С. Г. Кривоколыско, А. Н. Чернега^а, В. П. Литвинов⁶

СИНТЕЗ, СТРУКТУРА И АЛКИЛИРОВАНИЕ 5-[1-(4-ГИДРОКСИ-3-МЕТОКСИФЕНИЛ)-2-ТИОКАРБАМОИЛ-2-ЦИАНОЭТИЛ]-2,2-ДИМЕТИЛ-6-ОКСО-1,3-ДИОКСА-4-ЦИКЛОГЕКСЕН-4-ОЛАТА N-МЕТИЛМОРФОЛИНИЯ

При взаимодействии 4-гидрокси-3-метоксибензальдегида с цианотиоацетамидом и кислотой Мелдрума в присутствии N-метилморфолина получен 5-[1-(4-гидрокси-3-метоксифенил)-2-тиокарбамоил-2-цианоэтил]-2,2-диметил-6-оксо-1,3-диокса-4-циклогексен-4-олат N-метилморфолиния. Установлена молекулярная и кристаллическая структура последнего и изучено его алкилирование.

Ключевые слова: 4-гидрокси-3-метоксибензальдегид, кислота Мелдрума, тетрагидропиридины, цианотиоацетамид, циклогексан-4-олат, РСА.

В последние годы описано взаимодействие структурных аналогов – димедона и кислоты Мелдрума – с арилметиленцианотиоацетамидами, или ароматическими альдегидами и цианотиоацетамидом в присутствии вторичных и третичных аминов, которое приводит к образованию соответствующих аддуктов присоединения по Михаэлю. Изучено превращение последних в замещенные тетрагидропиридины и гексагидрохинолины [1–7], но при этом дискуссионными остаются вопросы, касающиеся их строения, направления циклизации и алкилирования [8]. Недавно установленное строение аддуктов, полученных на основе димедона, и получение ранее неизвестных серосодержащих октагидрохинолинов [9] показали необходимость изучения структуры и соответствующих аддуктов Михаэля, образованных при участии кислоты Мелдрума.

Нами при взаимодействии 4-гидрокси-3-метоксибензальдегида (1) с цианотиоацетамидом (2) и кислотой Мелдрума (3) в этаноле (~20 °C) в присутствии N-метилморфолина синтезирован 5-[1-(4-гидрокси-3-метоксифенил)-2-тиокарбамоил-2-цианоэтил]-2,2-диметил-6-оксо-1,3-диокса-4-циклогексен-4-олат N-метилморфолиния (4), строение которого однозначно доказано методом PCA.

Шестичленный гетероцикл $O_{(3)}O_{(4)}C_{(12-15)}$ заметно неплоский: атомы $O_{(3)}$, $O_{(4)}$, $C_{(12)}$, $C_{(13)}$ и $C_{(15)}$ копланарны в пределах 0.017 Å, а атом $C_{(14)}$ выходит из этой плоскости на 0.55 Å. Рассчитанные для данного цикла модифицированные параметры Кремера–Попла [10] (S = 0.65, $\theta = 41.5$, $\Psi = 4.1^{\circ}$) соответствуют конформации несколько уплощенного "полукресла". Межатомные расстояния $O_{(5)}=C_{(13)}$ 1.241(5), $C_{(12)}-C_{(13)}$ 1.385(6), $C_{(12)}=C_{(15)}$ 1.398(6), $O_{(6)}-C_{(15)}$ 1.227(5) Å свидетельствуют о существенной делокализации электронной плотности в указанной системе связей.

5 a,c–g Hal = Cl, b Hal = Br; **5**, **6** a R = Ph, b R = CH₂=CH, c R = COOEt, d R = CONH₂, e R = 4-BrC₆H₄CONH, f R = 2,5-Me₂C₆H₃CONH, g R = 2-MeC₆H₄CONH

