В. Д. Дяченко, С. В. Роман, Э. Б. Русанов^а, В. П. Литвинов⁶

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 5-АМИНО-7-БЕНЗИЛСЕЛЕНО-1,2-ДИМЕТИЛ-4-(2-ФУРИЛ)-8-ЦИАНО-3-ЭТОКСИКАРБОНИЛ-1,4-ДИГИДРО-1,6-НАФТИРИДИНА

Реакцией N-алкилирования получен 5-амино-7-бензилселено-1,2-диметил-4-(2-фурил)-8-циано-3-этоксикарбонил-1,4-дигидро-1,6-нафтиридин, РСА которого выявил наличие в кристалле двух симметрически независимых конформеров.

Ключевые слова: 1,4-дигидро-1,6-нафтиридин, N-алкилирование, PCA.

В литературе описано N-алкилирование замещенных 4-оксо-1,4-дигидронафтиридин-3-карбоновых кислот и их эфиров с целью получения антибактериальных аналогов налидиксовой кислоты (невиграмона) и эноксацина, в частности, в работах [1–7]. Предложенные в них методики алкилирования нафтиридонкарбоновых кислот и их производных предполагают использование значительных избытков алкилирующего реагента и основания (NaH или K₂CO₃), проведение реакции при нагревании в ДМФА, часто в течение длительного времени.

Развивая исследования в области поиска соединений с антибактериальной активностью среди замещенных алкилселено-1,6-нафтиридинов [8, 9], мы провели алкилирование этилового эфира замещенной 1,4-дигидро-1,6нафтиридин-3-карбоновой кислоты (1) метилиодидом в мягких условиях (в ДМФА в присутствии водного раствора КОН при комнатной температуре) и при этом получили N-метилпроизводное 2.

Для однозначного подтверждения строения и, таким образом, установления региоселективности реакции, нафтиридин 2 исследовали методом PCA. Как показало рентгеноструктурное исследование, в кристалле соединения 2 имеются две симметрически независимые молекулы (A и B),

Рис. 1. Общий вид молекулы 2А (атомы Н не показаны)

заметно различающиеся своей конформацией (рис. 1, 2 и табл. 1, 2). В обеих молекулах центральная бициклическая система $N_{(1)}N_{(4)}C_{(1-8)}$ плоская лишь приблизительно (в пределах 0.286 в молекуле **2A** и 0.314 Å в молекуле **2B**). При этом группировка $N_{(1)}N_{(4)}C_{(1-6)}$ фактически планарна (отклонения атомов из среднеквадратичной плоскости не превышают 0.033 в молекуле **2A** и 0.045 Å в молекуле **2B**), тогда как атомы $C_{(7)}$ и $C_{(8)}$ выходят из этой плоскости, соответственно, на –0.623 и –0.500 Å в молекуле **2A** и и 0.631 Å в молекуле **2B**. Расчет модифицированных параметров Кремера–Попла [10] (для молекулы **2A** S = 0.47, $\theta = 77.99^{\circ}$, $\psi = 7.98^{\circ}$; для молекулы **2B** S = 0.50, $\theta = 76.56^{\circ}$, $\psi = 3.17^{\circ}$) показал, что гетероцикл $N_{(4)}C_{(3.4,6.7.8)}$ имеет конформацию твист-ванны.

Рис. 2. Общий вид молекулы 2В (атомы Н не показаны)

