄₎	3748(5)	-1377(6)	1398(3)	46(1)
C(15)	3885(5)	-2873(6)	1487(3)	55(2)
C(16)	2913(7)	-3772(6)	1080(3)	63(2)
C(17)	1801(6)	-3203(6)	603(3)	59(2)
C(18)	1646(4)	-1720(6)	517(3)	47(1)
H(02)	1915(89)	967(109)	-220(58)	180(49)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н измерены на приборе Bruker AM-300 (300 МГц), растворитель – ДМСО-d₆, внутренний стандарт ТМС. ИК спектры зарегистрированы на спектрофотометре ИКС-29 в вазелиновом масле, масс-спектр – на спектрометре Kratos MS-30 с прямым вводом образца в источник. Элементный анализ на С, Н, N проводили на приборе Perkin–Elmer C-, H-, N-analyser. Контроль за ходом реакции и чистотой синтезированных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системе ацетон-гексан, 3 : 5, проявитель – пары иода. Температуры плавления определяли на столике Кофлера.

Рентгеноструктурное исследование монокристалла соединения 4а проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (λ Mo K_{α} -излучение, графитовый монохроматор, отношение скоростей сканирования $\omega/2\theta = 1,2, \theta_{max} = 23^{\circ}$, сегмент сферы $0 \le h \le 11, 0 \le k \le 10, -18 \le l \le 17$). Для определения параметров элементарной ячейки и матрицы ориентации кристалла соединения 4a с линейными размерами $0.17 \times 0.25 \times 0.31$ мм было использовано 22 рефлекса с $12 < \theta < 13^{\circ}$. Всего было собрано 2390 отражений, из которых 2254 являются независимыми (*R*-фактор усреднения 0.032). Кристаллы соединения 4a моноклинные, *a* = 10.842(2), *b* = 9.203(2), *c* = 16.955(3) Å, β = 106.11(3)^{\circ}, V = 1625.3(5) Å^3, Z = 4, d_{выч} = 1.45 г/см³, μ = 0.341 мм⁻¹, F(000) = 736, пространственная группа $P_{1/n}$ (№ 14). Структура расшифрована методом тяжелого атома и уточнена МНК в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL93 [7, 8]. В уточнении использовано 1450 отражений с $I > 2\sigma(I)$ (221 уточняемый параметр, число отражений на параметр 6.56, использована весовая схема

 $\omega = 1/[\sigma^2(\text{Fo}^2) + (0.0525 P)^2 + 0.7276 P],$

где $P = (\text{Fo}^2 + 2\text{Fc}^2)/3$, отношение максимального/среднего сдвига к погрешности в последнем цикле 0.045/0.003). Была включена поправка на аномальное рассеяние; поправки на поглощение не вносились. Все атомы водорода выявлены объективно из разностного синтеза электронной плотности и включены в уточнение с фиксированными тепловыми и позиционными параметрами (за исключением атома $H_{(O2)}$, который был уточнен изотропно). Окончательные значения факторов расходимости R1(F) 0.0556 и $R_W(F^2)$ 0.1164, GOF 1.044. Остаточная электронная плотность из разностного ряда Фурье 0.50 и -0.22 e/Å^3 . Координаты атомов приведены в табл. 2.

6-Бензоилметилтио-2-оксо-4-(2-тиенил)-5-циано-1,2,3,4-тетрагидропиридин (3а) и 3-гидрокси-5-оксо-7-(2-тиенил)-3-фенил-8-циано-2,3,4,5,6,7-гексагидротиазоло[3,2-*а*]**пиридин (4а).** Смесь 3.38 г (10 ммоль) соли **1** и 1.99 г (10 ммоль) бромида **2а** в 25 мл этанола нагревают до растворения исходных реагентов и горячий раствор фильтруют через бумажный фильтр. Через 6 ч образовавшийся в фильтрате осадок отделяют, промывают этанолом и гексаном. Выход соединения **4а** 3.16 г (89%). Т. пл. 135–137 °С. ИК спектр, v, см⁻¹: 3215–3249 (OH), 2195 (CN), 1680 (CO). Масс-спектр (ЭУ, 70 эВ), *m/z* (пик с $I_{\text{mаx}}$, $I_{\text{отн}}$ %): 39 (21), 51 (29), 77 (68), 105 (100), 249 (17), 354 (12). Спектр ЯМР ¹Н, δ, м. д., *J* (Гц), (смесь соединений **3а–4а**, 1 : 1): 2.59–2.79, 2.92–3.18 (оба м, CH₂); 3.43, 3.54 (оба д, SCH₂, ²*J* = 10.2); 4,23 (д. д. CH, ³*J* = 5.6 и 7.2); 4.36 (д. д. CH, ³*J* = 6.7 и 8.3); 4.78 (с, SCH₂); 6.96, 7.32–8.01 (оба м. Ar, Het, OH); 10.53 (с, NH). Найдено, %: С 59.84; H 4.08; N 7.73. C₁₈H₁₄N₂O₂S₂. Вычислено, %: С 61.00; H 3.98; N 7.90.

