А. Ю. Егорова, В. А. Седавкина

БРОМИРОВАНИЕ 5-ЗАМЕЩЕННЫХ ЗН-ФУРАН-2-ОНОВ И ЗН-ПИРРОЛ-2-ОНОВ

Бромирование 5-алкил(арил)-3H-фуран-2-онов и 5-алкил(арил)-3H-пиррол-2-онов, а также их производных идет по этиленовой связи с образованием 4-монобромпроизводных. N-Фенил-3H-пиррол-2-оны бромируются одновременно по этиленовой связи гетерокольца и фенильному заместителю при атоме азота.

Ключевые слова: 5-алкил(арил)-3H-пиррол-2-оны, 5-алкил(арил)-3H-фуран-2-оны, N-фенил-3H-пиррол-2-оны, бромирование.

Пятичленные 2-карбонилсодержащие О- и N-гетероциклы являются химически активными соединениями, в структуре которых имеется несколько реакционных центров. Реакционная способность метиленовой группы и реакции по сложноэфирному фрагменту были изучены нами ранее [1, 2], на примере реакции с дихлоркарбеном в условиях межфазного катализа было также изучено взаимодействие по этиленовой связи гетероциклов [3].

В настоящей работе приведены результаты бромирования 5-алкил-(арил)-3H-фуран-2-онов и 5-алкил(арил)-3H-пиррол-2-онов, а также их арилиденовых производных, галогенирование которых ранее не исследовалось. Представляло интерес изучить региоселективность бромирования с целью дальнейшей функционализации полученных бромпроизводных.

Бромирование 5-алкил(арил)-3H-фуран-2-онов (**1a–c**) осуществлялось различными бромирующими реагентами – раствором брома в уксусной кислоте и диоксандибромидом. Реакция проводилась в мягких условиях при температуре 18–20 °C и эквимолярном соотношении реагентов.

$$R \xrightarrow{O} O + Br_{2} \xrightarrow{Br} R \xrightarrow{Br} O O \xrightarrow{Br} Br$$

$$1, 2 \text{ a } R = C_{5}H_{11}, \text{ b } R = C_{6}H_{13}, \text{ c } R = Ph$$

На основании данных элементного анализа и ЯМР ¹Н спектроскопии показано, что бромирование как связанным бромом (диоксандибромидом), так и раствором брома в уксусной кислоте приводит к 5-алкил-(арил)-4-бром-3Н-фуран-2-онам (**2a**—**c**), образование которых возможно через стадию присоединения с последующим дегидробромированием промежуточного дибромида, превращающегося в целевые продукты с выходом до 61%.

Соеди-	Химические сдвиги, δ, м. д.						
нение	Р, м	C(3)H ₂ / C(4)H, c	=C <u>H</u> -Ar, c				
2a	0.85-1.94 (11H)	4.12 (2H)	_				
2b	0.82-2.01 (13H)	4.15 (2H)	_				
2c	7.50-7.75 (5H)	4.20 (2H)	_				
4a	0.82-2.00 (9H)	3.95 (2H)	_				
4 b	0.82-2.02 (9H)	3.94 (2H)	_				
4c	7.30-7.72 (9H)	3.95 (2H)					
4d	0.82-1.95 (9H)	4.05 (2H)	_				
8a	7.40-7.72 (10H)	_	6.05				
8b	7.30-7.70 (10H)	_	6.10				
8c	7.45-7.75 (9H)	_	6.16				
8d	7 40–7.75 (7H)	4 35 (1H)	6.65				

Спектры ЯМР ¹Н синтезированных соединений

В спектрах ЯМР 1 Н соединений **2а**—**с** отсутствует сигнал винильного протона, при 4.12—4.20 м. д. имеется синглет метиленовых протонов при C-3, а при 0.82—2.01 м. д. наблюдается серия сигналов протонов алкильного заместителя в положении 5 гетероцикла (табл. 1).

Аналогичные условия бромирования были использованы для изучения реакционной способности этиленовой связи в азотсодержащих аналогах — 1,5-дизамещенных 3H-пиррол-2-онах **3a—c**. Показано, что строение продуктов реакции зависит от характера заместителя при атоме азота гетероцикла. Так, при проведении бромирования 5-алкил-1-фенил-3H-пиррол-2-онов **3a,b** протекают как присоединение брома по этиленовой связи гетероцикла с последующим дегидробромированием, так и электрофильное замещение в фенильном фрагменте при атоме азота. Получившиеся 5-алкил-4-бром-1-(4-бромфенил)-3H-пиррол-2-оны **4a,b** выделены с выходом до 65%.

