

Параметры мультиплетной структуры спектров ЯМР [¹⁵N]индола и их связь с электронной структурой молекулы

Алла К. Шестакова¹, Владислав В. Станишевский², Вячеслав А. Чертков²*

¹ Государственный научный центр РФ Акционерное общество "Государственный научноисследовательский институт химии и технологии элементоорганических соединений", и. Энтузиастов, 38, Москва 105118, Россия; e-mail: alshestakova@yandex.ru

² Московский государственный университет им. М. В. Ломоносова, химический факультет, Ленинские горы, д. 1, стр. 3, Москва 119991, Россия e-mail: chertkov@org.chem.msu.ru

Поступило 6.09.2024 Принято после доработки 18.10.2024

 $1. \text{ NMR spectrum} J_{HH} + {}^{n}J_{HH} + {}^{n}J_{HN}$

Расшифрована тонкая мультиплетная структура спектра ЯМР ¹Н и протонно-связанного спектра ЯМР ¹⁵N индола. С высокой точностью получен полный набор КССВ ¹Н–¹Н и ¹Н–¹⁵N для [¹⁵N]индола в растворе CD₃CN. Проведенные неэмпирические квантово-химические расчеты КССВ в рамках метода DFT/B3LYP показали высокий уровень соответствия расчетных значений экспериментальным. Полученные данные могут служить надежной отправной точкой при установлении структуры новых азотсодержащих ароматических гетероциклов.

Ключевые слова: $[^{15}N]$ индол, квантово-химические расчеты КССВ, КССВ $^{1}H-^{1}H$ и $^{1}H-^{15}N$, расшифровка мультиплетной структуры спектров ЯМР.

Индольный фрагмент входит в состав многих биологически активных соединений и лекарственных препаратов и занимает важное место в структурном разнообразии химии гетероциклических и природных соединений.¹ Это определяет актуальность задачи поиска новых более совершенных методов установления структуры, свойств и аналитического контроля продуктов на его основе.² В последние годы широкое распространение получили гомо- и гетероядерные двумерные эксперименты ЯМР.³ Однако в настоящее время уже стало очевидным, что в ряде случаев полученный результат оказывается неоднозначным и требуются более точные значения опорных КССВ для надежного определения структуры. Дополнительные проблемы вызывает наличие в изучаемой молекуле гетероатомов кислорода, серы и азота. Это неизбежно приводит к разрывам в полученной системе связанностей ¹H-¹H и ¹Н-¹³С при использовании экспериментов НМВС для структурного анализа, например, полиазотистых конденсированных гетероциклов, 4 полипептидов и природных белков.⁵

Для азотсодержащих органических соединений ключевую роль выполняет сам атом азота. При этом очевидно, что наиболее достоверную информацию дадут эксперименты, основанные на характеристичных параметрах ЯМР ядер ¹⁵N.⁶ На модельных обогащенных изотопом ¹⁵N соединениях показана высокая эффективность двумерных экспериментов ¹H–¹⁵N HSQC и ¹H–¹⁵N HMBC для установления их структуры.^{3a,7} Однако для проведения двумерных экспериментов на природном содержании изотопа ¹⁵N (0.37%) необходима особо чувствительная аппаратура и как можно более точное задание опорных констант ¹H–¹⁵N.

Ранее был синтезирован [^{15}N]индол и проведено полное отнесение сигналов в его спектрах ЯМР ¹Н и $^{13}C.^{8}$ В настоящей работе поставлена задача полной расшифровки спектра ЯМР ¹Н и протонно-связанного спектра ЯМР ¹⁵N [^{15}N]индола (рис. 1) в расчете на то, что новые данные по КССВ и последующая серия квантово-химических расчетов позволят выявить важную структурную информацию.

Очевидно, что для [¹⁵N]индола особый интерес представляют КССВ с участием ядер ¹⁵N. Эти параметры могут быть полезными, в частности, для установления структуры замещенных азолов⁹ и полиядерных гетероциклов на их основе в тех случаях,

Рисунок 1. Структура и нумерация атомов [¹⁵N]индола.

