И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, С. Беляков, Э. Лукевиц

СИНТЕЗ N-ПИРИДИЛМЕТИЛИДЕН-2-АМИНОПИРИДИНОВ И ИХ МЕТИЛЗАМЕЩЕННЫХ В ПРИСУТСТВИИ МОЛЕКУЛЯРНЫХ СИТ

Изучены конденсации 2-, 3-, 4-пиридинальдегидов и 6-метилпиридин-2альдегида с 2-аминопиридином и его 3-, 4- и 6-метилпроизводными в бензоле в присутствии молекулярных сит. Реакции протекают уже при комнатной температуре с образованием соответствующих пиридил-пиридил азометинов, а также аминалей. Определены оптимальные условия проведения процессов с целью получения обоих типов продуктов. Рассмотрены закономерности, характерные для масс-спектров синтезированнных альдиминов. Приведены результаты РСА двух аминалей.

Ключевые слова: аминали, гетероциклические основания Шиффа, 2-пиридилазометины, пиридилметилидены, триазастильбены, молекулярные сига.

Известно значительное количество диазастильбенов I и II – оснований Шиффа, синтезированных конденсациями пиридинальдегидов с ароматическими аминами или аминопиридинов с ароматическими альдегидами.

Интерес к подобным соединениям связан с их использованием для синтеза биологически активных веществ [1, 2], применением в качестве селективных адсорбентов ионов металлов [3] и их способностью образовывать мезофазы [4]. Исследованы их структура и физические свойства [5-10], а также комплексы их гомологов с различными металлами [11-13]. Триазастильбены Ш значительно менее исследованы (насколько нам известно, синтезирован лишь N-4-пиридилметилиден-4аминопиридин конденсацией соответствующих альдегида и амина при кипячении в ксилоле в течение 16 ч с отгонкой азеотропа [14]), а производные 2-аминопиридина вообще не описаны. Попытка [15] получить соединение структуры Ш конденсацией 2-пиридинальдегида с 2-аминопиридином оказалась неудачной, поскольку единственным выделенным продуктом был соответствующий аминаль, а данные [16] по синтезу этого альдимина и его метилзамещенных, по-видимому, ошибочны, на что указывают уже авторы работы [15]. Гомологи триазастильбенов исследовали в качестве тридентатных хелатирующих лигандов [17, 18].

1375

Синтез альдиминов и аминалей

Нами ранее [19–22] с успехом были использованы молекулярные сита (MS) для проведения дегидроконденсаций, в том числе с участием 2-аминопиридинов. С использованием этого опыта в настоящем исследовании изучено взаимодействие пиридинальдегидов 1–4 с рядом 2-аминопиридинов 5–8 с целью синтеза соответствующих продуктов (см. схему 1) – азометинов 1а–16а – потенциальных полифункциональных синтонов, прохиральных субстратов, а также предшественников биологически активных соединений.

Как следует из данных [15, 23–25] и наших работ [19, 21], основной проблемой в синтезе иминов на основе 2-аминопиридинов является образование аминалей. В работе [23] установлено, что в реакции бензальдегида с амином 5 первичным продуктом является аминаль, который последовательным термическим разложением превращается в альдимин.

В случае синтеза 2-пиридилазопиридилметинов задача усугубляется нестабильностью этих соединений. Наши исследования показали, что в присутствии молекулярных сит конденсации почти всех субстратов происходят уже при комнатной температуре. Об этом свидетельствуют данные анализа реакционных смесей методами ТСХ и хромато-массспектрометрии (ГЖХ-МС), регистрирующие уменьшение концентрации (а в некоторых случаях и полную конверсию) исходных соединений и появление альдиминов. Аминали из-за их термической неустойчивости и нестабильности во многих растворителях не детектируются методами ТСХ, ГЖХ-МС, а также жидкостной хроматографии. Об их появлении в значительных количествах в реакционных смесях судили по выпадающим из бензола осадкам (все альдимины и субстраты хорошо растворимы в бензоле). Таким образом, уже при 20 °С образуются оба типа продуктов, несмотря на то, что исходные соединения брали в эквимолярных количествах. Выделение альдиминов из смесей оказалось невозможным в большинстве случаев: при вакуумной дистилляции, сублимации или колоночном хроматографировании они почти полностью разрушаются. Изолировать оба типа продуктов (13а, 13b и 15а, 15b) из их смесей удалось раздельной кристаллизацией только при конденсациях 6-метилпиридин-2альдегида с аминами 5 и 7 (опыты 28, 32, табл. 1). Предположив, что повышенная температура будет способствовать разложению аминалей и тем самым увеличению выхода альдиминов, реакции с целью получения последних проводили при кипячении в бензоле (были проведены опыты также с применением в качестве более высоко кипящих растворителей

Конденсации пиридинальдегидов с 2-аминопиридинами в присутствии молекулярных сит (MS)

4А МS бензол

10-16b (аминали
----------	---------

Альдегид	R	Положение СНО	Амин	R'
1	Н	2-	5	Н
2	Н	3-	6	3-CH3
3	Н	4-	7	4-CH ₃
4	CH3	2-	8	6-CH3

Исходный альдегид	Исходный амин	Продукты	Исходный альдегид	Исходный амин	Продукты
1	5	1a, 1b	3	5	9a, 9b
1	6	2a, 2b	3	6	10a, 10b
1	7	3a, 3b	3	7	11a, 11b
1	8	4a, 4b	3	8	12a, 12b
2	5	5a, 5b	4	5	13a, 13b
2	6	6a, 6b	4	6	14a, 14b
2	7	7a, 7b	4	7	15a, 15b
2	8	8a, 8b	4	8	16a, 16b
	1	1			1

Найдено, % Исходное Вычислено, % Т. пл., Выход, Т. реак., ⁰С Бруттосотношение Опыт Продукт %* °C формула (время, ч) альдегид-амин, С Н Ν моль 10 2 3 4 5 6 7 8 9 1 60 67-68 1:1 80 (5) C₁₁H₉N₃ <u>71.86</u> <u>4.93</u> 4.95 23.00 1 1a (гексан) 72.11 22.93 95 C16H15N5 <u>68.85</u> <u>5.37</u> <u>24.98</u> 118-120 2 1:1 80 (5) 1b (AcOEt-гексан) 69.30 5.45 25.25 (117–119 [15]) 59 C₁₆H₁₅N₅ 69.07 <u>5,36</u> 25.07 116-117 1:2 20 (20); 1b 3 (эфир) 69.30 25,25 20 (48)** 5.45 33--34 68 C12H11N3 <u>72.98</u> <u>5.65</u> 21.29 80 (5) 2a 4 1:1 5.62 . 21.30 (гексан) 73.08 98 22.83 123-124 C18H19N5 70.87 6.23 5 1:1 80 (5) 2b 70.80 6.27 22,93 (AcOEt-гексан) 120-122 56 6 1:2 20'(20); 2b C18H19N5 70.86 <u>6.22</u> <u>22.81</u> 22,93 (эфир) 70.80 6.27 20 (48)** 65 $C_{12}H_{11}N_3$ 72.74 <u>5.54</u> 20.72 47-48 7 1:1 80 (5) 3a 5.62 21.30 73.08 (гексан) C18H19N5 70.54 6.18 <u>22.71</u> 105-107 84 3b 8 80 (5) 1:1 70.80 6.27 22,93 (AcOEt-гексан) 57 6.24 <u>22.65</u> 104-106 1:2 3b C₁₈H₁₉N₅ 70.74 9 20 (20); 6.27 22.93 (эфир) 20 (48)** 70.80 63 80 (5) $C_{12}H_{11}N_3$ <u>5.62</u> <u>21.21</u> 40-45 '4a 72.84 10 1:1 73.08 5.62 21.30 (гексан)