Таблица 1

Связь	<i>d</i> , Å		C	d, Å		
	Молекула 2А	Молекула 2B	Связь	Молекула 2А	Молекула 2В	
$Se_{(1)}-C_{(1)}$	1.915(6)	1.924(7)	C(1)-C(5)	1.405(9)	1.399(11)	
$Se_{(1)}-C_{(19)}$	1.950(8)	1.929(10)*	$C_{(2)} - C_{(3)}$	1.411(8)	1.397(10)	
		1.951(10)*	$C_{(3)}-C_{(4)}$	1.370(8)	1.373(9)	
$N_{(1)}-C_{(1)}$	1.314(8)	1.314(9)	C(3)-C(6)	1.498(8)	1.500(9)	
N(1)-C(2)	1.336(7)	1.338(8)	C ₍₄₎ -C ₍₅₎	1.421(8)	1.418(9)	
N(2)-C(2)	1.341(8)	1.346(8)	C(5)-C(9)	1.402(10)	1.404(11)	
N ₍₄₎ -C ₍₈₎	1.385(8)	1.377(9)	C(6)-C(10)	1.493(9)	1.487(10)	
N(4)-C(4)	1.396(8)	1.403(9)	C(7)-C(8)	1.312(9)	1.353(9)	
N ₍₄₎ -C ₍₁₈₎	1.491(9)	1.464(9)	C(7)-C(14)	1.482(9)	1.460(10)	
C(10)-C(6)	1.493(9)	1.487(10)	C ₍₈₎ -C ₍₁₇₎	1.504(10)	1.507(10)	

Основные длины связей (d) в двух симметрически независимых молекулах (A и B) соединения 2

* Приведены два значения геометрических параметров, соответствующих двум разупорядоченным позициям.

Одно из основных структурных различий между молекулами **2A** и **2B** заключается в ориентации группировки $C_{(14)}O_{(2)}O_{(3)}C_{(15)}C_{(16)}$ относительно центральной бициклической системы. Так, если в молекуле **2A** торсионный угол $C_{(8)}C_{(7)}C_{(14)}O_{(2)}$ составляет –16.6°, то в молекуле **2B** этот угол составляет 173.0°. Кроме того, в молекуле **2A** фурановое кольцо $O_{(1)}C_{(10-13)}$ развернуто относительно центральной бициклической системы на 76.4°, тогда как в молекуле **2B** это кольцо разупорядочено по двум почти взаимноортогональным позициям: двугранные углы данного кольца с центральной бициклической системой составляют 69.0 и 75.2°, а

Таблица 2

Основные валентные углы ((0) в двух симметрически независимых
молекулах (А и В) соединения 2

	ω, град			ω, град		
Угол	Молекула 2А	Молекула Угол 2 В		Молекула 2А	Молекула 2В	
C(1)-Se(1)-C(19)	100.1(3)	104.0(8)*, 92.5(6)*	$C_{(2)}-C_{(3)}-C_{(6)}$ $C_{(3)}-C_{(4)}-N_{(4)}$	122.4(6) 118.8(6)	123.4(6) 118.7(6)	
$C_{(1)} - N_{(1)} - C_{(2)}$	117.7(6)	116.8(7)	$C_{(3)} - C_{(4)} - C_{(5)}$	119.2(6)	119.7(7)	
$C_{(8)} - N_{(4)} - C_{(4)}$	119.5(6)	119.7(6)	$N_{(4)}-C_{(4)}-C_{(5)}$	121.9(6)	121.3(6)	
$N_{(1)}-C_{(1)}-C_{(5)}$	124.0(6)	124.9(7)	$C_{(1)} - C_{(5)} - C_{(4)}$	117.2(6)	116.6(7)	
$N_{(1)} - C_{(2)} - C_{(3)}$	123.8(6)	124.6(7)	C(3)-C(6)-C(7)	109.5(5)	110.0(5)	
$C_{(4)} - C_{(3)} - C_{(2)}$	117.8(6)	117.4(6)	$C_{(8)} - C_{(7)} - C_{(6)}$	119.8(6)	119.4(6)	
$C_{(4)} - C_{(3)} - C_{(6)}$	119.8(6)	119.2(6)	$C_{(7)} - C_{(8)} - N_{(4)}$	120.7(6)	119.8(6)	

* Приведены два значения геометрических параметров, соответствующих двум разупорядоченным позициям.

Рис. 3. Фрагмент кристаллической упаковки соединения **2**. Для упрощения группировки С₍₁₉₋₂₅₎, О₍₁₎С₍₁₀₋₁₃₎, а также атомы С₍₁₅₎, С₍₁₆₎, С₍₁₇₎ и С₍₁₈₎ не показаны

двугранный угол между двумя позициями цикла $O_{(1)}C_{(10-13)}$ составляет 77.2°. По-разному также ориентирован в молекулах **2A** и **2B** заместитель SeCH₂Ph относительно центральной бициклической системы: в молекуле **2A** торсионный угол $C_{(1)}Se_{(1)}C_{(19)}C_{(20)}$ составляет 97.7°, тогда как в молекуле **2B** для двух разупорядоченных позиций данной группировки торсионный угол $C_{(1)}Se_{(1)}C_{(20)}$ составляет –124.5 и –164.9°. Таким образом, молекулы **2A** и **2B** являются различными конформерами соединения **2**.