когда данных по КССВ ¹Н-¹Н и ¹Н-¹³С может оказаться недостаточно.¹⁰

Мультиплетная структура спектров ЯМР даже для относительно простых молекул часто оказывается сложной, и для ее расшифровки необходимы специальные программные средства. В последние годы часто используется подход, основанный на анализе полной формы линии спектра ЯМР, в котором находится наилучшее соответствие эксперимента и теории по соотношению интенсивностей каждой точки спектра.¹¹ Этот подход требует больших вычислительных затрат в случае высокоразрешенной мультиплетной структуры. Для таких задач более эффективным оказывается классический подход. Задача решается уже в два этапа: сначала производится разложение спектра на компоненты, и лишь затем вся совокупность частот и интенсивностей компонент подлежит обработке в серии итерационных расчетов.¹²

Изученный в настоящей работе экспериментальный спектр ЯМР ¹Н [¹⁵N]индола практически не содержит примесных сигналов, а мультиплеты имеют вид, близкий к первому порядку (рис. 2). За счет точной настройки однородности магнитного поля и последующей цифровой обработки, включающей преобразование Лоренцевой формы линии в Гауссову,^{3а} получено разрешение порядка 0.020 Гц. Параметры преобразования подбирались в ручном режиме с целью получения наилучшего разрешения при сохранении колоколообразной формы линии и минимальной потере чувствительности. В итоге получена практически полностью разрешенная мультиплетная структура спектра, в которой визуально можно оценить значения двадцати шести КССВ ¹Н–¹Н и ¹H–¹⁵N.

Для расшифровки мультиплетной структуры спектра ЯМР ¹H [¹⁵N]индола в настоящей работе мы использовали подход, основанный на частотах и интенсивностях спектральных компонент.¹² При этом мы опирались на надежное отнесение сигналов спектров ЯМР ¹H и ¹³С из проведенного ранее исследования совокупности обзорных спектров ЯМР ¹H, ¹³C и ¹⁵N, включая двумерные эксперименты ¹H–¹H COSY, ¹H–¹³C HSQC и ¹H–¹³C HMBC.^{7b}

На предварительном этапе расшифровки спектра мы провели разметку всех мультиплетов с целью оценки эквидистантных расстояний по правилам первого порядка. Учитывались также форма и положение кросспиков двумерного спектра ¹H–¹H COSY (рис. 4 в нашей предыдущей работе⁸). Ранее полученные данные для

7.145 7.140 7.135 7.130 7.125 7.120 7.115 7.110 7.105 7.100 ррт Рисунок 2. Фрагмент спектра ЯМР ¹Н [¹⁵N]индола (область протона H-6, 0.25 М раствор в CD₃CN, рабочая частота спектрометра для ядер ¹Н 360.13 МГц, 303К).

бензофурана¹³ и бензотиофена¹⁴ также были приняты во внимание при задании начального приближения межкольцевых протон-протонных КССВ.

Цифровая оценка КССВ ${}^{1}J_{N-H}$ не представляла труда из-за ее большого значения (98.15 Гц по модулю). Мы приписали этой константе отрицательный знак на основании следующих соображений. Значения приведенных КССВ через одну связь ¹H-¹³С и ¹H-¹⁵N для находящихся в состоянии sp²-гибридизации атомов ¹⁵N и ¹³С определяются различием гиромагнитных постоянных и должны быть близкими по модулю, но противоположны по знаку.¹⁵ Действительно, гиромагнитные отношения для атомов ¹³С и ¹⁵N одного порядка по абсолютному значению, но противоположны по знаку.^{3а} Это дает основание предположить, что и соответствующие КССВ через одну связь ¹H-¹³C и ¹H-¹⁵N в родственных по состоянию гибридизации структурных фрагментах тоже должны быть одного порядка по абсолютному значению, но противоположны по знаку.¹⁶ КССВ ¹ *J*(¹³CH) в ароматичесих соединениях лежат в диапазоне от 155 до 168 Гц.¹⁷ Отсюда можно заключить, что ¹*J*_{H1-N} в индоле должна принимать значение в диапазоне от -90 до -120 Гц. Аналогично для дальних КССВ ¹Н-¹⁵N в качестве пробных параметров задавали отрицательные значения.

Итерационный анализ спектра проводили с использованием программного комплекса LCN6DP¹⁸ в рамках восьмиспиновой системы ABCDEFGX, где спины от A до G – семь неэквивалентных протонов пятичленного и шестичленного циклов [¹⁵N]индола, а X – ядро ¹⁵N. В расчете использовались частоты 896 линий, стандартное отклонение (СКО) экспериментального и расчетного спектра 0.0053 Гц (табл. 1). Для всех найденных КССВ значения СКО не превышают 0.001 Гц.