Характеристики продуктов конденсации

11	1:2	20 (20); 20 (48)**	4b	C18H19N5	$\frac{70.84}{70.80}$	<u>6.26</u> 6.27	<u>22.97</u> 22.93	85–86	67 (эфир)
12	1:1	80 (5)	5a	C11H9N3	<u>71.81</u> 72.11	<u>4.69</u> 4.95	<u>22.60</u> 22.93	60	82
13	1:2	20 (20)	5b	$C_{16}H_{15}N_5$	<u>69.35</u> 69.30	<u>5.45</u> 5.45	<u>25.08</u> 25.25	136-137	58
14	1:1	80 (5)	6a -	$C_{12}H_{11}N_3$	<u>72.91</u> 73.08	<u>5.68</u> 5.62	<u>21.18</u> 21.30	20-23	91
15	1:2	20 (20)	6b	$C_{18}H_{19}N_5$	<u>70.76</u> 70.80	<u>6.27</u> 6.27	<u>23.01</u> 22.93	113-115	54 (эфир)
16	1:1	80 (5)	7a	$C_{12}H_{11}N_3$	<u>72.98</u> 73.08	<u>5.73</u> 5.62	<u>21.40</u> 21.30	66–67	91
17	1:2	20 (20)	7b	C ₁₈ H ₁₉ N ₅	<u>70.82</u> 70.80	<u>6.29</u> 6.27	<u>22.73</u> 22.93	117-118	49
18	1:1	80 (5)	8a	$C_{12}H_{11}N_3$	<u>73.19</u> 73.08	<u>5.86</u> 5.62	<u>21.14</u> 21.30	45–46	98
19	1:2	20 (70); 20 (48)**; 80 (5)	8b	C ₁₈ H ₁₉ N ₅	<u>70.44</u> 70.80	<u>6.22</u> 6.27	<u>22.66</u> 22.93	88-89	45 ⁻ (эфир-гексан)
20	1:1	80 (5)	9a	C11H9N3	<u>72.02</u> 72.11	<u>5.08</u> 4.95	<u>22.88</u> 22.93	3536	98
21	1:2	15 (40); 20 (60)**	9b	$C_{16}H_{15}N_5$	<u>69.19</u> 69.30	<u>5.51</u> 5.45	<u>25.24</u> 25.25	144–146	75 (эфир)
22	1:1	80 (5)	10a	$C_{12}H_{11}N_3$	<u>72.86</u> 73.08	<u>5.62</u> 5,62	<u>21.20</u> 21.30	39–40	95
23	1:2	15 (40); 20 (60)**	10b	$C_{18}H_{19}N_5$	<u>70.67</u> 70.80	<u>6.29</u> 6.27	<u>22.88</u> 22.93	123–125	67 (эфир-гексан)
24	1:1	80 (5)	11a	$C_{12}H_{11}N_3$	<u>72.88</u> 73.08	<u>5.74</u> 5.62	$\frac{21.32}{21.30}$	3638	96
	,	•							
	•							•	

.

•

	
1.5	
5	
00	

1	2	3	4	5	6	7	8	9	10
25	1:2	15 (40)	11 <u>b</u>	C ₁₈ H ₁₉ N ₅	<u>70.52</u> 70.80	<u>6.16</u> 6.27	<u>22.95</u> 22,93	130-132	60 (эфир)
26	1:1	80 (5)	12a	$C_{12}H_{11}N_3$	<u>72.99</u> 73.08	<u>5.85</u> 5.62	<u>21.43</u> 21.30	33–35	97
27	1:2	15 (40)	12b	$C_{18}H_{19}N_5$	<u>70.64</u> 70.80	<u>6.30</u> 6.27	<u>22.87</u> 22.93	116118	59 (эфир)
28	1:1	20 (20)	13 a	$C_{12}H_{11}N_3$	<u>72.95</u> 73.08	<u>5.51</u> 5.62	21.20 21.30	68–70	60 (бензол)
			13b	C17H17N5	<u>70.18</u> 70.08	<u>5.83</u> 5.88	<u>23.98</u> 24.04	122–124	30
29	1:1	80 (5)	13a	$C_{12}H_{11}N_3$	<u>73.00</u> 73.08	<u>5.55</u> 5.62	$\frac{21.45}{21.30}$	5560	61 (бензол)
30	1:1	80 (5)	14a	$C_{13}H_{13}N_3$	<u>73.95</u> 73.91	<u>6.12</u> 6.20	<u>19.69</u> 19.89	3134	98
31	1:2	20 (20)	14b	$C_{19}H_{21}N_5$	<u>71.38</u> 71.45	<u>6.61</u> 6.63	<u>21.73</u> 21.93	113–116	55 (бензол)
32	1:1	20 (20)	15a	$C_{13}H_{13}N_3$	<u>73.43</u> 73.91	<u>6.25</u> 6,20	<u>19.96</u> 19.89	9697	25
,			15b	$C_{19}H_{21}N_5$	<u>71.60</u> 71.45	<u>6.64</u> 6.63	<u>21.77</u> 21.93	106107	45
33	1:1	80 (5)	16a	C ₁₃ H ₁₃ N ₃	<u>73.88</u> 73.91	<u>6.20</u> 6.20	<u>19.73</u> 19.89	33–36	57 (бензол)
34	1:2	20 (20)	16b	$C_{19}H_{21}N_5$	$\frac{71.58}{71.45}$	<u>6.64</u> 6.63	<u>21.67</u> 21.93	134–135	55 (бензол)

* В скобках указан растворитель для перекристаллизации. ** Без MS.

Масс-спектры* а.	льдиминов (ArCH=NAr') 1a–16a
------------------	-------------	-----------	----------

Соеди-						m/z (І _{отн.} , %)						
нение	M ⁺	[M-H]+	[M–Me] ⁺	[M-HCN] ⁺	[M-HCN-H]+	[M-Me-HCN]*	[M-Ar] ⁺	[M-Ar'] ⁺	Ar'H ⁺	ArH^{+}	Ar' ⁺	Ar ⁺
1a	183 (45)	182 (100)	-	156 (44)	155 (36)		10	5 (22)	79 (5	7)	78 (59)
2a	197 (34)	196 (76)	182 (100)	170 (13)	169 (82)	155 (2)	119 (43)	105 (15)	93 (54)	79 (11)	92 (32)	78 (20)
3 a	197 (41)	196 (100)	182 (11)	. 170 (36)	169 (45)	155 (5)	119 (5)	105 (11)	93 (73)	79 (8)	92 (27)	78 (16)
4a	197 (27)	196 (46)	182 (3)	170 (9)	169 (45)	155 (5)	119 (6)	105 (11)	93 (100)	79 (8)	92 (21)	78 (15)
5 a	183 (15)	182 (100)		156 (9)	155 (15)		10	5 (22)	79 (3	3)	78 (20)
6a	197 (19)	196 (100)	182 (12)	170 (4)	169 (22)	155 (2)	119 (4)	105 (3)	93 (35)	-	92 (14)	78 (5)
7a ·	197 (16)	196 (100)	182 (4)	170 (6)	169 (14)	155 (2)	119 (1)	105 (2)	93 (31)	-	92 (6)	78 (5)
8a (197 (20)	196 (48)	182 (1)	170 (14)	169 (13)	155 (4)	119 (1)	105 (4)	93 (100)	-	92 (13)	78 (6)
9a	183 (37)	182 (100)		156 (10)	155 (20)	-	10	5 (22)	79 (9	90)	78 (39)
10a	197 (46)	196 (100)	182 (15)	170 (7)	169 (36)	155 (3)	119 (14)	105 (6)	93 (86)	-	92 (27)	78 (8)
11a	197 (32)	196 (100)	182 (4)	170 (9)	169 (19)	155 (3)	119 (2)	105 (3)	93 (60)		92 (14)	78 (6)
12a	197 (16)	196 (23)	182 (1)	170 (7)	169 (13)	155 (2)	119 (2)	105 (3)	93 (100)	~	92 (13)	78 (6)
13 a	197 (28)	196 (100)	182 (1)	170 (12)	169 (54)	155 (5)	-	119 (40)	79 (41)	93 (11)	78 (36)	92 (10)
14a	211 (33)	210 (100)	196 (9)	184 (3)	183 (19)	169 (22)	11	9 (67)	93 (6	53)	92 ((31)
15a	211 (28)	210 (100)	196 (4)	184 (13)	183 (56)	169 (7)	11	9 (15)	93 (4	4)	92 ((22)
16a	211 (24)	210 (13)	196 (2)	184 (10)	183 (40)	169 (6)	11	9 (28)	93 (1	00)	92 ((23)

* Указаны сигналы характеристичных ионов. Пики с *m/z* ниже 78 не приведены.

