### С. Г. Кривоколыско, Э. Б. Русанов<sup>а</sup>, В. П. Литвинов<sup>6</sup>

# СТЕРЕОСЕЛЕКТИВНЫЕ МЕТОДЫ СИНТЕЗА И СТРУКТУРА 4-БЕНЗОИЛ-1-БЕНЗОИЛАМИНО-1-МЕТИЛТИО-3-(2-ХЛОРФЕНИЛ)-2-ЦИАНОБУТ-1-ЕНА

На основе взаимодействия 6-гидрокси-5-бензоил-6-фенил-4-(2-хлорфенил)-3-циано-1,4,5,6-тетрагидропиридин-2-тиолатов N-метилморфолиния и пиперидиния с метилиодидом разработаны стереоселективные методы синтеза 4-бензоил-1-бензоиламино-1-метилтио-3-(2-хлорфенил)-2-цианобут-1ена. Строение последнего установлено рентгеноструктурным методом.

**Ключевые слова:** бут-1-ен, тетрагидропиридин-2-тиолаты, метилирование, рентгеноструктурный метод.

Ранее было показано, что конденсация 2-хлорбензальдегида с цианотиоацетамидом и дибензоилметаном в присутствии N-метилморфолина или пиперидина протекает с образованием замещенных тетрагидропиридин-2-тиолатов **1**, **2** [1]. При этом установлено, что соединение **1** в условиях реакции превращается в 4-бензоил-1-бензоиламино-3-(2-хлорфенил)-2-цианобут-1-ен-1-тиолат пиперидиния, при метилировании которого получен соответствующий 1-метилтиобут-1-ен **3** в виде смеси двух конформационных изомеров.

При кипячении соли **1** с метилиодидом нами получено соединение **3** в виде индивидуального конформера табл. 1 и рис. 1.



Геометрические параметры молекулы **3** весьма близки по значению к соответствующим параметрам, найденным ранее для S-этилированного изоструктурного гомолога молекулы **3**[1]. Так, разница между длинами 1369



*Рис. 1.* Общий вид молекулы **3** с нумерацией атомов. Для упрощения атомы H (за исключением H<sub>(1N)</sub>, участвующего в образовании внутримолекулярной водородной связи) не показаны

#### Таблица 1

| Связь                              | d, Å     | Угол                                                   | ω, град. |
|------------------------------------|----------|--------------------------------------------------------|----------|
| S <sub>(1)</sub> –C <sub>(1)</sub> | 1.764(3) | C <sub>(1)</sub> -S <sub>(1)</sub> -C <sub>(19)</sub>  | 103.8(2) |
| S(1)-C(19)                         | 1.772(4) | $C_{(20)} - N_{(1)} - C_{(1)}$                         | 125.0(3) |
| O(1)-C(5)                          | 1.221(3) | C(20)-N(1)-H(1N)                                       | 119(2)   |
| O(2)-C(20)                         | 1.221(4) | C(1)-N(1)-H(1N)                                        | 115(2)   |
| N(1)-C(20)                         | 1.372(4) | $C_{(2)} - C_{(1)} - N_{(1)}$                          | 119.6(3) |
| $N_{(1)}-C_{(1)}$                  | 1.404(4) | $C_{(2)} - C_{(1)} - S_{(1)}$                          | 119.7(2) |
| N(1)-H(1N)                         | 0.84(3)  | $N_{(1)} - C_{(1)} - S_{(1)}$                          | 120.7(3) |
| $C_{(1)}-C_{(2)}$                  | 1.345(4) | $C_{(1)} - C_{(2)} - C_{(6)}$                          | 118.0(3) |
| C(2)-C(6)                          | 1.437(4) | $C_{(1)} - C_{(2)} - C_{(3)}$                          | 126.2(3) |
| $C_{(2)} - C_{(3)}$                | 1.537(4) | $C_{(6)} - C_{(2)} - C_{(3)}$                          | 115.8(3) |
| $C_{(3)}-C_{(7)}$                  | 1.531(4) | $C_{(7)} - C_{(3)} - C_{(4)}$                          | 112.9(3) |
| C(3)-C(4)                          | 1.536(4) | $C_{(7)} - C_{(3)} - C_{(2)}$                          | 109.1(2) |
| $C_{(4)} - C_{(5)}$                | 1.511(4) | $C_{(4)} - C_{(3)} - C_{(2)}$                          | 111.5(2) |
| C(5)-C(13)                         | 1.495(4) | $C_{(5)} - C_{(4)} - C_{(3)}$                          | 113.0(3) |
|                                    |          | $O_{(1)} - C_{(5)} - C_{(13)}$                         | 120.7(3) |
|                                    |          | $O_{(1)} - C_{(5)} - C_{(4)}$                          | 121.0(3) |
|                                    |          | $C_{(13)} - C_{(5)} - C_{(4)}$                         | 118.4(3) |
|                                    |          | $O_{(2)} - C_{(20)} - N_{(1)}$                         | 121.3(4) |
|                                    |          | $O_{(2)} - C_{(20)} - C_{(21)}$                        | 122.7(3) |
|                                    |          | N <sub>(1)</sub> -C <sub>(20)</sub> -C <sub>(21)</sub> | 116.0(3) |