Геометрические параметры морфолиниевого катиона обычные. В кристалле катионы и анионы образуют пары, связанные весьма сильной [11, 12] водородной связью $O_{(5)}\cdots H_{(4)}-N_{(3)}$ [$O_{(5)}\cdots N_{(3)}$ 2.730(5), $O_{(5)}\cdots H_{(4)}$ 1.74(5), $N_{(3)}-H_{(4)}$ 1.00(5) Å, угол $O_{(5)}H_{(4)}N_{(3)}$ 170(3)° ($N_{(3)}$ – атом азота N-метилморолиний-катион (см. рис. 2)]. В свою очередь, менее прочными H-связями $O_{(6)}\cdots H_{(2)}-N_{(1)}$ [$O_{(6)}\cdots N_{(1)}$ 2.888(5), $O_{(6)}\cdots H_{(2)}$ 1.95(5), $N_{(3)}-H_{(4)}$ 1.00(5) Å, угол $O_{(6)}H_{(2)}N_{(1)}$ 173(3)°] анионы объединены в центросимметричные димеры. Кроме того, геометрические параметры [$O_{(1)}\cdots O_{(3)}$ 3.051(6), $O_{(1)}-H_{(1)}$ 0.82(5), $O_{(3)}\cdots H_{(1)}$ 2.30(5) Å, угол $O_{(1)}H_{(1)}O_{(3)}$ 152.2(3)°] указывают на возможность образования в кристалле соединения 4 бесконечной "сетки" за счет достаточно слабых [11, 12] межмолекулярных водородных связей $O_{(1)}-H_{(1)}\cdots O_{(3)}$.

В спектре ЯМР ¹Н соединения **4** регистрируются сигналы диастереомеров **A** и **B** (${}^{3}J_{H(1)-H(2)} = 12.2$ Гц) и ентиола **C**. Интересно, что в кристаллическом состоянии соль **4** представлена только изомером **B** (соответствующие торсионные углы имеют следующие значения: C₍₅₎C₍₁₎C₍₂₎C₍₃₎ -54.59°, C₍₅₎C₍₁₎C₍₂₎C₍₄₎ -175.74°, H₍₁₁₎C₍₁₎C₍₂₎C₍₃₎ 63.23°, H₍₁₁₎C₍₁₎C₍₂₎C₍₄₎ -57.91°, H₍₁₁₎C₍₁₎C₍₂₎H₍₂₁₎ -174.75°, H₍₂₁₎C₍₂₎C₍₁₎C₍₅₎ 67.44°, H₍₂₁₎C₍₂₎C₍₁₎C₍₁₂₎ -62.10°).

Рис. 1. Общий вид молекулы 4 с нумерацией атомов

Известно, что реакция соединений типа 4 с α -бромкетонами в ДМФА сопровождается отщеплением кислоты Мелдрума и приводит к образованию замещенных 2-тиазолилцианоэтиленов [4, 5, 8]. Вместе с тем, результаты взаимодействия указанных аддуктов Михаэля с другими алкилгалогенидами не описаны. Нами при кратковременном кипячении соли 4 с алкилгалогенидами 5 получены тетрагидропиридоны 6. В данной реакции, вероятно, имеет место образование интермедиата 7, что отмечалось ранее для изоструктурных аналогов соединения 4 [6, 7].

Рис. 2. Кристалическая упаковка (проекция *bc*) соединения **4**. Штриховыми линиями изображены водородные связи

Таблица 1

Основные длины связей (d) и валентные углы (o) в молекуле соединения 4

Связь	<i>d</i> , Å	Угол	ω, град.	
S ₍₁₎ –C ₍₃₎	1.660(5)	C ₍₁₃₎ –O ₍₃₎ –C ₍₁₄₎	116.9(4)	
$O_{(1)} - C_{(8)}$	1.380(6)	$C_{(14)} - O_{(4)} - C_{(15)}$	117.0(4)	
O(2)-C(9)	1.374(6)	$S_{(1)}-C_{(3)}-N_{(1)}$	124.7(4)	
$O_{(2)} - C_{(11)}$	1.368(7)	$S_{(1)}-C_{(3)}-C_{(2)}$	121.1(4)	
$O_{(3)} - C_{(13)}$	1.383(5)	$N_{(1)}-C_{(3)}-C_{(2)}$	114.2(4)	
O(3)-C(14)	1.436(5)	N(2)-C(4)-C(2)	178.2(3)	
$O_{(4)} - C_{(14)}$	1.417(5)	$C_{(1)}-C_{(12)}-C_{(13)}$	117.9(4)	
O(4)-C(15)	1.379(5)	$C_{(1)}-C_{(12)}-C_{(15)}$	121.7(4)	
$O_{(5)}-C_{(13)}$	1.241(5)	$C_{(13)}-C_{(12)}-C_{(15)}$	120.4(4)	
$O_{(6)}-C_{(15)}$	1.227(5)	O ₍₃₎ -C ₍₁₃₎ -O ₍₅₎	114.0(4)	
N(1)-C(3)	1.307(6)	O ₍₃₎ -C ₍₁₃₎ -C ₍₁₂₎	118.4(4)	
N(2)-C(4)	1.127(7)	$O_{(5)}-C_{(13)}-C_{(12)}$	127.5(4)	
$C_{(12)}-C_{(13)}$	1.385(6)	O ₍₄₎ -C ₍₁₅₎ -O ₍₆₎	114.6(4)	
$C_{(12)} - C_{(15)}$	1.398(6)	$O_{(4)} - C_{(15)} - C_{(12)}$	117.9(4)	
		$O_{(6)} - C_{(15)} - C_{(12)}$	127.5(5)	