В реакцию бромирования были введены также 5-алкил(арил)-1-(4-метилфенил)-3H-пиррол-2-оны $3\mathbf{c}$, бромирование которых раствором брома в бензоле в мягких условиях приводит к получению 5-алкил(арил)-4-бром-1-(4-метилфенил)-3H-пиррол-2-онов $4\mathbf{c}$, с выходом 52%.

3, 4 c R = Ph, d R = Bu

В ИК спектрах соединений **4a–d** присутствуют полосы поглощения лактамного карбонила в области 1680–1675 см⁻¹, кратной связи С=С в области 1620–1610 и связи С–Вг при 516–510 см⁻¹. В спектрах ЯМР ¹Н соединений **4a–d** отсутствует сигнал винильного протона в положении 4 гетероцикла, имеются сигналы протонов метиленовой группы в положении 3 при 3.95–4.05 м. д. и метильной группы арильного заместителя при 2.14 м. д., а в слабом поле присутствует серия сигналов протонов ароматического заместителя при 7.34–7.45 м. д.

Для подтверждения возможности протекания реакции именно по фенильному фрагменту у атома азота в реакцию бромирования были также введены N-фениламиды 4-оксоалкановых кислот **5а,b**, являющихся промежуточными продуктами при получении 1,5-дизамещенных-3H-пиррол-2-онов и не содержащих этиленовой связи. Их взаимодействие с бромом в мягких условиях приводит к образованию N-(4-бромфенил)амидов 4-оксоалкановых кислот (**6a,b**) с выходом до 70%.

RCCH₂CH₂C
$$\stackrel{O}{\parallel}$$
 + Br₂ $\stackrel{\longrightarrow}{\longrightarrow}$ RCCH₂CH₂C $\stackrel{O}{\parallel}$ Br O 6a,b

5a,b

5, 6 a R = Ph, b R = C₃H₁₁

Реакция бромирования была распространена нами также на арилиденовые производные фуран-2-онов и пиррол-2-онов, в структуре которых имеются две этиленовые связи. Для этих соединений можно было ожидать конкурентного образования продуктов присоединения брома либо по этиленовой связи гетероциклов, либо по экзоциклической этиленовой связи.

7, 8 a,b Ar = Ph, c Ar = C_6H_4 -NO₂-3; a X = O, b,c X = NH

Следует отметить, что в этом случае необходимы несколько более жесткие условия проведения реакции, а именно, нагревание до 45–50 °C. Оказалось, что взаимодействие соединений **7а–с** с бромом протекает с образованием монобромсодержащих продуктов **8а–с** с выходом до 53%.

Исключение составляет 3-(2-гидроксибензилиден)-5-фенил-3H-пиррол-2-он (**7d**), бромирование которого проходит по арилиденовому заместителю в положении 3, что связано с легкостью галогенирования бензольного кольца, активированного гидроксильной группой. Этиленовая связь цикла в данном случае не затрагивается. С выходом 42% нами был выделен 3-(3,5-дибром-2-гидроксибензилиден)-5-фенил-3H-пиррол-2-он (**8d**), строение которого подтверждено данными спектра ЯМР 1 H. В спектре этого соединения сохраняется синглет винильного протона гетероцикла при 4.35 м. д., а также присутствует синглет протона экзоциклического sp^2 -гибридизованного атома углерода при 6.65 м. д., а серия сигналов протонов ароматических заместителей находится в слабом поле при 7.40–7.75 м. д.