Основные длины связей (d) и валентные углы (w) в молекуле соединения 3



Рис. 2. Кристаллическая упаковка соединения 3 (проекция ас)

эквивалентных связей в этих молекулах составляет лишь 0.1–7.0  $\sigma$  (средн. 2.4  $\sigma$ ), а между эквивалентными валентными углами – 0.1–5.0  $\sigma$  (средн. 1.6  $\sigma$ ). Обе молекулы имеют практически одинаковую конформацию: соответствующие торсионные углы совпадают в пределах 8.5°. В молекуле **3** внутримолекулярная водородная связь O<sub>(1)</sub>...H<sub>(1)</sub>–N<sub>(1)</sub> замыкает восьмичленный цикл O<sub>(1)</sub>H<sub>(1)</sub>N<sub>(1)</sub>C<sub>(1-5)</sub>. Геометрические параметры этой связи (O<sub>(1)</sub>...N<sub>(1)</sub> 2.860(4), O<sub>(1)</sub>...H<sub>(1N)</sub> 2.11(3), N<sub>(1)</sub>–H<sub>(1N)</sub> 0.84(3) Å, угол O<sub>(1)</sub>H<sub>(1N)</sub>N<sub>(1)</sub> 148(2)°) соответствуют связи H средней прочности, а расстояние O<sub>(1)</sub>...N<sub>(1)</sub> близко к среднестатистическому для связей N–H…O значению 2.89 Å [2, 3]. Сокращенных межмолекулярных контактов в кристалле соединения **3** нет. Кристаллическая упаковка его показана на рис. 2.



При кипячении ентиолата **1** в этаноле и последующем подкислении образовавшегося раствора соляной кислотой получен тиол **4** в виде одного диастереомера. Его алкилирование метилиодидом протекает региоселек-1371 тивно, при этом образуется указанный конформер соединения **3**. Последний получен также при взаимодействии соли **2** с метилиодидом в присутствии КОН по известной методике [1].

Следует отметить, что при метилировании тиолата 2 в кипящем этаноле раскрытия тетрагидропиридинового кольца не наблюдается, а в результате дегидратации и дегидрирования образуется соответствующий замещенный пиридин 5.

### Таблица 2

| Атом              | x        | у         | z        | $U_{ m 3KB}$ |
|-------------------|----------|-----------|----------|--------------|
| Cl <sub>(1)</sub> | 3117(2)  | -6068(1)  | 2142(1)  | 98(1)        |
| S <sub>(1)</sub>  | 6111(1)  | -1419(1)  | 2080(1)  | 77(1)        |
| O(1)              | -53(3)   | -305(3)   | 2274(1)  | 67(1)        |
| O(2)              | 4974(4)  | -3278(4)  | 844(2)   | 110(1)       |
| N(1)              | 2946(4)  | -1943(4)  | 1566(2)  | 58(1)        |
| N(2)              | 5082(4)  | -2088(3)  | 3955(2)  | 72(1)        |
| C <sub>(1)</sub>  | 3991(4)  | -1992(4)  | 2172(2)  | 53(1)        |
| C(2)              | 3356(4)  | -2446(4)  | 2832(2)  | 48(1)        |
| C <sub>(3)</sub>  | 1644(4)  | -3179(4)  | 2999(2)  | 49(1)        |
| C <sub>(4)</sub>  | 299(4)   | -1991(4)  | 3390(2)  | 54(1)        |
| C(5)              | -318(4)  | -413(4)   | 2927(2)  | 51(1)        |
| C <sub>(6)</sub>  | 4349(4)  | -2236(4)  | 3448(2)  | 51(1)        |
| C <sub>(7)</sub>  | 2056(4)  | -4877(4)  | 3422(2)  | 50(1)        |
| C <sub>(8)</sub>  | 2745(4)  | -6257(4)  | 3071(2)  | 60(1)        |
| C <sub>(9)</sub>  | 3201(5)  | -7788(4)  | 3435(2)  | 73(1)        |
| C(10)             | 2960(5)  | -7990(4)  | 4169(2)  | 76(1)        |
| C(11)             | 2278(5)  | -6658(5)  | 4535(2)  | 71(1)        |
| C(12)             | 1834(4)  | -5129(4)  | 4161(2)  | 61(1)        |
| C(13)             | -1261(4) | 1015(4)   | 3288(2)  | 52(1)        |
| C(14)             | -1627(5) | 2520(4)   | 2884(2)  | 71(1)        |
| C(15)             | -2471(5) | 3881(5)   | 3205(3)  | 83(1)        |
| C(16)             | -2953(5) | 3730(5)   | 3914(3)  | 80(1)        |
| C(17)             | -2623(5) | 2250(5)   | 4318(2)  | 77(1)        |
| C(18)             | -1767(4) | 891(4)    | 4005(2)  | 64(1)        |
| C(19)             | 5943(6)  | 136(5)    | 1345(2)  | 93(1)        |
| C(20)             | 3459(5)  | -2675(5)  | 945(2)   | 71(1)        |
| C(21)             | 2054(5)  | -2706(4)  | 414(2)   | 66(1)        |
| C(22)             | 2530(6)  | -3472(5)  | -197(2)  | 89(1)        |
| C(23)             | 1317(9)  | -3591(7)  | -704(2)  | 112(2)       |
| C(24)             | -378(9)  | -2934(7)  | -610(3)  | 122(2)       |
| C(25)             | -889(7)  | -2217(8)  | -7(3)    | 146(2)       |
| C(26)             | 321(6)   | -2078(7)  | 503(3)   | 118(2)       |
| H <sub>(1N)</sub> | 1879(46) | -1601(42) | 1636(18) | 70(12)       |