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н сняты на приборе Bruker AM-300 (300 МГц) в ДМСО- d_6 , внутренний стандарт ТМС, ИК спектры – на спектрофотометре ИКС-29 в вазелиновом масле. Элементный анализ проводился на приборе Perkin–Elmer C, H, N-analyser. Контроль за ходом реакции и индивидуальностью веществ осуществляли с помощью ТСХ на пластинках Silufol UV-254, в системе ацетон–гексан, 3:5. Температуры плавления определяли на столике Кофлера.

Атом	x	у	z	$U_{ m _{3KB}},{ m \AA}^2$
S(1)	0.14971(17)	-0.00815(12)	0.63578(14)	0.0611
O(1)	-0.4012(5)	0.2392(4)	0.9722(4)	0.0503
O(2)	-0.3691(4)	0.4045(4)	0.7394(3)	0.0863
O(3)	0.3328(3)	0.3989(3)	0.8741(3)	0.0412
O(4)	0.2273(4)	0.5640(3)	0.7034(3)	0.0450
O(5)	0.3097(3)	0.1942(3)	0.9277(3)	0.0447
O(6)	0.0908(4)	0.5279(3)	0.5911(3)	0.0498
O(7)	0.1807(6)	0.2621(5)	1.2749(5)	0.0974
N(1)	-0.0247(5)	0.1910(4)	0.5095(4)	0.0451
N(2)	0.3834(6)	0.2368(5)	0.5269(5)	0.0676
N(3)	0.3652(5)	0.0868(4)	1.1789(4)	0.0491
C(1)	0.1191(5)	0.2478(4)	0.7433(4)	0.0279
C(2)	0.1344(6)	0.2548(4)	0.6004(4)	0.0320
C(3)	0.0791(6)	0.1477(4)	0.5776(4)	0.0362
C(4)	0.2752(9)	0.2431(5)	0.5584(5)	0.0423
C(5)	-0.0217(5)	0.2489(4)	0.7991(4)	0.0286
C(6)	-0.0434(6)	0.1677(4)	0.9230(4)	0.0348
C(7)	-0.1689(6)	0.1647(4)	0.9813(5)	0.0386
C(8)	-0.2753(7)	0.2442(5)	0.9158(5)	0.0343
C(9)	-0.2548(7)	0.3272(5)	0.7923(5)	0.0431
C(10)	-0.1300(6)	0.3311(4)	0.7359(4)	0.0391
C(11)	-0.3875(7)	0.4178(7)	0.6165(6)	0.0945
C(12)	0.1838(5)	0.3489(4)	0.7619(4)	0.0280
C(13)	0.2727(5)	0.3074(4)	0.8564(4)	0.0325
C(14)	0.2667(5)	0.5324(4)	0.8287(4)	0.0402
C(15)	0.1610(5)	0.4791(4)	0.6823(4)	0.0370
C(16)	0.1483(6)	0.5550(5)	0.9161(5)	0.0608
C(17)	0.3681(7)	0.6135(5)	0.8186(6)	0.0695
C(18)	0.2291(9)	0.0597(6)	1.2312(6)	0.0742
C(19)	0.1381(7)	0.1857(8)	1.2156(7)	0.0929
C(20)	0.3066(9)	0.2887(6)	1.2231(6)	0.0800
C(21)	0.4054(6)	0.1670(6)	1.2409(5)	0.0624
C(22)	0.4630(7)	-0.0355(6)	1.1894(6)	0,0956
H(1)	-0.456(6)	0.287(5)	0.922(5)	0.07(2)
H(2)	-0.054(5)	0.282(5)	0.476(5)	0.07(2)
H(3)	-0.060(6)	0.136(5)	0.485(5)	0.07(2)
H(4)	0.349(5)	0.134(4)	1.087(5)	0.06(2)