Таблица 1. Сопоставление экспериментальных* и расчетных** значений КССВ ${}^{n}J_{H-H}$ и ${}^{n}J_{H-N}$ для [${}^{15}N$]индола

КССВ	${}^{n}J_{{}_{{}_{{}_{\!$	$^{n}J_{\text{расч}},$ Гц	КССВ	$^{n}J_{_{\rm ЭКСП}},$ Гц	$^{n}J_{\text{расч}},$ Гц
$^{3}J_{ m H1-H2}$	2.4705(5)	2.98	${}^{5}J_{\rm H3-H5}$	(-)0.0135(5)	-0.04
$^4J_{ m H1-H3}$	2.0320(5)	2.08	$^6J_{ m H3-H6}$	-0.0909(5)	-0.33
$^5J_{ m H1-H4}$	0.8176(5)	0.71	$^5J_{\mathrm{H3-H7}}$	0.9600(5)	0.87
$^6J_{ m H1-H5}$	(±)0.0003(5)	-0.14	${}^{3}J_{ m H3-N}$	-4.7338(6)	-5.23
$^5J_{ m H1-H6}$	(±)0.0003(5)	-0.13	$^{3}J_{\mathrm{H4-H5}}$	7.9657(5)	9.05
$^4J_{ m H1-H7}$	0.1315(5)	0.40	$^4J_{ m H4-H6}$	1.1682(5)	0.72
$^1J_{ m H1-N}$	-98.2121(6)	-98.28	$^5J_{ m H4-H7}$	0.8163(5)	0.66
$^{3}J_{ m H2-H3}$	3.1877(5)	3.63	${}^4J_{ m H4-N}$	-0.2966(6)	-0.38
$^5J_{ m H2-H4}$	0.1602(5)	0.06	$^{3}J_{\mathrm{H5-H6}}$	7.0458(5)	8.14
$^6J_{ m H2-H5}$	0.1038(5)	0.06	$^4J_{ m H5-H7}$	1.0067(5)	0.59
$^6J_{ m H2-H6}$	0.3913(5)	0.34	${}^5\!J_{ m H5-N}$	-0.0991(7)	-0.14
${}^4J_{ m H2-H7}$	(-)0.0564(5)	-0.29	$^{3}J_{\mathrm{H6-H7}}$	8.2184(5)	9.23
$^{2}J_{ m H2-N}$	-4.7512(6)	-5.30	${}^{4}J_{ m H6-N}$	-0.6970(7)	-0.70
${}^{4}J_{112}$ 114	-0.1477(5)	-0.06	${}^{3}J_{\rm H7-N}$	-1.2130(6)	-1.66

* 0.25 М раствор в CD₃CN, рабочая частота спектрометра для ядер 1 H – 360.13 МГц, 303К. В скобках приведены последние значащие цифры СКО параметров.

** Расчеты проведены в рамках метода DFT/B3LYP с базисными функциями augcepvtz. Мы провели квантово-химические расчеты молекулярной структуры индола (MP2, augccpvtz) и затем с использованием этих геометрических параметров – расчеты всех КССВ ¹H–¹H и ¹H–¹⁵N в рамках метода DFT/B3LYP в приближении изолированных молекул¹⁹ (табл. 1). Следует отметить высокую точность соответствия экспериментальных (ⁿJ_{эксп}) и расчетных (ⁿJ_{расч}) значений для совокупности всех дальних КССВ ¹H–¹H и ¹H–¹⁵N (n = 2–6) (рис. 3), что характеризуется линейным соотношением (1)

$${}^{n}J_{{}_{\mathsf{ЭКСП}}} = a {}^{n}J_{{}_{\mathsf{расч}}} + b \tag{1}$$

со следующими параметрами: коэффициент корреляции R 0.998, среднеквадратичное отклонение экспериментальных и расчетных значений (СКО) 0.05 Гц, коэффициент a 1.13(1) и значение свободного члена b –0.10(4) Гц.