| Координаты атомов (×10 <sup>*</sup> ) и эквивалентные изотропные тепловые параметры $U_{aur}$ (Å <sup>2</sup> × 10 <sup>3</sup> ) в структуре. 3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------|

Спектры ЯМР <sup>1</sup>Н сняты на приборе Bruker AM300 (300 МГц) в ДМСО-d<sub>6</sub> (внутренний стандарт ТМС), ИК спектры – на спектрофотометре ИКС-29 в вазелиновом масле. Элементный анализ проводили на приборе Perkin-Elmer C, H, N-analyser. Контроль за ходом реакции и индивидуальностью веществ осуществляли с помощью ТСХ на пластинках Silufol UV-254, в системе ацетон–гексан, 3 : 5. Температуры плавления определяли на столике Кофлера.

Рентгеноструктурное исследование монокристалла соединения 3 проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius САD-4 ( $\lambda$ Мо $K_{\alpha}$ -излучение, графитовый монохроматор, отношение скоростей сканирования  $\omega/2\theta$  1.2,  $\theta_{\max}$  24°, сегмент сферы  $0 \le h \le 8$ ,  $-9 \le k \le 9$ ,  $-21 \le l \le 21$ ). Для определения параметров элементарной ячейки и матрицы ориентации кристалла соединения 3 с линейными размерами  $0.24 \times 0.27 \times 0.44$  мм было использовано 22 рефлекса с  $12 \le \theta \le 13^\circ$ . Всего было собрано 3947 отражений, из которых 3589 являются независимыми (*R*-фактор усреднения 0.022). Кристаллы соединения 3 триклинные, a = 7.726(1), b = 8.199(2), c = 18.598(4) Å,  $\alpha = 84.51(2)$ ,  $\beta = 88.05(1)$ ,  $\gamma = 82.02^{\circ}$ , V = 1161.1(5) Å<sup>3</sup>, Z = 2,  $d_{\text{выч}} = 1.32 \, \text{г/см}^3, \, \mu = 0.280 \, \text{мm}^{-1}, \, \text{F}(000) \, 480, \, \text{пространственная группа } P1 \, (\mathbb{N}_2 \, 2). \, \text{Структура}$ расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL93 [4, 5]. В уточнении использовано 2273 отражения с  $I > 2\sigma(I)$  (293 уточняемых параметра, число отражений на параметр 7.76, использована весовая схема  $\omega = 1/[\sigma^2(Fo^2) + \sigma^2)$  $(0.0483P)^2 + 0.3121P$ ], где  $P = (Fo^2 + 2Fc^2)/3$ , отношение максимального/среднего сдвига к погрешности в последнем цикле 0.004/0.000). Была включена поправка на аномальное рассеяние, поправки на поглощение не вводились. Все атомы водорода выявлены объективно из разностного синтеза электронной плотности, однако все они (за исключением атома H<sub>(1N)</sub>, уточненного изотропно) были включены в расчет с фиксироваными тепловыми и позиционными параметрами. Окончательные значения факторов расходимости R1(F) = 0.0511 и  $R_W(F^2) = 0.1059$ , GOF = 1.013. Остаточная электронная плотность из разностного ряда Фурье 0.18 и -0.20 e/Å<sup>3</sup>. Координаты атомов приведены в табл. 2.