Спектры ЯМР¹Н альдиминов 1а-16а

Соеди-		Химические сдвиги, б, м. д. (в CDCl ₃), КССВ, <i>Ј</i> , Гц									
нение	CH=, c	CH3, c	Протоны пиридиновых колец								
1a	9.19	-	7.20 (д. д. д. <i>J</i> = 1.2, 4.7, 7.5, H-5'), 7.3–7.4 (2H, м, H-3, H-5), 7.77 (т. д, <i>J</i> = 2.0, 8.0. H-4); 7.81 (т. д, <i>J</i> = 1.8, 7.5, H-4'); 8.20 (д. д, <i>J</i> = 1.2, 7.5, H-3'); 8.52 (д. д. д, <i>J</i> = 0.8, 2.0, 5.0, H-6); 8.75 (д. д. д, <i>J</i> = 0.8, 1.8, 4.7, H-6')								
2a	9.12	2.45	7.10 (д. д. $J = 5.0, 7.6, H-5'$); 7.35 (д. д. д. $J = 0.6, 4.8, 7.6, H-5$); 7.54 (д. д. $J = 0.8, 7.6, H-4'$); 7.79 (т. д. $J = 0.8, 7.6, H-4$); 8.26 (д. д. $J = 0.6, 7.6, H-3$); 8.31 (д. д. $J = 0.8, 5.0, H-6'$); 8.73 (д. д. $J = 0.8, 4.8, H-6$)								
3a	9.16	2.39	7.03 (д, J = 5.0, H-5'); 7.19 (c, H-3'); 7.36 (д. д. д. J = 1.2, 4.9, 6.2, H-5); 7.81 (т. д. J = 1.6, 7.7, H-4); 8.19 (д. д. д. J = 0.8, 1.2, 7.7, H-3); 8.37 (д. J = 5.0, H-6'); 8.75 (д. д. д. J = 0.8, 1.6, 4.9, H-6)								
4 a	9,14	2.56	7.06 (д, <i>J</i> = 7.6, H-5'); 7.13 (д, <i>J</i> = 7.6, H-3); 7.36 (д. д. <i>J</i> = 1.6, 8.0, H-4'); 7.41 (д. д. <i>J</i> = 5.0, 8.0, H-5); 7.77 (т. д. <i>J</i> = 2.0, 7.6, H-4); 8.35 (д. д. <i>J</i> = 1.8, 8.0, H-3'); 8.50 (д. д. <i>J</i> = 2.0, 5.0, H-6)								
5a	9.22	-	7.21 (д. д. д. , $J = 1.7, 4.6, 7.8, H-5'$); 7.36 (д. д. $J = 1.7, 7.8, H-3'$); 7.41 (д. д. $J = 5.0, 8.0, H-5$); 7.77 (т. д. $J = 2.0, 7.8, H-4'$); 8.35 (д. д. $J = 1.7, 8.0, H-4$); 8.50 (д. д. $J = 2.0, 4.6, H-6'$); 8.71 (д. д. $J = 1.7, 5.0, H-6$); 9.10 (д. $J = 1.8, H-2$)								
6a	9.15	2.46	7.11 (д. д. $J = 4.8, 7.6, H-5'$); 7.40 (д. д. $J = 4.8, 7.8, H-5$); 7.56 (д. д. $J = 1.6, 7.6, H-4'$); 8.30 (д. д. $J = 1.6, 4.8, H-6'$); 8.37 (д. д. $J = 1.8, 7.8, H-4$); 8.70 (д. д. $J = 1.8, 4.8, H-6$); 9.12 (д. $J = 1.8, H-2$)								
		}									

1			
7a	9.22	2.40	7.03 (д, $J = 5.4$, H-5'); 7.18 (с, H-3'); 7.41 (д, д, $J = 5.0$, 8.0, H-5); 8.33 (д. д, $J = 2.0$, 8.0, H-4); 8.35 (д, $J = 5.4$, H-6'); 8.71 (д. д, $J = 2.0$, 5.0, H-6); 9.09 (д, $J = 1.8$, H-2)
8a	9.16	2.57	7.07 (μ , $J = 8.0$, H-5 ⁷); 7.12 (μ , $J = 8.0$, H-3 ⁷); 7.40 (μ , μ , $J = 5.0$, 8.0, H-5); 7.64 (τ , $J = 8.0$, H-4 ⁷); 8.35 (μ , μ , $J = 2.0$, 8.0, H-4); 8.70 (μ , $J = 2.0$, 5.0, H-6); 9.09 (μ , $J = 1.4$, H-2)
9a	9.17	. –	7.22 (д. д. д. <i>J</i> = 1.2, 4.6, 7.2, H-5'); 7.37 (д. д. д. <i>J</i> = 0.8, 1.2, 7.2, H-3'); 7.78 (2H, т. д. <i>J</i> = 2.0, 7, 2, H-4'); 7.81 (2H, д. д. <i>J</i> = 1.4, 4.4, H-3, H-5); 8.51 (д. д. д. <i>J</i> = 0.8, 2.0, 4.6, H-6'); 8.76 (2H, д. д. <i>J</i> = 1.4, 4.4, H-2, H-6)
10a	9.10	2.47	7.13 (д. д., $J = 5.0$, 7.6, H-5'); 7.57 (д. д. д., $J = 0.8$, 1.4, 7.6, H-4'); 7.82 (д. д., $J = 1.4$, 4.4, H-3, H-5); 8.31 (д. д., $J = 1.4$, 5.0, H-6'); 8.74 (д. д., $J = 1.4$, 4.4, H-2, H-6)
11a	9.16	2.40	7.05 (д, J = 5.0, H-5'); 7.21 (д, J = 0.8, H-3'); 7.80 (2Н, д. д. J = 1.4, 4.4, H-3, H-5); 8.36 (д, J = 5.0, H-6'); 8.76 (2Н, д. д. J = 14, 4.4, H-2, H-6)
12a	9.12	2.57	7.09 (д, J = 8.0, H-5'); 7.15 (д, J = 8.0, H-3'); 7.66 (т, J = 8.0, H-4'); 7.81 (2H, д, J = 5.8, H-3, H-5); 8.75 (2H, д, J = 5.8, H-2, H-6)
13a	9.14	2.64	7.18 (д. д. д. д. J = 1.0, 4.6, 7.8, H-5'); 7.23 (д. J = 7.8, H-5); 7.35 (д. J = 7.8, H-3); 7.70 (т. J = 7.8, H-4); 7.76 (т. д. J = 1.9, 7.8, H-4'); 8.00 (д. д. Д. д. д. д. J = 1.0, 1.9, 4.6, H-6')
14a	9.09	2.44; 2.62	7.08 (α , J = 4.4, 8.0, H-5'); 7.22 (α , J = 8.0, H-5); 7.53 (α , J = 8.0, H-4'); 7.68 (α , J = 8.0, H-4); 8.06 (α , J = 8.0, H-3); 8.29 (α , J = 4.4, H-6')
15a	9.12	2.39; 2.64	7.01 (д, J = 5.2, H-5'); 7.17 (с, H-3'); 7.22 (д, J = 7.4, H-5); 7.70 (т, J = 7.4, H-4); 8.00 (д, J = 7.4, H-3); 8.36 (д, J = 5.2, H-6')
16a	9.12	2.55; 2.63	7.05 (д, J = 7.6, H-5); 7.12 (д, J = 7.6, H-3); 7.23 (д, J = 8.0, H-5'); 7.63 (г, J = 8.0, H-4'); 7.69 (г, J = 7.6, H-4); 8.06 (д, J = 8.0, H-3')