Координаты атомов и эквивалентные изотропные тепловые параметры $U_{_{3KB}}$ в структуре 4

Рентгеноструктурное исследование монокристалла соединения **4** с линейными размерами 0.19 × 0.34 × 0.47 мм проведено при 20 °C на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Мо K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{\text{max}} = 23^{\circ}$, сегмент сферы $0 \le h \le 12$, $-13 \le k \le 13$, $-13 \le l \le 13$). Всего было собрано 2572 отражения, из которых 2359 являются симметрически независимыми ($R_{\text{int}} = 0.017$). Кристаллы соединения **4** триклинные, a = 10.384(1), b = 11.134(3), c = 11.206(1) Å, $\alpha = 69.49(1)$, $\beta = 82.51(1)$, $\gamma = 77.56(2)^{\circ}$, V = 1182.8 Å³, M = 479.55, Z = 2, $d_{\text{выч}} = 1.34$ г/см³, $\mu = 1.74$ см⁻¹, пространственная группа P(1) ($\mathbb{N} \ge 2$). Структура расшифрована прямым методом и уточнена методом наименыших квадратов в полноматричном анизотропном приближении с использованием комплекса программ СRYSTALS [13]. В уточнении использовано 1523 отражения с I > 3(I). Все атомы Н были выявлены из разностного синтеза электронной плотности и включены в расчет с 1442

фиксированными позиционными и тепловыми параметрами. Только атомы $H_{(1-4)}$, связанные с атомами $O_{(1)}$, $N_{(1)}$ и $N_{(3)}$, были уточнены изотропно. Учет поглощения в кристалле был выполнен по методу азимутального сканирования [14]. При уточнении была использована единичная весовая схема. Окончательные значения факторов расходимости R = 0.038 и $R_W = 0.038$. Остаточная электронная плотность из разностного ряда Фурье составляет 0.19 и -0.17 е/Å³. Координаты атомов приведены в табл. 2.

5-[1-(4-Гидрокси-3-метоксифенил)-2-тиокарбамоил-2-цианоэтил]-2,2-диметил-6-оксо-1,3-диокса-4-циклогексен-4-олат N-метилморфолиния (4). Смесь 3.04 г (20 ммоль) альдегида 1, 2 г (20 ммоль) цианотиоацетамида (2), 2.88 г (20 ммоль) кислоты Мелдрума (3) и 2.53 мл (25 ммоль) N-метилморфолина в 30 мл этанола (~20 °C) перемешивают до растворения исходных реагентов и оставляют на 12 ч. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Выход соли 4 8.54 г (89%). Т. пл. 185-187 °С. ИК спектр, v, см⁻¹: 3240, 3450 (OH, NH₂, NH⁺); 2243 (C=N); 1680 (C=O). Спектр ЯМР ¹Н, δ, м. д. J (Гц): сигналы основного диастереомера – 1.46 и 1.69 (6H, оба уш. с, Me₂); 2.68 (3H, с, NMe); 2.84 (4H, м, CH₂NCH₂); 3.68 (4H, м, CH₂OCH₂); 3.74 (3H, с, OMe); 4.51 (1H, д, ³*J* = 12.2, С<u>Н</u>Аr); 5.39 (1Н, д, ³*J* = 12.2, С<u>Н</u>СN); 6.46 д и 6.77 д (оба ³*J* = 8.2); 7.18 (3Н, с, Н аром.); 8.34 (1Н, уш. с, ОН); 9.35 (2Н, уш. с, NH₂); сигналы минорного диастереомера -1.46 и 1.69 (6H, оба уш. с, Me₂); 2.68 (3H, с, NMe); 2.84 (4H, м, CH₂NCH₂); 3.68 (4H, м, CH_2OCH_2 ; 3.74 (3H, c, OMe); 4.28 (1H, d, ${}^{3}J = 12.2$, CHAr); 5.29 (1H, d, ${}^{3}J = 12.2$, CHCN); 6.59 д и 6.87 д (оба ³J = 8.2); 7.78 (3Н, с, Н аром.); 8.52 (1Н, уш. с, ОН); 9.64 и 9.88 (2Н, оба с, NH₂); сигналы ентиола – 1.38 и 1.73 (6H, оба уш. с, Me₂); 2.68 (3H, с, NMe); 2.84 (4H, м, CH₂NCH₂); 3.68 (4H, м, CH₂OCH₂); 3.82 (3H, с, OMe); 4.01 (1H, с, CHAr); 7.44 д и 7.79 д $(ofa {}^{3}J = 8.2); 8.06 (3H, c, H apom.); 8.91 (1H, c, OH); 9.35 (2H, yu. c, NH₂). Coorthouentue$ указанных диастереомеров и ентиола - 5:3:2. Найдено, %: С 55.26; Н 5.89; N 8.88. С₁₇H₁₇N₂O₆S•C₅H₁₂NO. Вычислено, %: С 55.10; Н 6.10; N 8.76.