**4-Бензоил-1-бензоиламино-1-метилтио-3-(2-хлорфенил)-2-цианобут-1-ен (3)**. А. Смесь 2.66 г (5 ммоль) соли **1** и 0.31 мл (5 ммоль) метилиодида в 15 мл 80% этанола кипятят 30 мин. Через 12 ч образовавшийся осадок отфильтровывают, промывают этанолом и гексаном, высушивают. Выход соединения **3** 1.27 г (55%).

Б. К суспензии 2.24 г (5 ммоль) тиола **4** в 15 мл этанола при перемешивании добавляют 2.8 мл (5 ммоль) 10% водного раствора КОН, а через 5 мин – 0.31 мл (5 ммоль) метилиодида. Через 5 ч образовавшийся осадок отфильтровывают, промывают этанолом и гексаном, высушивают. Выход соединения **3** 1.43 г (62%).

В. Соединение **3** получают по методике работы [1], используя соответственно 2.74 г (5 ммоль) соли **2**, 2.8 мл (5 ммоль) 10% водного раствора КОН и 0.31 мл (5 ммоль) метилиодида, с выходом 2.03 г (88%).

Т. пл. 153–155 °С. ИК спектр, v, см<sup>-1</sup>: 3289 (NH); 2207 (CN); 1687, 1710 (2CO). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д., *J* (Гц): 2.31 (3H, с, SMe); 3.81 (2H, м, C<sub>(4)</sub>H<sub>2</sub>); 4.84 (1H, д. д, <sup>3</sup>*J* = 5.2, <sup>3</sup>*J* = 8.8, C<sub>(3)</sub>H); 7.23–7.68 и 7.90–8.07 (14H, оба м, H аром.); 10.35 (1H, уш. с, NH). Найдено, %: С 67.91; H 4.43; N 6.21. C<sub>26</sub>H<sub>21</sub>ClN<sub>2</sub>O<sub>2</sub>S. Вычислено, %: С 67.74; H 4.59; N 6.08.

**4-Бензоил-1-бензоиламино-3-(2-хлорфенил)-2-цианобут-1-ен-1-тиол** (4). Раствор 2.66 г (5 ммоль) соли 1 в 15 мл этанола кипятят 30 мин и после охлаждения разбавляют 10% соляной кислотой. Через 12 ч образовавшийся осадок тиола **4** отфильтровывают, промывают этанолом и гексаном. Выход 1.18 г (53%). Т. пл. 249–251 °C. ИК спектр, v, см<sup>-1</sup>: 3480 (NH); 2190 (CN); 1650 (2CO). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д., J (Гц): 2.23–2.41 (2H, м,  $C_{(4)}H_2$ ); 4.82 (1H, д. д.  ${}^3J$  = 4.6,  ${}^3J$  = 7.8,  $C_{(3)}$ H); 7.15–7.66 и 8.16 (14H, оба м, H аром.); 12.36 (1H, уш. с, NH). Найдено, %: С 67.33; H 4.25; N 6.42.  $C_{25}H_{19}CIN_2O_2S$ . Вычислено, %: С 67.18; H 4.28; N 6.27.

**5-Бензоил-2-метилтио-6-фенил-4-(2-хлорфенил)-3-цианопиридин (5).** Смесь 2.74 г (5 ммоль) соли **2** и 0.31 мл (5 ммоль) метилиодида в 15 мл 80% этанола кипятят 1 ч. Через 12 ч образовавшийся осадок цианопиридина **5** отфильтровывают, промывают этанолом и

гексаном. Выход 1.48 г (67%). Т. пл. 213–215 °С. ИК спектр, v, см<sup>-1</sup>: 2220 (СN); 1667 (СО). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д.: 2.76 (3H, c, SMe); 7.33–7.57 (14H, м, H аром.). Найдено, %: С 71.03; H 3.81; N 6.54. С<sub>26</sub>H<sub>17</sub>ClN<sub>2</sub>OS. Вычислено, %: С 70.82; H 3.89; N 6.35.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99–03–32965).

## СПИСОК ЛИТЕРАТУРЫ

- 1. С. Г. Кривоколыско, В. Д. Дяченко, А. Н. Чернега, В. П. Литвинов, ХГС, 790 (2001).
- 2. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B 37, 1363 (1981).
- 3. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Acta Crystallogr., B 51, 1004 (1995).
- 4. G. M. Sheldrick, *SHELXS-86*. Program for the Solution of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1986.
- 5. G. M. Sheldrick, *SHELXL-93*. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1993.

Восточно-украинский государственный университет, Луганск 91034, Украина e-mail: ksg@lep.lg.ua

<sup>a</sup>Институт органической химии НАН Украины, Киев-94, 02094 e-mail: ioch kiev@ukrpack.net

<sup>6</sup>Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: vpl@cacr.ioc.ac.ru Поступило в редакцию 08.02.2000