Таблица 2 Физико-химические характеристики синтезированных соединений

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	$n_{ m D}^{20}$	Выход,	
		С	Н	N	Br	30		%
2a	C ₉ H ₁₃ BrO ₂	46.62 46.35	5.05 5.58		33.40 34.33		1.5020	60
2 b	$C_{10}H_{15}BrO_2$	49.04 48.62	6.25 6.12		31.80 32.35		1.5050	54
2c	$C_{10}H_7BrO_2$	50.45 50.21	3.04 2.93		33.67 33.47		1.5120	61
4a	$C_{14}H_{15}Br_2NO$	45.10 45.04	3.95 4.02	3.60 3.75	43.10 42.89	266–268	-	63
4 b	$C_{14}H_{15}Br_2NO$	45.15 45.04	3.96 4.02	3.65 3.75	43.05 42.89	262–264	_	65
4c	C ₁₇ H ₁₄ BrNO	62.31 62.19	4.31 4.27	4.40 4.27	24.52 24.39	72–73	_	51
4d	C ₁₅ H ₁₈ BrNO	58.74 58.44	5.96 5.84	4.72 4.54	26.70 25.97	75–76	_	52
6a	C ₁₆ H ₁₄ BrNO ₂	50.10 57.83	4.35 4.22	4.53 4.22	24.54 24.09	130–131	_	68
6b	C ₁₅ H ₂₀ BrNO ₂	<u>55.35</u> 55.21	6.23 6.13	4.10 4.29	24.35 24.54	125–126	_	72
8a	$C_{17}H_{11}BrO_2$	62.45 62.38	3.30 3.36		25.00 24.46	158–159	_	52
8b	C ₁₇ H ₁₂ BrNO	62.70 62.57	3.52 3.68	4.09 4.29	24.85 24.54	> 200 (с разл.)	_	53
8c	C ₁₇ H ₁₁ BrN ₂ O ₃	60.38 60.17	3.41 3.24	7.85 8.26	24.05 23.59	> 230 (с разл.)	_	53
8d	C ₁₇ H ₁₁ Br ₂ NO ₂	48.52 48.45	2.20 2.61	3.21 3.32	33.52 33.00	> 250 (с разл.)	_	42

Таким образом, бромирование 5-алкил(арил)-3H-фуран-2-онов и 5-алкил(арил)-3H-пиррол-2-онов и их производных осуществляется в мягких условиях по этиленовой связи гетерокольца и приводит к образованию монобромзамещенных продуктов. N-Фенил-3H-пиррол-2-оны бромируются одновременно по этиленовой связи гетероцикла и фенильному заместителю.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе ИКС-29. Спектры ЯМР 1 Н сняты на приборе Varian FT-80A (80 МГц) в CDCl₃, внутренний стандарт ТМС. Выходы и характеристики соединений приведены в табл. 1, 2.

- **5-R-3H-Фуран-2-оны (1а-с) и 3-арилиден-5-фенил-3H-фуран(пиррол)-2-оны (7а-d)** получены по методике [1], а 1-Ar-5-R-3H-пиррол-2-оны **3а-d** и амиды 4-оксокислот **5а,b** по методике [2].
- **5-Алкил(арил)-4-бром-3H-фуран-2-оны** (**2а–c**). К раствору 6 ммоль соединения **1а–c** в диоксане при охлаждении до 0 °C добавляют 6 ммоль диоксандибромида. Затем реакционную смесь выливают в 30 мл холодной воды, нейтрализуют раствором Na_2CO_3 и экстрагируют хлороформом. Экстракт сушат над $CaCl_2$. Продукт очищают на колонке с Al_2O_3 (элюент гексан).
- **5-Алкил(арил)-4-бром-1-(4-бромфенил)-3Н-пиррол-2-оны** (**4а,b**). К раствору 30 ммоль соединения **3а,b** в диоксане при охлаждении до 0 °С добавляют 30 ммоль диоксандибромида. Смесь выдерживают в течение 30 мин. Выпавшие кристаллы перекристаллизовывают из пропанола-2.
- **5-Алкил(арил)-4-бром-1-(4-метилфенил)-3Н-пиррол-2-оны** (**4c,d**) получают аналогично соединениям **4a,b**. Продукты перекристаллизовывают из хлороформа.
- **N-(4-Бромфенил)амиды 4-оксокислот (6а,b)** получают аналогично соединениям **4а–d**. Продукты перекристаллизовывают из смеси пропанол-2–гексан, 3:1.
- **3-Арилиден-4-бром-5-фенил-3Н-фуран(пиррол)-2-оны** (**8а-d**). К раствору 5 ммоль соединения **7а-d** в хлороформе добавляют эквимолярное количество брома. Смесь нагревают на водяной бане (45–50 °C) в течение 30 мин. При охлаждении выпадают кристаллы, которые перекристаллизовывают из гексана.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. А. Седавкина, Н. А. Морозова, А. Ю. Егорова, И. Г. Остроумов, *ХГС*, 451 (1987).
- 2. Н. А. Морозова, В. А. Седавкина, А. Ю. Егорова, ХГС, 349 (1994).
- 3. В. А. Седавкина, Н. А. Морозова, А. Ю. Егорова, Р. Г. Савкин, *Изв. АН, Сер. хим.*, 1995 (1995).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410600, Россия e-mail:TimofijiwaSU@info.sgu.ru

Поступило в редакцию 21.04.2000