Тетрагидропиридоны 6 (общая методика). Смесь 2.4 г (5 ммоль) соли **4** и 5 ммоль соответствующего галогенида **5** в 15 мл 80% этанола кипятят 2 мин и фильтруют через бумажный фильтр. Через 12 ч образовавшийся в фильтрате осадок отделяют, промывают этанолом и гексаном.

6-Бензилтио-4-(4-гидрокси-3-метоксифенил)-5-циано-1,2,3,4-тетрагидропиридин-2-он (ба). Выход 1.15 г (63%). Т. пл. 195–197 °С. ИК спектр, v, см⁻¹: 3210, 3450 (ОН, NH); 2200 (С=N); 1678 (С=О). Спектр ЯМР ¹Н, δ , J (Гц): 2.43 (д. д. ${}^{3}J$ = 7.9) и 2.63 (д. д. ${}^{3}J$ = 9.2) (2H, оба ${}^{2}J$ = 15.7, С₍₃₎H₂); 3.73 (1H, д. д. ${}^{3}J$ = 7.9 и 9.2, С₍₄₎Н); 3.79 (3H, с, OMe); 4.29 (2H, с, SCH₂); 6.39 (д. ${}^{3}J$ = 8.3); 6.63 с, 6.68 (д. ${}^{3}J$ = 8.3) (3H, H аром.); 7.32 (5H, м, Ph); 8.63 (1H, уш. с, OH); 10.54 (1H, с, NH). Найдено, %: С 65.72; Н 5.12; N 7.42. С₂₀H₁₈N₂O₃S. Вычислено, %: С 65.56; Н 4.95; N 7.64.

6-Аллилтио-4-(4-гидрокси-3-метоксифенил)-5-циано-1,2,3,4-тетрагидропиридин-2-он (6b). Выход 1.06 г (67%). Т. пл. 141–143 °С. ИК спектр, v, см⁻¹: 3240–3269 (ОН, NH), 2200 (С=N); 1710 (С=О). Спектр ЯМР ¹Н, δ, м. д. *J* (Гц): 2.58 (д. д, ${}^{3}J = 7.7$) и 2.82 (д. д, ${}^{3}J = 9.1$) (2H, оба ${}^{2}J = 16.6$, $C_{(3)}H_2$); 3.75 (6H, м, $C_{(4)}$ H, SCH₂, OMe); 5.17 (д, ${}^{3}J = 8.9$) и 5.22 (д. ${}^{3}J = 14.1$) (2H, CH₂=); 5.86 (1H, м, CH=); 6.58 (д. ${}^{3}J = 8.4$); 6.73 с, 6.75 д (${}^{3}J = 8.4$) (3H, H аром.); 8.64 (1H, уш. с, OH); 10.43 (1H, с, NH). Найдено, %: С 60.61; Н 5.32; N 8.95. С₁₆H₁₆N₂O₃S. Вычислено, %: С 60.74; Н 5.10; N 8.85.