В этом соотношении коэффициент наклона (параметр a) значимо отличается от единицы, в то время как свободный член (параметр b) имеет небольшое отрицательное значение на пороге уровня значимости. Очевидно, это является следствием незначительных систематических ошибок используемой в настоящей работе методики квантово-химического расчета КССВ.¹⁹

Следует отметить, что полученные в настоящей работе КССВ ${}^{n}J_{H-H}$ в индоле имеют близкие значения с родственными константами в бензофуране¹³ и бензотиофене.¹⁴ Исключение представляет нулевое значение КССВ ${}^{5}J_{H3-H5}$ через пять связей. Можно отметить ожидаемо большие положительные значения для межкольцевых констант ${}^{5}J_{H1-H4}$ и ${}^{5}J_{H3-H7}$ (0.818 и 0.960 Гц соответственно) через пять связей. Столь высокие значения межкольцевых КССВ этого типа характерны для бициклических ароматических систем^{13,14} и в ряде случаев использовались ранее для структурных отнесений в замещенных индолах.^{2b} Очевидно, что значения обеих этих констант определяются геометрией

Рисунок 3. Сопоставление полученных в настоящей работе экспериментальных и расчетных КССВ ${}^{n}J_{H-H}$ (\blacksquare , n = 3–6) и ${}^{n}J_{H-N}$ (\bullet , n = 2–5) для [${}^{15}N$]индола (табл. 1).

пути передачи спин-спинового взаимодействия по типу "зиг-заг". Мы провели анализ маршрутов передачи спинспинового взаимодействия этих КССВ в индоле методом NJC²⁰ и показали, что их столь высокие положительные значения определяются *транс*-конфигурацией вицинальных локальных фрагментов H(1)–N–C(7а)–C(3a), N–C(7а)–C(3a)–C(4) и C(7а)–C(3а)–C(4)–H(4) для константы ${}^{5}J_{\rm H1-H4}$ и соответственно фрагментов H(1)–N–C(7а)–C(3a), N–C(7а)–C(3а)–C(4) и C(7а)–C(3а)–C(4)–H(4) для константы ${}^{5}J_{\rm H3-H7}$.

Среди дальних констант следует отметить неожиданно большую положительную константу через шесть связей протона Н-2 пиррольного цикла с протоном Н-6 $(^{6}J_{\text{H2-H6}} = 0.3913$ Гц). Маршрут передачи спин-спинового взаимодействия этой константы соответствует типу "длинный зиг-заг" с транс-конфигурацией всех вицинальных локальных фрагментов на пути передачи спин-спинового взаимодействия.²¹ Для константы ⁶J_{H2-H6} это следующие четыре *транс*-вицинальных локальных фрагмента: H(2)-C(2)-N-C(7a), C(2)-N-C(7a)-C(7), N-C(7а)-C(7)-C(6) и C(7а)-C(7)-C(6)-H(6). Наши оценки (метод NJC, augccpvtz) показали, что столь высокое значение этой дальней константы определяется двумя примерно равными положительными вкладами терминальных σ-связей С(6)–Н(6) (0.17 Гц) и С(2)-Н(2) (0.16 Гц). По-видимому, это свидетельствует о том, что для дальних КССВ важным фактором служит электронная плотность на терминальных протонах.

Следует отметить близкие значения экспериментальной и расчетной констант ${}^{1}J_{\rm H1-N}$ (табл. 1). Анализ электронных эффектов методом NJC показал, что определяющий вклад в значение этой константы вносят электроны самой связи H(1)–N (–168.22 Гц). Существенный, но уже положительный вклад вносят соседние связи C(2)–N (20.61 Гц) и C(7а)–N (20.28 Гц), а также невалентная s-орбиталь азота (3.26 Гц).

Внутрикольцевые константы через две (${}^{2}J_{\rm H2-N}$) и три связи (${}^{3}J_{\rm H3-N}$) в [15 N]индоле имеют разную природу, но оказались близкими по значениям (табл. 1). Расчеты методом NJC показали, что значение константы ${}^{2}J_{\rm H2-N}$ определяется отрицательными вкладами трех связей H(1)–N (–2.78 Гц), C(2)–H(2) (–3.84 Гц) и C(2)–N (–2.27 Гц), которые суммарно превышают положительный вклад связи C(7а)–N (3.79 Гц). Напротив, вицинальная константа ${}^{3}J_{\rm H3-N}$ определяется двумя отрицательными вкладами связей C(2)–N (–3.10 Гц) и C(3)–H(3) (–2.96 Гц) и одним положительным связи H(1)–N (1.68 Гц).