an An an Anna Anna Anna Anna Anna

1383

·

Таблица 4

Спектры ЯМР¹Н аминалей 1b–16b

Соелинение		Стабильность			
(растворитель)	СН, т	NH, д	СН3, с	Протоны пиридиновых колец	в растворителях $(CDCl_3, (CD_3)_2SO)$
1b (CDCl ₃)	6.84 (1H) J =	5.92 (2H) 7.6		6.4–6.6 (4H, м, 2H-3', 2H-5'); 7.3–7.4 (2H, м, <i>J</i> = 6.8, H-3, H-5); 7.5–7.7 (3H, м, <i>J</i> = 1.8, 6.8, 7.6, H-4, 2H-4'); 8.11 (2H, м, <i>J</i> = 6.8, 2H-6'); 8.56 (д. д. <i>J</i> = 1.4, 5.0, H-6)	Не стабильно
2b (CDCl ₃)	7.15 (1H) J=	5.96 (2H) 7.0	2.13 (6H)	6.52 (2H, д. д. J = 5.0, 7.3, 2H-5'); 7.20 (2H, д. J = 7.3, 2H-4'); 7.27 (1H, м, J = 4.8, 7.3, H-5); 7.63 (т. д. J = 1.6, 7.6, H-4); 7.76 (д. J = 7.6, H-3); 7.98 (2H, д. д. J = 1.6, 5.0, 2H-6'); 8.58 (д. J = 4.8, H-6)	Стабильно
3b (CDCl ₃)	6.81 (1H) J=	5.77 (2H) 7.6	2.16 (6H)	6.38 (2H, c, 2H-3'); 6.43 (2H, д, <i>J</i> = 4.8, 2H-5'); 7.19 (м, <i>J</i> = 1.2, 4.5, 7.2, H-5); 7.55 (д, <i>J</i> = 7.2, H-3); 7.63 (т. д, <i>J</i> = 0.8, 7.2, H-4); 7.98 (2H, д, <i>J</i> = 4.8, 2H-6'); 8.56 (д, <i>J</i> = 4.5, H-6)	Не стабильно
4b (CDCl ₃)	6.76 (1H) J =	5.80 (2H) 7.2	2.36 (6H)	6.38 (2H, д, <i>J</i> = 8.2, 2H-5'); 6.46 (2H, д, <i>J</i> = 8.2, 2H-3'); 7.17 (д, <i>J</i> = 7.6, H-3); 7.25 (2H, д, <i>J</i> = 8.2, 2H-4'); 7.32 (д. д. д. д. <i>J</i> = 1.0, 5.0, 7.6, H-5); 7.64 (т. д, <i>J</i> = 0.8, 7.6, H-4); 8.55 (д. <i>J</i> = 5.0, H-6)	Не стабильно
5b (C ₆ D ₆)	6.24 (1H)	4.49 (2H) 7.8	-	5.93 (2H, д, <i>J</i> = 8.2, 2H-3'); 6.22 (2H, м, <i>J</i> = 5.2, 6.8, 2H-5'); 6.59 (д. д. <i>J</i> = 4.8, 7.6, H-5); 6.86 (2H, м, <i>J</i> = 6.8, 8.2, 2H-4'); 7.40 (д. <i>J</i> = 7.6, H-4); 7.99 (2H, д. д. <i>J</i> = 5.2, 2H-6'); 8.08 (д. д. <i>J</i> = 4.8, H-6); 8.90 (с, H-2)	Не стабильно
6b ((CD ₃) ₂ SO)	7.41 (1H) J=	6.74 (2H) 8.3	2.09 (6H)	6.52 (2H, д. д. J = 4.8, 6.8, 2H-5'); 7.29 (2H, д. J = 6.8, 2H-4'); 7.3-7.4 (м, H-5); 7.83 (д. J = 6.6, H-4); 7.86 (2H, д. J = 4.8, 2H-6'); 8.39 (д. J = 4.4, H-6); 8.65 (д. J = 2.0, H-2)	Стабильно
7b ((CD ₃) ₂ SO)	3.33, ш	. c. (3H)	2.13 (6H)	6.3–6.5 (3H, м, 2H-5', H-5); 7.00 (2H, с, 2H-3'); 7.38 (д. д., <i>J</i> = 1.0, 4.4, H-4); 7.82 (2H, д., <i>J</i> = 5.2, 2H-6'); 8.44 (д. д., <i>J</i> = 2.0, 5.0, H-6); 8.64 (1H, д., <i>J</i> = 2.6, H-2)	Не стабильно (в CDCl ₃ полностью превращается в альдимин + амин)

8b ((CD ₃) ₂ SO)	$\begin{array}{c c} 6.88 (1 \text{H}) & 7.01 (2 \text{H}) \\ J = 8.0 \end{array}$	2.21 (6H)	6.40 (4H, д, J = 7.6, 2H-3', 2H-5'); 7.29 (2H, т, J = 7.6, 2H-4'); 7.35 (д. д. J = 4.8, 7.6, H-5); 7.88 (д. J = 7.6, H-4); 8.45 (д. J = 4.8, H-6); 8.70 (с, H-2)	Не стабильно (в CDCl3 полностью превращается в имин + амин)
9 ((CD ₃) ₂ SO)	6.93 (1H) 7.21 (2H) $J = 7.6$		6.53 (2H, д. д., <i>J</i> = 4.8, 6.2, 2H-5'); 6.62 (2H, д, <i>J</i> = 8.6, 2H-3'); 7.38 (2H, м, <i>J</i> = 1.4, 6.2, 8.6, 2H-4'); 7.44 (2H, д. д., <i>J</i> = 1.4, 4.4, H-3, H-5); 7.95 (2H, д. д, <i>J</i> = 1.4, 4.8, 2H-6'); 8.51 (2H, д. д, <i>J</i> = 1.4, 4.4, H-2, H-6)	Стабильно в (CD ₃) ₂ SO, не стабильно в CHCl ₃
10b (CDCl ₃)	6.96 (1H) = 6.13 (2H) J = 8.0	2.12 (6H)	6.54 (2H, д. д., <i>J</i> = 5.0, 7.2, 2H-5'); 7.22 (2H, д. д., <i>J</i> = 1.2, 7.2, 2H-4'); 7.51 (2H, д. д., <i>J</i> = 1.4, 4.6, H-3, H-5); 7.89 (2H, д. д., <i>J</i> = 1.2, 5.0, 2H-6'); 8.52 (2H, д. д., <i>J</i> = 1.4, 4.6, H-2, H-6)	Не стабильно
11b ((CD ₃) ₂ SO)	6.91 ш. с. 5.72 ш. с. (1H) (2H)	2.12 (6H)	6.39 (2H, д, <i>J</i> = 4.9, 2H-5'); 6.44 (2H, c, 2H-3'); 7.42 (2H, д, <i>J</i> = 4.9, 2H-6'); 7.81 (2H, д, <i>J</i> = 5.3, H-3, H-5); 8.50 (2H, д, <i>J</i> = 5.3, H-2, H-6)	Стабильно
12b (CDCl ₃ + (CD ₃) ₂ SO)	6.73 (1H) $\int 5.69 (2H) = 8.0$	2,33 (6H)	6.29 (2H, д, <i>J</i> = 7.8, 2H-5'); 6.47 (2H, д, <i>J</i> = 7.8, 2H-3'); 7.29 (2H, т, <i>J</i> = 7.8, 2H-4'); 7.49 (2H, д. д, <i>J</i> = 2.0, 4.8, H-3, H-5); 8.53 (2H, д. д, <i>J</i> = 2.0, 4.8, H-2, H-6)	Не стабильно
12b ((CD ₃) ₂ SO)	6.90 (1H) $ $ 6.40 (2H) J = 8.0	2.20 (6H)	6.22 (2H, д, $J = 7.8$, 2H-5'); 6.31 (2H, д, $J = 7.8$, 2H-3'); 7.23 (2H, т, $J = 7.8$, 2H-4'); 7.47 (2H, д. д, $J = 1.4$, 4.6, H-3, H-5); 8.51 (2H, д. д, $J = 1.4$, 4.6, H-2, H-6)	Не стабильно
13b ((CD ₃) ₂ SO)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.35 (3H)	6.54 (2H, д. д. J = 5.2, 7.2, 2H-5'); 6.59 (2H, д, J = 7.2, 2H-3'); 7.17 (д, J = 7.6, H-5); 7.33 (д, J = 7.6, H-3); 7.36 (2H, т. д. J = 2.0, 7.2, 2H-4'); 7.66 (т, J = 7.6, H-4); 8.00 (2H, м, J = 2.0, 5.2, 2H-6')	Стабильно в (CD ₃) ₂ SO, не стабильно в CDCl ₃
14b (CDCl ₃)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.11 (6H); 2.55 (3H)	6.50 (2H, д. д. J = 5.0, 7.2, 2H-5'); 7.01 (д. J = 6.8, H-5); 7.1–7.2 (3H, м, J = 7.2, 2H-4', H-4); 7.47 (д. J = 6.8, H-3); 7.98 (2H, д. д. J = 1.4, 5.0, 2H-6')	Стабильно
15b (CDCl ₃)	6.78 (1H) $\int 5.78 (2H) = 7.6$	2.17 (6H); 2.55 (3H)	6.40 (2H, c, 2H-3'); 6.44 (2H, д, <i>J</i> = 7.6, 2H-5'); 7.05 (д, <i>J</i> = 7.5, H-5); 7.30 (д, <i>J</i> = 7.5, H-3); 7.52 (т, <i>J</i> = 7.5, H-4); 7.75 (2H, д, <i>J</i> = 7.6, 2H-6')	Не стабильно
15b ((CD ₃) ₂ SO)	6.84, ш. с. 5.72, ш. с. (1H) (2H)	2.11 (6H); 2.49 (3H)	6.39 (2H, c, 2H-5'); 6.41 (2H, c, <i>J</i> = 7.6, 2H-3'); 7.16 (д, <i>J</i> = 7.8, H-5); 7.30 (д, <i>J</i> = 7.8, H-3); 7.36 (т, <i>J</i> = 7.8, H-4); 7.85 (2H, д, <i>J</i> = 4.6, 2H-6')	Не стабильно
16b (CDCl ₃)	6.72 (1H) 5.76 (2H) $J = 7.8$	2.37 (6H); 2.55 (3H)	6.39 (μ , $J = 7.8$, H-5'); 6.46 (μ , $J = 7.8$, H-3'); 7.25 (μ , $J = 7.5$, H-5); 7.25 (τ , $J = 7.8$, H-4'); 7.33 (μ , $J = 7.5$, H-3); 7.59 (τ , $J = 7.5$, H-4)	Не стабильно