4-(4-Гидрокси-3-метоксифенил)-5-циано-6-этоксикарбонилметилтио-1,2,3,4-тетрагидропиридин-2-он (6с). Выход 1.4 г (77%). Т. пл. 131–133 °С. ИК спектр, v, см⁻¹: 3180, 3450 (ОН, NH); 2190 (С \equiv N); 1680, 1728 (2С \equiv O). Спектр ЯМР ¹Н, δ, *J* (Гц): 1.27 (3H, т, ³*J* = 6.4, Me); 2.63 (д. д. ³*J* = 7.4) и 2.83 (д. д. ³*J* = 9.1) (2H, оба ²*J* = 17.5, С₍₃₎H₂); 3.81 (3H, с, OMe); 3.89 (3H, м, С₍₄₎H, SCH₂); 4.17 (2H, к, ³*J* = 6.4, OCH₂); 6.59 (д. ³*J* = 8.3); 6.74 (д. ³*J* = 8.4); 6.77 (3H, с, Н аром.); 8.67 (1H, уш. с, OH); 10.44 (1H, с, NH). Найдено, %: С 56.52; H 5.16; N 7.64. С₁₇H₁₈N₂O₅S. Вычислено, %: С 56.34; H 5.01; N 7.73.

4-(4-Гидрокси-3-метоксифенил)-6-карбамоилметилтио-5-циано-1,2,3,4-тетрагидропиридин-2-он (6d). Выход 1.2 г (72%). Т. пл. 142–144 °С. ИК спектр, v, см⁻¹: 3240–3420 (OH, NH, NH₂); 2190 (С≡N); 1680, 1720 (2С=О). Спектр ЯМР ¹Н, δ, м. д., *J* (Гц): 2.63 (д. д, ³*J* = 7.2) и 2.85 (д. д, ³*J* = 9.2) (2H, оба ²*J* = 16.8, С₍₃₎H₂); 3.64 и 3.74 (2H, оба д, ²*J* = 15.8, SCH₂); 3.84 (4H, м, С₍₄₎H, OMe); 6.59 (д, ³*J* = 8.3); 6.73 (д, ³*J* = 8.3); 6.78 (3H, с, H аром.); 7.42 и 7.79 (2H, оба уш. с, CONH₂); 8.65 (1H, уш. с, OH); 11.01 (1H, с, NH). Найдено, %: С 54.21; Н 4.73; N 12.55. С₁₅H₁₅N₃O₄S. Вычислено, %: С 54.04; Н 4.54; N 12.60.

6-(4-Бромфенил)карбамоилметилтио-4-(4-гидрокси-3-метоксифенил)-5-циано-1,2,3,4тетрагидропиридин-2-он (6е). Выход 2.05 г (84%). Т. пл. 217–219 °С. ИК спектр, v, см⁻¹: 3305, 3450 (OH, 2NH); 2210 (C=N), 1675, 1706 (2C=O). Спектр ЯМР ¹Н, δ , J (Гц): 2.62 (д. д. ${}^{3}J = 6.9$) и 2.87 (д. д. ${}^{3}J = 8.8$) (2H, оба ${}^{2}J = 16.9$, $C_{(3)}H_2$); 3.79 (3H, с, OMe); 3.85 (1H, д. д. ${}^{3}J = 6.9$ и 8.8, $C_{(4)}$ Н); 3.93 (2H, с, SCH₂); 6.59 (д. ${}^{3}J = 8.3$); 6.74 (д. ${}^{3}J = 8.3$); 6.78 (3H, с, H apom.); 7.44 и 7.57 (4H, оба д. ${}^{3}J = 8.1$, H аром.); 8.63 (1H, уш. с, OH); 10.37 и 10.58 (2H, оба уш. с, 2NH). Найдено, %: С 51.88; Н 3.55; N 8.71. $C_{21}H_{18}BrN_{3}O_{4}S$. Вычислено, %: С 51.65; Н 3.72; N 8.60.