Необходимо отметить, что важная для структурных определений полиядерных азотистых гетероциклов межкольцевая вицинальная константа ${}^{3}J_{\rm H7-N}$ имеет относительно небольшое значение по модулю (табл. 1). Ее значение определяется вкладами двух связей: С(7а)–N (1.02 Гц) и С(7)–H(7) (–1.03 Гц).

Оставшиеся три дальние константы ¹H–¹⁵N, как и ожидалось, по модулю значительно меньше 1 Гц (табл. 1), что делает их малоперспективными для структурных определений методами двумерной спектроскопии ЯМР.

Высокая точность полученных в настоящей работе соотношений экспериментальных и расчетных КССВ

подтверждает справедливость сделанных нами предположений о знаках дальних КССВ протонов с ядром ¹⁵N и дальних межкольцевых протон-протонных КССВ, что свидетельствует о больших возможностях использования предложенных в настоящей работе подходов для характеристики продуктов новых азотсодержащих соединений, в частности при изучении новых лекарственных препаратов.²²

Экспериментальная часть

Спектры ЯМР ¹Н (360.13 МГц, 303К) [¹⁵N]индола зарегистрированы на спектрометре Bruker AM-360 в виде раствора 0.25 М в CD₃CN (Deuterogmbh, 99.8% D с добавкой 0.1% ТМС) в ампуле 5 мм, который дегазирован трехкратным повторением цикла замораживание–откачивание–размораживание, после чего снова заморожен и запаен в вакууме. Время выборки данных 25–60 с.

Квантово-химические расчеты электронной структуры и параметров ЯМР проведены с использованием программных комплексов Gaussian 09²³ и NBO-6.0.^{20,24}

Файл сопроводительных материалов, содержащий спектр ЯМР ¹Н [¹⁵N]индола и детальные результаты его расшифровки, доступен на сайте журнала http:// hgs.osi.lv.

Авторы выражают благодарность профессору Ю. А. Устынюку (химический факультет МГУ им. М. В. Ломоносова, Москва) за содержательное обсуждение результатов.

Список литературы

- (a) Prabagar, B.; Yang, Y.; Shi, Z. Chem. Soc. Rev. 2021, 50, 11249. (b) Mermer, A.; Keles, T.; Sirin, Y. Bioorg. Chem. 2021, 114, 105076.
- (a) Yurovskaya, M. A.; Afanasyev, A. Z.; Maximova, F. V.; Bundel, Y. G. *Tetrahedron* **1993**, *49*, 4945. (b) Chertkov, V. A.; Yurovskaya, M. A. *Chem. Heterocycl. Compd.* **1993**, *29*, 762.
 (c) Efremov, A. M.; Babkov, D. A.; Beznos, O. V.; Sokolova, E. V.; Spasov, A. A.; Ivanov, V. N.; Kurkin, A. V.; Chesnokova, N. B.; Lozinskaya, N. A. *Mendeleev Commun.* **2023**, *33*, 550.
- (a) Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Oxford, 2009, vol. 27. (b) Gil, R. R.; Griesinger, C.; Navarro-Vázquez, A.; Sun, H. In Structure Elucidation in Organic Chemistry: The Search for the Right Tools; Cid, M.-M.; Bravo, J., Eds.; Wiley-VCH: Weinheim, 2015, p. 279.
- (a) Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93.
 (b) Centore, R.; Fusco, S.; Capobianco, A.; Piccialli, V.; Zaccaria, S.; Peluso, A. Eur. J. Org. Chem. 2013, 3721.
- 5. Wüthrich, K. Nat. Struct. Biol. 2001, 8, 923.
- (a) Facelli, J. C.; Ferraro, M. B. Concepts Magn. Reson., Part A 2013, 42, 261. (b) Shestakova, T. S.; Khalymbazha, I. A.; Deev, S. L.; El'tsov, O. S.; Rusinov, V. L.; Shenkarev, Z. O.; Arsenev, A. S.; Chupakhin, O. N. Russ. Chem. Bull. 2011, 715. (c) Stanishevskiy, V. V.; Shestakova, A. K.; Chertkov, V. A. Russ. J. Org. Chem. 2023, 59, 1298. (d) Stanishevskiy, V. V.; Shestakova A. K.; Chertkov V. A. Appl. Magn. Reson. 2022, 53, 1693.
- 7. Martin, G. E.; Williams, A. J. eMagRes 2010, 1, 1.