толуола и ксилола, однако это не улучшило результаты из-за осмоления как субстратов, так и продуктов). Таким способом были синтезированы почти все альдимины (1а–14а, 16а). В некоторых случаях они были достаточно чистыми (5а–12а, 14а) и получены с высокими выходами (82–98%). Остальные альдимины перекристаллизованы из гексана или бензола с выходом 57–68%. Масс-спектры и спектры ЯМР ¹Н всех синтезированных альдиминов приведены в табл. 2 и 3 и соответствуют их структурам.

Синтез аминалей был осуществлен несколькими способами. Соединения 5b-7b, 14b, 16b получены с выходами 49-58% при проведении реакции при комнатной температуре (исходное молярное соотношение альдегид-амин, 1:2) в течение 20 ч. Образовавшиеся осадки отделяли от сит, некоторые дополнительно очищали эфиром или бензолом, после чего все характеристики соответствовали структуре. Аминали 1b-4b, 8b образовывались медленнее. После проведения конденсации при 20 °С в течение 20 ч осадки не выпадали, однако конверсия субстратов была велика (ГЖХ-МС). Учитывая это, сита отфильтровывали, а фильтрат выдерживали при комнатной температуре еще 48 ч. После этого образовавшиеся осадки отфильтровывали, очищали эфиром и получали аминали 1b-4b с выходом 56-67%. Аминаль 8b получили в результате дополнительного кипячения смеси в течение 5 ч. После охлаждения и выдерживания в холодильнике образовавшийся осадок очищали эфиром и гексаном (выход 45%). Для получения аминалей 9b-12b (и предотвращения образования соответствующих альдиминов) конденсации наиболее реакционноспособного 4-пиридинальдегида проводили в криостате при пониженной температуре (15 °C). Остальные условия реакций и характеристики продуктов приведены в табл. 1 (опыты 21, 23, 25, 27). Аминали 1b-3b синтезировали также по методу [15]. Реакции проводили, как для получения альдиминов (при соотношении альдегид-амин, 1:1). После отделения сит и упаривания бензола остаток перекристаллизовывали из смеси этилацетат-гексан, 1:1, и получали аминали с высоким выходом (84-98% в расчете на исходный амин - опыты 2, 5, 8).

Спектры ЯМР ¹Н всех аминалей согласуются с их структурой (табл. 4). Регистрация спектров аминалей представляет некоторую трудность из-за их нестабильности в растворах, что отмечено уже в работе [24] при исследовании других аминалей. Масс-спектры синтезированных нами аминалей полностью совпадают со спектрами соответствующих альдиминов (сигнал молекулярного иона отсутствует). Это же наблюдали авторы работы [15], изучая N,N'-бензилиденбис-2-аминопиридин.

Проведенные нами исследования позволяют сделать некоторые заключения относительно направлений взаимных превращений альдиминов и аминалей. Альдегиды и амины конденсируются при повышенной температуре в присутствии водоотнимающего средства, образуя альдимины. Последние легко гидратируются в исходные альдегид и амин. Реагируя с амином при комнатной температуре, альдимины превращаются в аминали, которые при термическом разложении дают обратную реакцию:

Взаимные превращения альдиминов 1а-16а и аминалей 1b-16b

Масс-спектральное исследование альдиминов

В масс-спектрах (табл. 2) всех альдиминов сигнал молекулярного иона не является максимальным, а наибольшую интенсивность в большинстве случаев имеют ионы $[M-H]^+$ (исключение составляют альдимин 2а, $[M-Me]^+$ -100%, и все производные 2-амино-6-метилпиридина, в спектрах которых максимален пик Ar'H⁺). Это отличает спектры гетероциклических соединений 1а-16а от спектров бензилиденанилинов [15, 26]. Для последних характерна 100% интенсивность пика М⁺, а интенсивность иона $[M-1]^+$ значительно ниже, что свидетельствует о трудности его образования. Как показали исследования с дейтерированными соединениями [15], протон в этих альдиминах отрывается от азометиновой группы с зарядом, локализованным на атоме азота Ph-CH=N⁺-Ph. Легкость потери протона в изученных ранее [5, 15] орто-производных - 2-пиридилметилиденанилинах и бензилиден-2-аминопиридинах связана с возможностью локализации заряда на атоме азота кольца и последующим образованием выгодных циклических структур. На схеме 2 (на примере альдимина 1а) приведены предполагаемые пути фрагментации и возможная структура ионов, наблюдающихся в спектрах. Образующийся молекулярный ион а трансформируется в структуру b, а затем с потерей протона превращается в катион с. Структура с и ее метилзамещенные аналоги могут образовываться только исходя из орто-изомеров (соединения 1а-4а, 13а-16а). Другие изомерные структуры (g, h - на примере соединения 5а) могут возникать при первичной локализации заряда на атоме азота кольца азочасти молекулы альдимина (f). О легкости подобных переходов свидетельствует высокая интенсивность иона [М–Н]⁺.