6-(4-Бромбензоил)метилтио-2-оксо-4-(2-тиенил)-5-циано-1,2,3,4-тетрагидропиридин (**3b**) и **3-(4-бромфенил)-3-гидрокси-5-оксо-7-(2-тиенил)-8-циано-2,3,4,5,6,7-гексагидротиазоло[3**,2-*а*]пиридин (**4b**) получают аналогично соединениям **3a**, **4a**, используя 2.78 г бромида **2b** вместо соединения **2a**. Выход соединения **4b** 3.21 г (74%). Т. пл. 163–165 °С. ИК спектр, v, см⁻¹: 3226–3258 (OH), 2198 (CN), 1683 (CO). Спектр ЯМР ¹Н, δ, м. д., *J* (Гц), (смесь соединений **3b–4b**, 1 : 1): 2.56–2.75, 2.91–3.21 (оба м, CH₂); 3.46, 3.58 (оба д, SCH₂, ²*J* = 10.8); 4.28 (д. д. CH, ³*J* = 5.9 и 7.7); 4.41 (д. д. CH, ³*J* = 6.9 и 8.5); 4.77 (с, SCH₂); 7.34–7.91 (м, Ar, Het и OH); 10.59 (с, NH). Найдено, %: С 49.71; Н 3.18; N 6.25. С₁₈Н₁₃BrN₂O₂S₂. Вычислено, %: С 49.89; Н 3.02; N 6.46.

1-Ацетил-6-бензоилметилтио-2-оксо-4-(2-тиенил)-5-циано-1,2-дигидропиридин (5а). К 1.77 г (5 ммоль) смеси соединений **3a** и **4a** в 20 мл кипящей уксусной кислоты добавляют порциями 1.38 г (20 ммоль) NaNO₂, после чего реакционную массу оставляют на 12 ч при комнатной температуре. Образовавшийся осадок пиридона **5a** отфильтровывают, промывают этанолом и гексаном. Выход 1.60 г (81%). Т. пл. 105–107 °C. ИК спектр, v, см⁻¹: 2220 (CN), 1650, 1666 (3CO). Спектр ЯМР ¹Н, δ, м. д., *J* (Гц): 2.49 (3H, c, Me); 4.74 (2H, c, SCH₂); 7.36–7.89 (9H, м, Ar, Het, CH). Найдено, %: С 59.77; Н 3.41; N 6.82. С₂₀Н₁₄N₂O₃S₂. Вычислено, %: С 60.90; Н 3.58; N 7.10.

1-Ацетил-6-(4-бромбензоил)метилтио-2-оксо-4-(2-тиенил)-5-циано-1,2-дигидропиридин (5b) получают аналогично пиридину 5а, используя 2.17 г смеси соединений 3b, 4b, с выходом 1.97 г (83%). Т. пл. 121–123 °С. ИК спектр, v, см⁻¹: 2220 (CN), 1653, 1660 (3CO). Спектр ЯМР ¹Н, δ , м. д., J (Гц): 2.23 (3H, с, Me); 4.82 (2H, с, SCH₂); 7.32, 7.80–8.03 (8H, оба м, Ar, Het, CH). Найдено, %: C 50.55; H 2.56; N 5.91. C₂₀H₁₃BrN₂O₃S₂. Вычислено, %: C 50.75; H 2.77; N 5.92.

3-Амино-2-бензоил-4-(2-тиенил)-4,5-дигидротиено[2,3-*b***]пиридин-6(7H)-он** (6). К смеси 1.77 г (5 ммоль) соединений **3а**, **4а** в 20 мл этанола добавляют 2.8 мл (5 ммоль) 10% водного раствора КОН, после чего реакционную массу нагревают до кипения и фильтруют через бумажный фильтр. Через 12 ч образовавшийся в фильтрате осадок отделяют, промывают этанолом и гексаном. Выход тиенопиридона 6 1.12 г (63%). Т. пл. 204–207 °С. ИК спектр, v, см⁻¹: 3391, 3244 (NH, NH₂), 1655, 1682 (2CO). Спектр ЯМР ¹H, δ, м. д., *J* (Гц): 2.61 (1H, д. д, 5-H, ²*J* = 14.2, ³*J* = 6.3); 3.19 (1H, д. д, 5-H, ²*J* = 14.2, ³*J* = 7.3); 4.59 (1H, д. д, 4-H, ³*J* = 6.3 и 7.3); 6.88–7.87 (10H, м. Ar, Het, NH₂); 11.05 (1H, с, NH). Найдено, %: C 59.68; H 3.79; N 7.85. C₁₈H₁₄N₂O₂S₂. Вычислено, %: C 61.00; H 3.98; N 7.90.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, Изв. АН, Сер. хим., 1852 (1997).
- 2. С. Г. Кривоколыско, В. Д. Дяченко, В. Н. Нестеров, Ю. А. Шаранин, Ю. Т. Стручков, *ЖОрХ*, **35**, 966 (1999).
- 3. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 4. R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, J. Chem. Soc. Chem. Comm., No. 5, 173 (1976).
- 5. M. Burke-Laing, M. Laing, Acta Crystallogr., **32B**, 3216 (1976).
- 6. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Acta Crystallogr., 51B, 1004 (1995).
- 7. G. M. Sheldrick, *SHELXS-86*. Program for the Solution of Crystal Structures, Univer. of Göttingen, Göttingen, Germany, 1986.
- 8. G. M. Sheldrick, *SHELXL-93*. Program for the Refinement of Crystal Structures, Univer. of Göttingen, Göttingen, Germany, 1993.

Восточно-украинский государственный университет, Луганск 91034 e-mail: ksg@lep.lg.ua Поступило в редакцию 02.03.2000

^аИнститут органической химии НАН Украины, Киев-94

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: vpl@cacr.ioc.ac.ru