Укороченные межмолекулярные контакты $N_{(2)}(\mathbf{B})\cdots O_{(2)}(\mathbf{B}) 2.861(8)$, $N_{(2)}(\mathbf{B})\cdots O_{(2)}(\mathbf{A}) 3.164(8)$, $N_{(2)}(\mathbf{A})\cdots N_{(3)}(\mathbf{B}) 3.146(8)$ и $N_{(2)}(\mathbf{A})\cdots N_{(3)}(\mathbf{A}) 3.111(8)$ Å указывают на возможность образования в кристалле нафтиридина **2** сложной трехмерной системы водородных связей (см. рис. 3).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температура плавления определена на блоке Кофлера. ИК спектр записан на приборе ИКС-29 в вазелиновом масле. Спектр ЯМР ¹Н зарегистрирован на приборе Bruker AM-300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Индивидуальность соединений контролировали методом TCX на пластинках Silufol UV-254 в системе ацетон–гептан, 3:5, проявитель пары иода.

5-Амино-7-бензилселено-1,2-диметил-4-(2-фурил)-8-циано-3-этоксикарбонил-1,4дигидро-1,6-нафтиридин (2). К раствору 1.00 г (2 ммоль) 1,4-дигидронафтиридина 1 в 10 мл ДМФА при перемешивании добавляют 1.15 мл (2 ммоль) 10% водного раствора КОН, а через 5 мин – 0.13 мл (2 ммоль) метилиодида. Реакционную смесь перемешивают при комнатной температуре 4 ч и разбавляют 10 мл воды. Образовавшийся осадок соединения 2 отфильтровывают, промывают водой и перекристаллизовывают из этанола. Выход 0.76 г (74%). Т. пл. 185–187 °С. ИК спектр (вазелиновое масло), v, см⁻¹: 3216, 3323, 3420 (NH₂); 2192 (C≡N); 1674 (C=O); 1627 (δ NH₂). Спектр ЯМР ¹H, δ, м. д., *J* (Гц): 7.12–7.43