Весьма характерным для спектров всех альдиминов является наличие пиков ионов, образующихся с потерей группы HCN: [M–HCN]⁺, [M–HCN–H]⁺, [M–Me–HCN]⁺, что означает большую вероятность образования связи между гетарильными остатками альдегида и амина. Учитывая имеющиеся в литературе сведения о том, что подобная фрагментация отсутствует в спектрах бензилиденанилинов, а также анилов, полученных из 3- и 4-пиридинальдегидов и их производных, можно предположить, что

1388

Схема 2

частицы с потерей HCN возникают из молекулярных ионов, в которых заряд локализован на атоме азота кольца пиридиновых α -производных (на схеме 2 приведен пример последовательной фрагментации a - d - e для соединения 1а).

Во всех случаях сигнал $Ar'H^+$ имеет большую интенсивность (особенно в спектрах производных 2-амино-6-метилпиридина – 100%). Поскольку подобный феномен наблюдался ранее [15] только в спектре бензилиден-2-аминопиридина, предполагается, что пиридиновый ион образуется из молекулярного иона (с зарядом на атоме азота кольца пиридилазагруппы) при присоединении водорода азометиновой группы к пиридиновому кольцу. Аналогичные процессы характерны и для альдиминов **1а–16а** (схема 2, переход $f - Ar'H^+$). В то же время интенсивность сигналов ArH невелика, а в спектрах 2- и 3-пиридилметилиденпроизводных они полностью отсутствуют. Это подтверждает приведеное выше предположение.

В спектрах всех изученных нами альдиминов присутствуют сигналы $[M-Ar']^+$, Ar^+ , $[M-Ar]^+$, Ar'^+ . Считается [5, 15], что первые два возникают из молекулярных ионов с зарядом на атоме азота кольца пиридилметилиденовой группировки (схема 2, ион *i* и Py⁺ на примере соединения **1a**). Аналогично можно полагать, что ионы $[M-Ar]^+$ и Ar'^+ образуются из молекулярного иона *f* (схема 2, ион *j* и Py⁺ для альдимина **1a**). Во всех случаях интенсивность сигнала Ar'^+ выше, чем у Ar^+ . Возможно это свидетельствует о большей вероятности локализации заряда на атоме азота кольца пиридилазочасти молекул, чем на пиридилметиновой группировке.

Интересно сопоставить наши результаты с единственным имеющимся в литературе масс-спектром пиридилазопиридилметина, конкретно 4-пиридилметилиден-4-аминопиридина [14], m/z (I, %): 183 (100), 182 (35), 156 (1), 155 (2), 105 (16), 79 (17), 78 (29). В нем практически отсутствует фрагментация, характерная для иминов **1а–16а**, обусловленная наличием в последних азометиновой группы в *орто*-положении одного или обоих пиридиновых колец.

Рентгеноструктурный анализ аминалей 1b и 6b

С целью определения структуры новых гетероциклических аминалей в настоящей работе кристаллизацией соединений N,N'-2-пиридилметилиденбис-2-аминопиридина (1b) и N,N'-3-пиридилметилиденбис-2-амино-3метилпиридина (6b) из смеси бензол-гексан, 1:1, или диэтилового эфира, соответственно, были получены монокристаллы и проведено их рентгеноструктурное исследование. На рис. 1, 2 представлены пространственные модели молекул соединенй 1b и 6b с обозначением атомов. В табл. 5 и 6 даны длины связей и значения валентных углов в молекулах 1b и 6b. Их структуры стабилизируются водородными связями: двумя межмолекулярными для 1b, а также внутримолекулярной и межмолекулярной для 6b. Параметры водородных связей приведены в табл. 7.

Рис. 1. Пространственная модель молекулы соединения 1b

Благодаря внутримолекулярной связи N(2b)-H(2b···N(1a) в молекуле 6b образуется еще один шестичленный цикл N(1a)C(2a)N(2a)C(7)N(2b)H(2b), который имеет конформацию уплощенного кресла; выходы атомов N(1a) и C(7) из плоскости C(2a)N(2a)N(2b)H(2b) равны 0.692(1) и 0.458(2) Å соответственно. Двугранный угол между средней плоскостью данного шестичленного цикла и плоскостью пиридинового кольца N(1a)C(2a)···C(6a) составляет 31.62(6)°. В соединении 1b внутримолекулярная водородная связь, по крайней мере, в кристаллической структуре отсутствует, в связи с чем дополнительный цикл не образуется. Поэтому, в

Рис. 2. Пространственная модель молекулы соединения 6b

Связь	d, Å		Chart	d, Å	
	1b	6b	Связь	1b	6b
					4
N(1)–C(2)	1.333(2)	1.335(3)	C(5a)–C(4a)	1.375(3)	1.365(5)
C(2)–C(3)	1.388(2)	1.378(3)	C(6a)C(5a)	1.360(3)	1.361(5)
C(3)C(4)	1.385(3)	1.377(3).	N(1a)-C(6a)	1.356(2)	1.346(4)
C(5)-C(4)	1.359(3)	1.383(4)	C(3a)-C(7a)		1.486(4)
C(5)C(6)	1.376(3)	1.351(4)	N(2b)C(7)	1.458(2)	1.454(3)
N(1)-C(6)	1.339(2)	1.331(4)	C(2b)N(2b)	1.371(2)	1.394(3)
C(7)–C(2)	1.512(2)	-	C(2b)–N(1b)	1.330(2)	1.323(3)
C(7)C(3)	- 1	1.520(3)	C(2b)C(3b)	1.394(2)	1.404(3)
N(2a)C(7)	1.449(2)	1.451(3)	C(3b)-C(4b)	1.376(3)	1.378(4)
N(2a)C(2a)	1.377(2)	1.362(3)	C(4b)C(5b)	1.369(3)	1.373(5)
C(2a)N(1a)	1.343(2)	1.335(3)	C(6b)-C(5b)	1.365(3)	1.351(5)
C(2a)C(3a)	1.398(3)	1.415(3)	N(1b)-C(6b)	1.350(3)	1.345(3)
C(4a)C(3a)	1.362(3)	1.371(4)	C(3b)C(7b)	-	1.492(4)

Длины связей (d) в молекулах соединений 1b и 6b

Таблица б

Значения валентных углов (0) в молекулах соединений 1b и 6b

	Ө, град.		Vror	θ, град.	
Угол	1b			1b	6b
C(7)-N(2a)-C(2a)	122.68(14)	123.2(2)	N(1)-C(2)-C(7)	115.70(15)	
N(2b)–C(2b)–N(1b)	118.51(15)	116.7(2)	C(2a)C(3a)C(4a)	118.9(2)	116.8(3)
C(3)-C(2)-N(1)	122.6(2)	116.7(2)	C(2a)C(3a)C(7a)		121.3(2)
N(2b)C(2b)C(3b)	119.3(2)	116.7(2)	C(7)-C(2)-C(3)	121.7(2)	1
N(2a)–C(7)–N(2b)	112.20(14)	114.7(2)	C(4a)C(3a)C(7a)	-	121.9(3)
N(1b)-C(2b)-C(3b)	122.2(2)	123.6(2)	C(2b)-C(3b)-C(4b)	118.7(2)	116.2(3)
N(2a)C(7)C(3)		113.6(2)	N(1a)C(6a)C(5a)	124.3(2)	124.0(3)
C(2b)–N(2b)–C(7)	123.6(2)	118.9(2)	N(1b)-C(2b)-C(3b)		123.6(2)
N(2b)C(7)C(3)	. *	109.5(2)	N(1b)-C(6b)-C(5b)	124.0(2)	123.7(3)
C(2b)–N(1b)–C(6b)	117.3(2)	117.4(2)	N(2b)-C(2b)-C(3b)		116.7(2)
C(2)-N(1)-C(6)	117.8(2)	116.5(2)	C(6a)C(5a)C(4a)	118.2(2)	118.5(3)
C(2a)-N(1a)-C(6a)	116.4(2)	116.7(2)	C(6)-C(5)-C(4)	118.8(2)	119.6 <u>(</u> 3)
N(2a)-C(7)-C(2)	107.49(13)	•	C(2b)-C(3b)-C(7b)		121.4(2)
N(2a)C(2a)N(1a)	115.2(2)	117.2(2)	C(5a)C(4a)C(3a)	119.8(2)	120.7(3)
N(2b)C(7)C(2)	110.66(13)		C(4b)–C(3b)–C(7b)		122.5(2)
N(2a)-C(2a)-C(3a)	122.4(2)	119.6(2)	C(3b)-C(4b)-C(5b)	119.6(2)	121.0(3)
N(1a)-C(2a)-C(3a)	122.4(2)	123.2(2)	C(3)–C(4)–C(5)	119.6(2)	119.0(2)
C(2)-C(3)-C(7)		120.0(2)	C(6b)-C(5b)-C(4b)	118.1(2)	118.1(3)
C(2)-C(3)-C(4)	118.2(2)	116.7(2)	N(1)-C(6)-C(5)	123.1(2)	123.1(2)
C(7)C(3)C(4)		123.2(2)			