- Shestakova, A. K.; Stanishevskiy, V. V.; Chertkov, V. A. Chem. Heterocycl. Compd. 2023, 59, 657.
- (a) Guzzo, T.; Aramini, A.; Lillini, S.; Nepravishta, R.; Paci, M.; Topai, A. *Tetrahedron Lett.* 2015, *56*, 4455. (b) Muzalevskiy, V. M.; Mamedzade, M. N.; Chertkov, V. A.; Bakulev, V. A.; Nenajdenko, V. G. *Mendeleev Commun.* 2018, *28*, 17.
 (c) Muzalevskiy, V. M.; Sizova, Z. A.; Panyushkin, V. V.; Chertkov, V. A.; Khrustalev, V. N.; Nenajdenko, V. G. *J. Org. Chem.* 2021, *86*, 2385.
- 10. Chertkov, V. A.; Shestakova, A. K.; Davydov, D. V. Chem. Heterocycl. Compd. 2011, 47, 45.
- (a) Chertkov, V. A.; Cheshkov, D. A.; Sinitsyn, D. O. *eMagRes* 2017, *6*, 359. (b) Cheshkov, D. A.; Sinitsyn, D. O.; Chertkov, V. A. *J. Magn. Reson.* 2016, *272*, 10. (c) Cheshkov, D. A.; Sheberstov, K. F.; Sinitsyn, D. O.; Chertkov, V. A. *Magn. Reson. Chem.* 2018, *56*, 449.
- (a) Castellano, S.; Bothner-By, A. A. J. Chem. Phys. 1964, 41, 3863. (b) Chertkov, V. A.; Grishin, Y. K.; Sergeyev, N. M. J. Magn. Reson. 1976, 24, 275.
- 13. Makarkina, A. V.; Golotvin, S. S.; Chertkov, V. A. Chem. Heterocycl. Compd. 1995, 9, 1060.
- 14. Makarkina, A. V.; Zubkov, S. V.; Chertkov, V. A. Chem. Heterocycl. Compd. 1997, 33, 266.
- (a) Malkin, V. G.; Malkina, O. L.; Salahub, D. R. *Chem. Phys. Lett.* **1994**, *221*, 91. (b) Levy, G. C.; Lichter, R. L. *Nitrogen-15 NMR Spectroscopy*; Wiley: New York, 1979, p. 108.
- 16. (a) Elguero, J.; Del Bene, J. E. *Magn. Reson. Chem.* 2004, 42, 421. (b) Elguero, J.; Alkorta, I.; Del Bene, J. E. *Magn. Reson. Chem.* 2020, 58, 727.
- Ernst, L.; Wray, V.; Chertkov, V. A.; Sergeyev, N. M. J. Magn. Reson. 1977, 25, 123.
- Stanishevskiy, V. V.; Shestakova, A. K.; Chertkov, V. A. Russ. J. Org. Chem. 2023, 59, 1298.
- 19. Deng, W.; Cheeseman, J. R.; Frisch, M. J. J. Chem. Theory Comput. 2006, 2, 1028.
- (a) Wilkens, S. J.; Westler, W. M.; Markley, J. L.; Weinhold, F. J. Am. Chem. Soc. 2001, 123, 12026. (b) Peralta, J. E.; Contreras, R. H.; Snyder, J. P. Chem. Commun. 2000, 2025.
- 21. Ganina, T. A.; Cheshkov, D. A.; Chertkov, V. A. Russ. J. Org. Chem. 2019, 55, 354.
- 22. (a) Berry, D.; Loy, A. *Trends Microbiol.* 2018, 26, 999.
 (b) Yang, J.; Zhang, G.; Wang, Z.; Xiao, Z.; Wen, H. *J. Label. Compd. Radiopharm.* 2019, 62, 920. (c) Huang, V.; Drouin, N.; Causon, J.; Wegrzyn, A.; Castro-Perez, J.; Fleming, R.; Harms, A.; Hankemeier, T. *J. Anal. Chem.* 2023, 95, 3255.
- 23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09W, Revision A.02; Gaussian, Inc.: Wallingford, 2009.
- 24. Weinhold, F.; Landis, C. R. *Discovering Chemistry with Natural Bond Orbitals*; Wiley: Hoboken, 2012.