4-(4-Гидрокси-3-метоксифенил)-6-(2,5-диметилфенил)карбамоилметилтио-5-циано-1,2,3,4-тетрагидропиридин-2-он (6f). Выход 1.77 г (81%). Т. пл. 233–235 °C. ИК спектр, v, см⁻¹: 3270–3360 (OH, 2NH); 2210 (С=N); 1695, 1718 (2С=О). Спектр ЯМР ¹H, δ , J (Гц): 2.21 и 2.32 (6H, оба с, 2Mе); 2.62 (д. д. ${}^{3}J$ = 6.8) и 2.88 (д. д. ${}^{3}J$ = 8.9) (2H, оба ${}^{2}J$ = 16.9, C₍₃₎H₂); 3.78 (3H, с, OMe); 3.84 (1H, д. д. ${}^{3}J$ = 6.8 и 8.9, C₍₄₎H); 3.94 (2H, с, SCH₂); 6.61 (д. ${}^{3}J$ = 8.2); 6.72 (д. ${}^{3}J$ = 8.2); 6.75 (3H, с, H аром.); 6.92 (д. ${}^{3}J$ = 8.1); 7.19 (д. ${}^{3}J$ = 8.1); 7.27 (3H, с, H аром.); 8.78 (1H, уш. с, OH); 9.59 и 10.74 (2H, оба уш. с, 2NH). Найдено, %: C 63.31; H 5.22; N 9.73. C₂₃H₂₃N₃O₄S. Вычислено, %: C 63.14; H 5.30; N 9.60.

4-(4-Гидрокси-3-метоксифенил)-6-(2-метилфенил)карбамоилметилтио-5-циано-1,2,3,4тетрагидропиридин-2-он (6g). Выход 1.88 г (89%). Т. пл. 212–215 °С. ИК спектр, v, см⁻¹: 3390, 3475 (OH, 2NH); 2205 (C=N); 1667, 1725 (2C=O). Спектр ЯМР ¹H, δ, м. д., *J* (Гц): 2.27 (3H, с, Me); 2.61 (д. д, ${}^{3}J$ = 6.9) и 2.86 (д. д, ${}^{3}J$ = 8.7) (2H, оба ${}^{2}J$ = 17.2, C₍₃₎H₂); 3.78 (3H, с, OMe); 3.86 (1H, д. д, ${}^{3}J$ = 6.9 и 8.7, C₍₄₎H); 3.97 (2H, с, SCH₂); 6.59 (д, ${}^{3}J$ = 8.3); 6.71 (д, ${}^{3}J$ = 8.3); 6.73 (3H, с, H аром.); 7.15 м и 7.43 д (${}^{3}J$ = 8.1) (4H, H аром.); 8.77 (1H, уш. с, OH); 9.66 и 10.72 (2H, оба уш. с, 2NH). Найдено, %: С 62.64; H 5.21; N 10.11. C₂₂H₂₁N₃O₄S. Вычислено, %: С 62.40; H 5.00; N 9.92.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Шаранин, М. П. Гончаренко, *ЖОрХ*, **24**, 460 (1988).
- М. П. Гончаренко, Ю. А. Шаранин, А. М. Шестопалов, В. П. Литвинов, А. В. Туров, ЖОрХ, 26, 1578 (1990).
- Ю. А. Шаранин, М. П. Гончаренко, А. М. Шестопалов, В. П. Литвинов, А. В. Туров, ЖОрХ, 27, 1996 (1991).
- 4. М. П. Гончаренко, Ю. А. Шаранин, А. В. Туров, ЖОрХ, 29, 1610 (1993).
- 5. М. П. Гончаренко, Дис. канд. хим. наук, Москва, 1993.
- В. Д. Дяченко, С. Г. Кривоколыско, В. Н. Нестеров, Ю. Т. Стручков, В. П. Литвинов, Изв. АН, Сер. хим., 2535 (1996).
- 7. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, Изв. АН, Сер. хим., 1852 (1997).
- 8. Ю. А. Шаранин, М. П. Гончаренко, В. П. Литвинов, Успехи химии, 67, 442 (1998).
- 9. С. Г. Кривоколыско, В. Д. Дяченко, А. Н. Чернега, В. П. Литвинов, Изв. АН, Сер. хим., 733 (2000).
- 10. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 11. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 12. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Acta Crystallogr., B51, 1004 (1995).
- D. J. Watkin, C. K. Prout, R. J. Carruthers, P. W. Betteridge, CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Univ. Oxford, 1996.
- 14. A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).

Восточно-украинский государственный университет, Луганск 91034, Украина Поступило в редакцию 08.02.2000

^аИнститут органической химии НАН Украины, Киев-94, 02094 e-mail: iochkiev@ukrpack.net

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: vpl@cacr.ioc.ac.ru