Таблица 7

Водородная связь D-HA*	DA, Å	D–H, Å	HA, Å	DНА, град.	Позиция атома А	
Молекула 1b						
N(2A) – H(2A) N(1B)	3.241(2)	0.84(1)	2.43(1)	162(1)	-x, y, 1/2-z	
N(2B) – H(2B) N(1)	3.139(2)	0.84(1)	2.30(1)	176(1)	-x, y, 1/2-z	
Молекула 6b						
N(2A) – H(2A) N(1)	3.062(2)	0.91(1)	2.21(1)	157(1)	x, 1/2-y, 1/2+z	
N(2B) – H(2B) N(1A)	2.814(2)	1.03(1)	1.98(1)	136(2)	<i>x</i> , <i>y</i> , <i>z</i>	

Параметры водородных связей в структурах 1b и 6b

* D – атом-донор. А – атом-акцептор.

отличие от **6b**, в молекуле **1b** атом C(7) наряду с N(2a) лежит почти в плоскости пиридинового цикла N(1a)C(2a)···C(6a). Аналогично, атомы C(7) и N(2b) практически копланарны плоскости другого пиридинового кольца молекулы **1b**. В целом, соответствующие длины связей и валентные углы в структурах **1b** и **6b** различаются незначительно.

Таблица 8

37	Соединение		
характеристика	1b	6b	
Формула	C ₁₆ H ₁₅ N ₅	C ₁₈ H ₁₉ N ₅	
Молекулярная масса	277.331	305.385	
Цвет	Бесцветный	Бесцветный	
Размер, мм	0.15×0.20×0.30	0.25×0.25×0.40	
Кристаллическая сингония	Ромбическая	Моноклинная	
Пространственная группа	P bcn	P 21/c	
Параметры решетки			
<i>a</i> , Å	16.8731(4)	13.8177(9)	
<i>b</i> , Å	8.6875(2)	8.9000(5)	
<i>c</i> , Å	19.6167(7)	13.2056(6)	
β, град.	90.0(0)	93.704(2)	
Объем элементарной ячейки, V, Å ³	2875.5(1)	1620.6(2)	
Число молекул в элементарной ячейке, Z	8	4	
Плотность (вычисленная), d, г/см ³	1.281	1.252	
Коэффициент поглощения, µ, мм ⁻¹	0.08	0.08	
Число независимых рефлексов	3758	3541	
Число рефлексов с $l > 2 \sigma(l)$	1695	2096	
Число уточняемых параметров	190	244	
Фактор расходимости, R	0.055	0.049	

Кристаллографические данные для соединений 1b и 6b

Атом	x	<i>y</i>	Ζ	Ueq
N(1)	0.42439(13)	-0.2148(2)	0.20624(12)	0.0583(12)
C(2)	0.45328(13)	-0.1918(3)	0.14382(14)	0.0469(12)
C(3)	0.45919(16)	-0.3088(3)	0.09594(15)	0.0606(15)
C(4)	0.43602(19)	-0.4556(3)	0.1149(2)	0.0773(19)
C(5)	0.40909(19)	-0.4810(3)	0.1792(2)	0.0755(18)
C(6)	0.40374(18)	-0.3584(3)	0.22342(17)	0.0680(17)
C(7)	0.47900(13)	-0.0289(3)	0.12800(13)	0.0484(13)
N(1a)	0.65064(12)	0.1558(2)	0.20673(12)	0.0570(12)
C(2a)	0.59426(14)	0.1332(3)	0.15947(14)	0.0483(13)
C(3a)	0.58264(16)	0.2344(3)	0.10499(16)	0.0618(15)
C(4a)	0.63113(19)	0.3589(3)	0.09881(18)	0.0711(18)
C(5a)	0.68991(18)	0.3835(3)	0.14615(18)	0.0704(18)
C(6a)	0.69760(16)	0.2810(3)	0.19810(17)	0.0653(16)
N(2a)	0.54893(12)	0.0030(2)	0.16844(12)	0.0544(11)
N(1b)	0.39518(13)	0.1429(2)	0.02821(12)	0.0587(13)
C(2b)	0.36869(13)	0.1438(2)	0.09206(14)	0.0454(12)
C(3b)	0.29707(15)	0.2128(3)	0.11006(16)	0.0588(15)
C(4b)	0.25470(17)	0.2896(3)	0.06070(19)	0.0696(17)
C(5b)	0.28199(17)	0.2919(3)	-0.0050(2)	0.0730(18)
C(6b)	0.35075(18)	0.2154(4)	-0.01914(16)	0.0720(18)
N(2b)	0.41499(13)	0.0793(2)	0.14187(11)	0.0545(12)

Координаты неводородных атомов и их тепловые параметры в молекуле 1b

Таблица 10

Координаты неводородных атомов и их тепловые параметры в молекуле 6b

Атом	x	<i>y</i>	Z	$U_{\rm eq}$
N(1)	0.12801(17)	0.2435(3)	0.41772(15)	0.0677(12)
C(2)	0.18138(18)	0.2241(3)	0.33799(17)	0.0572(12)
C(3)	0.15682(14)	0.1320(2)	0.25647(14)	0.0414(9)
C(4)	0.07218(16)	0.0512(3)	0.26030(16)	0.0528(11)
C(5)	0.01641(19)	0.0694(4)	0.3427(2)	0.0657(14)
C(6)	0.04586(18)	0.1655(3)	0.41769(18)	0.0645(14)
C(7)	0.21855(15)	0.1311(2)	0.16525(14)	0.0420(9)
N(1a)	0.24153(14)	-0.1793(2)	0.17307(13)	0.0517(10)
C(2a)	0.20405(14)	-0.1207(2)	0.08613(14)	0.0410(9)
C(3a)	0.18466(16)	-0.2064(3)	-0.00311(17)	0.0521(11)
C(4a)	0.2100(2)	-0.3554(3)	0.0015(3)	0.0675(15)
C(5a)	0.2504(2)	-0.4164(3)	0.0891(3)	0.0771(17)
C(6a)	0.26364(19)	-0.3265(3)	0.1723(2)	0.0659(14)
N(2a)	0.18347(13)	0.0291(2)	0.08546(13)	0.0439(8)
C(7a)	0.1371(2)	-0.1385(4)	0.0963(2)	0.0780(17)
N(1b)	0.36759(15)	0.2487(2)	0.06266(16)	0.0604(11)
C(2b)	0.39126(16)	0.1481(2)	0.13379(15)	0.0448(10)
C(3b)	0.48389(16)	0.0838(3)	0.14811(17)	0.0512(11)
C(4b)	0.55190(18)	0.1325(4)	0.08368(19)	0.0650(14)
C(5b)	0.5292(2)	0.2393(4)	0.0110(2)	0.0745(16)
C(6b)	0.4377(2)	0.2936(3)	0.0033(2)	0.0745(16)
N(2b)	0.31991(13)	0.1110(2)	0.19940(12)	0.0473(9)
C(7b)	0.5061(2)	-0.0319(4)	0.2280(2)	0.0713(17)

Спектры ЯМР ¹Н регистрировали на спектрометре фирмы Varian Mercury (200 МГц) в CDCl₃, ДМСО-d₆ или C₆D₆, внутренний стандарт ТМС. Масс-спектры получены на хромато-масс-спектрометре НР 6890 GC/MS, оборудованном капиллярной колонкой HP-5 MS (30.0 м \times 250 мкм \times 0.25 мкм), при программировании температуры от 70 до 260 °C (10 °С/мин). Бензол перед использованием перегоняли над CaH₂. Реагенты, использованные в работе, были получены от фирм Fluka, Merck и Acros. Пиридинальдегиды очищали вакуумной перегонкой, а 2-аминопиридины перекристаллизовывали из бензола, после чего их свойства соответствовали литературным данным. В работе применяли молекулярные сита 4A (VEB Laborchemie Apolda).