Таблица З

Координаты атомов (×10⁴) в структуре 2

Атом	x	у	z	Атом	x	у	Z
Se _(1A)	168(1)	1698(1)	5761(1)	N _(4B)	4022(7)	-204(4)	2844(4)
O(1A)	-4389(6)	4318(3)	9112(3)	C(1B)	2661(9)	1907(5)	3122(5)
O _(2A)	-2617(7)	6553(4)	9007(4)	C(2B)	3152(8)	1423(5)	1816(4)
O _(3A)	-4540(6)	5644(3)	8054(4)	C(3B)	3546(8)	651(4)	1921(4)
N(1A)	-2396(6)	2353(3)	6201(3)	C(4B)	3490(8)	526(5)	2682(4)
N(2A)	-4636(6)	2762(3)	6405(3)	C(5B)	3065(8)	1177(5)	3327(4)
N(3A)	762(9)	3456(5)	7204(5)	C(6B)	4051(8)	-29(4)	1257(4)
N(4A)	-58(6)	4447(4)	8357(4)	C _(7B)	5189(8)	-485(4)	1698(4)
C(10A)	-3614(7)	3840(4)	8578(4)	C(8B)	5063(8)	-600(4)	2441(4)
C _(1A)	-908(8)	2493(4)	6414(4)	C(9B)	3229(9)	1171(5)	4176(5)
C _(2A)	-3117(7)	2919(4)	6667(4)	C(10B)	2763(9)	-616(5)	573(5)
C(3A)	-2373(7)	3623(4)	7405(4)	C(14B)	6287(9)	-813(5)	1220(5)
C _(4A)	-820(7)	3751(4)	7633(4)	C(15B)	8437(14)	-1507(9)	1156(8)
C(5A)	-34(7)	3193(4)	7108(4)	C(16B)	9559(17)	-1728(11)	1682(10)
C(6A)	-3216(7)	4213(4)	7946(4)	C(17B)	6021(10)	-1107(5)	2921(5)
C _(7A)	-2279(8)	5091(4)	8391(4)	C(18B)	3354(11)	-591(6)	3365(5)
C(8A)	-794(8)	5153(4)	8626(5)	C(19B)	1200(29)	3543(14)	3360(15)
C _(9A)	1514(9)	3345(5)	7176(5)	C(20B)	1972(23)	4438(17)	3775(17)
C(11A)	-3450(8)	3104(5)	8735(5)	C(21B)	3485(26)	4539(16)	3782(14)
C(12A)	-4186(10)	3101(5)	9378(5)	C(22B)	3991(45)	5363(17)	4357(20)
C(13A)	-4690(9)	3857(6)	9599(5)	C(23B)	3359(45)	6114(20)	4605(27)
C(14A)	-3127(10)	5840(5)	8525(5)	C(24B)	1918(46)	5802(17)	4587(29)
C(15A)	-5484(11)	6315(6)	8101(7)	C(25B)	1080(28)	5005(14)	4153(16)
C(16A)	-6943(13)	5973(7)	7487(9)	O(1B)	1468(21)	-304(14)	253(13)
C(17A)	255(10)	5968(5)	9144(6)	C(12B)	1404(72)	-1773(21)	-541(34)
C(18A)	1477(9)	4407(6)	8894(5)	C(11B)	2904(34)	-1333(14)	132(18)
C(19A)	-1530(9)	953(5)	4846(5)	C(13B)	664(43)	-1084(32)	-402(27)
C(20A)	-1852(9)	1158(5)	4034(5)	C(19B)*	1996(56)	3574(10)	3298(13)
C(21A)	-2900(10)	1716(6)	3918(6)	$C_{(20B)}^{*}$	1980(29)	4480(11)	3825(12)
C(22A)	-3195(12)	1950(7)	3192(8)	C(21B)*	3025(28)	5213(17)	4201(20)
C(23A)	-2474(17)	1638(8)	2582(8)	C(22B)*	2935(37)	5963(22)	4835(18)
C(24A)	-1418(14)	1077(8)	2672(7)	C(23B)*	1444(34)	6132(16)	4732(27)
C(25A)	-1126(10)	839(6)	3413(6)	C _(24B) *	218(28)	5500(14)	4307(16)
Se(1B)	2113(1)	2814(1)	3986(1)	C _(25B) *	549(24)	4702(15)	3857(18)
O(2B)	6237(8)	-749(4)	530(4)	O _(1B) *	2048(16)	-1237(8)	797(8)
N(1B)	2679(7)	2034(4)	2392(4)	C(11B)*	2252(30)	-869(17)	-257(11)
O(3B)	7332(7)	-1189(5)	1597(4)	C _(12B) *	917(47)	-1465(15)	-557(20)
N _(2B)	3201(7)	1614(4)	1102(4)	C _(13B) *	1037(30)	-1707(16)	100(15)
N(3B)	3383(9)	1187(5)	4873(5)				

* Атомы принадлежат фурановой и бензольной группировкам молекулы **2B**, разупорядоченным по двум позициям с равными заселенностями.

(6H, м, C⁵H фурила, H_{Ph}); 6.88 (2H, уш. с, NH₂); 6.22 (1H, д. д, J = 3.0 и 2.1, C⁴H фурила); 6.05 (1H, д, J = 3.0, C³H фурила); 5.13 (1H, с, C⁴H); 4.41 и 4.47 (по 1H, оба д, J = 12.5, SeCH₂); 4.16 (2H, к, J = 7.6, CH₃CH₂O); 3.48 (3H, с, NCH₃); 2.46 (3H, с, 2-CH₃); 1.30 (3H, т, J = 7.6, CH₃CH₂O). Найдено, %: C 59.02; H 4.84; N 10.89; Se 15.68. C₂₅H₂₄N₄O₃Se. Вычислено, %: C 59.17; H 4.77; N 11.04; Se 15.56.