Рентгеноструктурные исследования. Бесцветные монокристаллы соединений 1b и 6b получают медленной кристаллизацией из смеси бензол–гексан, 1:1, или диэтилового эфира соответственно. Исследования структуры проводят при 25 °С на автоматическом дифрактометре Nonius KappaCCD (МоК_{α}-излучение, 2 θ_{max} 55°). Основные кристаллографические данные, а также характеристики расшифровки и уточнения структур даны в табл. 8. Структуры расшифрованы прямыми методами с помощью программ [27, 28] и уточнены МНК в полноматричном анизотропном приближении [29]. Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры даны в табл. 9, 10.

Общая методика синтеза азометинов 1а–16а. В колбу помещают 10 мл сухого бензола и по 5 ммоль исходных альдегида и амина, затем 5 г свежепрокаленных молекулярных сит и кипятят с обратным холодильником под аргоном на водяной бане в течение 5 ч. После такой обработки происходит практически полная конверсия исходных альдегида и амина и образуется соответствующий альдимин, о чем свидетельствуют данные анализа реакционных смесей методом ГЖХ–МС. По окончании реакции сита отфильтровывают, промывают их бензолом, фильтрат упаривают при пониженном давлении при 40 °С (15 мм) и удаляют незначительные остатки исходных веществ в вакууме при 45–50 °С (0.1 мм). Полученные продукты, представляют собой кристаллические соединения (светло-желтые или белые). Их характеристики (табл. 1–3) соответствуют предполагаемой структуре.

Синтез аминалей 5b-7b, 14b, 16b. В колбу помещают 10 мл сухого бензола, 5 ммоль исходного альдегида и 10 ммоль амина, затем 5 г свежепрокаленных молекулярных сит. Реакции проводят при комнатной температуре в течение 20 ч. Образовавшиеся осадки отделяют от сит (6b, 14b, 16b дополнительно очищают эфиром или бензолом). Соединения получают с выходом 49–58%.

Синтез аминалей 1b-4b. После проведения реакции конденсации при 20 °С в течение 20 ч выпадение осадков не происходило. Сита отфильтровывают, фильтрат выдерживают при комнатной температуре еще 48 ч. Образовавшиеся осадки отфильтровывают, очищают эфиром и получают аминали с выходом 56-67%.

Синтез аминаля 8b. Реакцию проводят как указано выше, а затем кипятят смесь в течение 5 ч. После охлаждения и выдерживания в холодильнике образовавшийся осадок очищают эфиром и гексаном (выход 45%).

Синтез аминалей 9b-12b. Конденсации проводят в криостате при температуре 15 °C (40 ч). После удаления сит и упаривания бензола образовавшиеся 11b, 12b очищают эфиром. Остатки, полученные при синтезе 9b и 10b, растворяют в бензоле и выдерживают при комнатной температуре в течение 60 ч. Затем упаривают и 9b очищают эфиром, а 10b – эфиром и гексаном

Синтез аминалей 13b, 15b. В колбу помещают 10 мл сухого бензола, 5 ммоль альдегида 4 и 5 ммоль амина, затем 5 г свежепрокаленных молекулярных сит. Реакции проводят при комнатной температуре в течение 20 ч. Образовавшиеся осадки отфильтровывают и отделяют от сит.

Авторы благодарны Латвийскому совету по науке за финансирование работы (грант № 181).

СПИСОК ЛИТЕРАТУРЫ

- 1. K. Hayes, G. Gever, J. Orcutt, J. Am. Chem. Soc., 72, 1205 (1950).
- A. Kleemann, J. Engel, B. Kutscher, D. Reichert, *Pharmaceutical Substances*, Thieme, Stutgart, New York, 1999, 1174.
- 3. Y. Baba, H. Hirakawa, Chem. Lett., 1905 (1992).
- 4. D. Grasso, G. Buemi, S. Fasone, C. Gandolfo, Croat. chem. acta, 54, 85 (1981).
- 5. E. Schumacher, R. Taubenest, Helv. chim. acta, 49, 1455 (1966).
- 6. H. H. Perkampus, B. Behjati, J. Heterocycl. Chem., 511 (1974).
- E. K. Jeevaraj, T. K. Krishnamurthy, V. S. Srinivasan, N. Venkatasubramanian, Indian J. Chem., 21B, 597 (1982).
- 8. M. Wiebcke, D. Mootz, Acta Crystallogr., B38, 2008 (1982).
- 9. E. Denecke, K. Müller, Th. Bluhm, Org. Magnetic Res., 18, No. 2, 68 (1982).
- 10. K. Maeda, E. Fischer, Helv. chim. acta, 66, 1961 (1983).
- 11. E. C. Alyea, G. Ferguson, V. K. Jain, Acta Crystallogr., C50, 854 (1994).
- 12. H. Brunner, B. Reiter, G. Riepl, Chem. Ber., 117, 1330 (1984).
- 13. A. Mishnev, I. Iovel, J. Popelis, I. Vosekalna, E. Lukevics, J. Organomet. Chem., 608, 1 (2000).
- 14. J. E. Rockley, L. A. Summers, Austral. J. Chem., 33, 1397 (1980).
- 15. C. S. Barnes, E. J. Halbert, R. J. Goldsack, J. G. Wilson, Austral. J. Chem., 26, 1031 (1973).
- 16. Б. П. Луговкин, в кн. Химия гетероциклических соединений, Сб. 1, Азотсодержащие гетероциклы, под ред. С. Гиллера, Зинатне, Рига, 1967, 224.
- 17. K. Ramesh, R. N. Mukherjee, Indian J. Chem., 30A, 1057 (1991).
- 18. M. T. Garland, J. Manzur, Y. Moreno, E. Spodine, R. Baggio, O. Gonzalez, Acta Crystallogr., C52, 854 (1996).
- 19. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, 324 (2000).
- 20. И. Иовель, Л. Голомба, С. Беляков, Э. Лукевиц, ХГС, 778 (2000).
- 21. И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц, ХГС, 890 (2000).
- I. Iovel, L. Golomba, S. Belyakov, A. Kemme, E. Lukevics, Appl. Organometal. Chem., 15, 733 (2001).
- 23. I. A. Kaye, I. C. Kogon, Rec. trav. chim., 71, 309 (1952).
- 24. J. Bödeker, K. Courault, J. prakt. Chem., 322, 336 (1980).
- 25. A. C. Dash, M. Patra, B. Dash, P. K. Mahapatra, Indian J. Chem., 22A, 944 (1983).
- 26. D. J. Elias, R. G. Gillis, Austral. J. Chem., 19, 251 (1966).
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G Moliterni, R. Spagna, J. Appl. Crystallogr., 32, 115 (1999).
- 28. P. T. Beurskens, G. Beurskens, W. P. Bosman, R. S. de Gelder, S. García-Granda, R. O. Gould, J. M. M. Smits, *The DIRDIF96 program system, Technical Report of the Crystallography Laboratory*, Univ. of Nijmegen, The Netherlands, 1996.
- 29. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus Computer Program for the Solution and Refinement of Crystal Structures.* Bruker Nonius, The Netherlands, MacScience, Jpn & The Univ. of Glasgow, 1999.

Латвийский институт органического синтеза, Рига LV-1006 e-mail: iovel@osi.lv Поступило в редакцию 18.03.2002