Рентгеноструктурное исследование соединения 2. РСА монокристалла нафтиридина 2 проводили при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (λMoK_α-излучение, графитовый монохроматор,

отношение скоростей сканирования $\omega/2\theta$ 1/2, $\theta_{\max} = 24^\circ$, сегмент сферы $0 \le h \le 10, -18 \le k \le 10$ ≤18, -19 ≤ *l* ≤ 18). Для определения параметров элементарной ячейки и матрицы ориентации кристалла соединения 2 с линейными размерами 0.16 × 0.25 × 0.31 мм было использовано 22 рефлекса с $12 \le \theta < 13^\circ$. Всего было собрано 7854 отражений, из которых 7336 являются независимыми (*R*-фактор усреднения 0.030). Кристаллы соединения 2 триклинные, a = 9.173(2), b = 16.595(3), c = 16.844(3) Å, $\alpha = 108.10(3)$, $\beta = 104.23(3)$, $\gamma = 92.39(3)^\circ$, V = 2342.9(8) Å³, Z = 4 (две симметрически независимые молекулы), d_{выч} = 1.44 г/см³, µ = 1.637 мм⁻¹, *F*(000) = 1040, пространственная группа *P*1 (№ 2). Структура расшифрована методом тяжелого атома и уточнена методом наименьших квадратов в полноматрич-ном анизотропном приближении с использованием программ SHELXS [11] и SHELXL93 [12]. В уточнении использовано 3792 отражения с $I > 2\sigma(I)$ (694 уточняемых параметра, число отражений на параметр 5.46, использована весовая схема $ω = 1/[σ^2(Fo^2) + (0.0855P)^2]$, где $P = (Fo^2 + 2Fc^2)/3)$. Отношение максимального (среднего) сдвига к погрешности в последнем цикле 0.56 (0.037). Была включена поправка на аномальное рассеяние, поправки на поглощение не вносились. Большинство (≈75%) атомов водорода выявлены объективно, остальные атомы Н посажены геометрически. Все атомы водорода включены в расчет с фиксированными позиционными и тепловыми параметрами. Окончательные значения факторов расходимости R1(F) = 0.0703 и $Rw(F^2) = 0.1500$, GOF 1.017. Остаточная электронная плотность из разностного ряда Фурье 0.37 и -0.43 e/Å³. Координаты атомов приведены в табл. 3 (тепловые параметры атомов можно получить у авторов).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965).

СПИСОК ЛИТЕРАТУРЫ

- 1. А. С. Норавян, Е. Г. Пароникян, С. А. Вартанян, Хим.-фарм. журн., 790 (1985).
- 2. Заявка Японии № 5925391; РЖХим., 4О165П (1985).
- 3. Y. Nishimura, A. Minamida, J. Matsumoto, Chem. Pharm. Bull., 36, 1223 (1988).
- 4. P. Hradil, Cs. farm., 41, 55 (1992).
- 5. P. Hradil, Cs. farm., 41, 194 (1992).
- 6. F. Garamszegi, G. Lehoczky, E. Somfai, K. Ban, G. Hernadi, Πατ. BHP 185285; *PЖXum.*, 14H130Π (1989).
- 7. G. Makara, G. M. Keseru, A. Kovacs, J. Chem. Soc., Perkin Trans. 2, 591 (1994).
- 8. В. Н. Нестеров, В. Д. Дяченко, Ю. А. Шаранин, Ю. Т. Стручков, Изв. АН, Сер. хим., 437 (1996).
- 9. В. Д. Дяченко, С. В. Роман, В. П. Литвинов, Изв. АН, Сер. хим., 121 (2000).
- 10. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 11. G. M. Sheldrick, SHELXS-86. Program for the Solution of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1986.
- 12. G. M. Sheldrick, SHELXL-93. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1993.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: kgb@lgpi.lugansk.ua Поступило в редакцию 08.02.2000

^aИнститут органической химии НАН Украины, Киев 01000 e-mail: iochkiev@ukrpack.net

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: vpl@cacr.ioc.ac.ru