Е. Сулоева, М. Юре, Э. Гудриниеце, М. Петрова, А. Кемме^а

СВОЙСТВА 2,3-ДИГИДРО-7-ТРИФТОРМЕТИЛ-5-ФЕНИЛ-8-ЦИАНОИМИДАЗО[1,2-а]ПИРИДИНОВ

Изучены реакции алкилирования, ацилирования, галогенирования, нитрования, окисления и гидролиза 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-a]пиридина. Найдено, что его 6-галогенпроизводные присоединяют спирты с образованием ковалентных сольватов. Методом РСА изучены структуры одного из сольватов — 1,2,3,7-тетрагидро-7-трифторметил-5-фенил-6-хлор-8-циано-7-этоксиимидазо[1,2-a]пиридина, а также трифторацетата 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-a]пиридина.

Ключевые слова: 2,3-дигидроимидазо[1,2-a]пиридины, ковалентные сольваты, соли 2,3-дигидроимидазо[1,2-a]пиридиния, PCA.

Согласно данным [1, 2], 2,3-дигидроимидазо[1,2-a]пиридины являются недостаточно изученной гетероциклической системой. Это побудило нас подробнее изучить химические и физические свойства 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-a]пиридина (1).

Ранее мы показали, что имидазо[1,2-a]пиридин **1** легко протонируется кислотами [3, 4]. С алкилгалогенидами имидазопиридин **1**, подобно другим 2,3-дигидроимидазо[1,2-a]пиридинам [2], дает соли 1-алкил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-a]пиридиния **2a,b** (табл. 1). До сих пор только в работе [5] описано ацилирование 2,3-дигидроимидазо[1,2-a]пиридинов, протекающее по атому $N_{(1)}$. При кипячении имидазопиридина **1** в ацетилхлориде мы получили хлорид 1-ацетилимидазопиридиния (**3a**) в виде бесцветных игольчатых кристаллов. При нагревании имидазопиридина **1** в ацетонитриле с эквимолярным количеством бензоилхлорида с выходом 73% был получен описанный нами ранее [3] 2-(2-бензоилокси-этиламино)-4-трифторметил-6-фенил-3-цианопиридин. Замена ацетонитрила на хлороформ привела к образованию 1-бензоилимидазопиридиниевой соли **3b**.

Имидазопиридин 1 вступает в реакции электрофильного замещения в пиридиновом цикле. Так, бромированием в ДМФА и хлорированием в диоксане получены желтые соли **4**, из которых при подщелачивании образуются, соответственно, 6-бром- и 6-хлоримидазопиридины **5а,b**. В зависимости от условий реакции, соли **4** могут содержать переменное количество комплексно связанного брома — нам удалось выделить соединение **4c** (n = 3). Соли **4a,b** мы также получили при обработке имидазопиридинов **5a,b** соответствующими кислотами.

2 a R = Me, X = I, **b** R = Pr, X = I, **c** R = H, X = CF₃COO [4], **d** R = H, X = HSeO₃;
3 a R¹ = Me, Y = Cl, **b** R¹ = Ph, Y = Cl; **4 a** Hal = Cl,
$$n = 1$$
, **b** Hal = Br, $n = 1$, **c** Hal = Br, $n = 3$;
5 a Hal = Cl, **b** Hal = Br; **6 a** $n = 0$ [3], **b** $n = 1$; **7 a** Hal = Cl, **b**-**e** Hal = Br;
a, **c**, R² = Et, **b** R² = Me, **d** R² = Bu, **e** R² = Ph

Для спектров ЯМР ¹Н 1-замещенных имидазопиридиниевых солей 2-4 (табл. 2) характерно расщепление сигнала протонов метиленовых групп фрагмента NCH₂CH₂N на два мультиплета. Очевидно, что структура соединений 2а,b, 3а,b и солей 4а,b подобна структуре ранее описанных [3, 4] солей 2 (R = H). Для ее полного установления применен РСА. Из всех полученных нами имидазопиридиниевых солей [3, 4] для РСА был 2,3-дигидро-7-трифторметил-5-фенил-8-цианотрифторацетат имидазо[1,2-a]пиридиния (2c), который, благодаря разветвленной системе сильных водородных связей, образует стабильные кристаллы. Пространственная модель молекулы с нумерацией атомов изображена на рис. 1. Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 3. Судя по длинам связей и величинам валентных углов (табл. 4, 5) положительный заряд локализован на атоме $N_{(1)}$ ($N_{(2)}$ на рис. 1). В молекуле исследуемого соединения присутствует сильная водородная связь между анионом и катионной частью: $d(H_{(2)}...O_{(2)}) = 1.97 \text{ Å}$, ω (N₍₂₎-H₍₂₎...O₍₂₎) = 166°. Кроме того, в молекуле соли наблюдается нарушение сопряжения фенильного заместителя с гетероциклической системой: двугранный угол между плоскостями циклов составляет 132°, а длина межкольцевой связи – 1.484 Å.

Таблица 1 **Характеристики синтезированных соединений**

Соеди-	Брутто-		Найдено, %		Выход, %	
нение	формула	C	ычислено, ¹	% N	Т. пл., °С	(метод)
2a	$C_{16}H_{13}F_3IN_3$	44.35 44.57	2.90 3.04	9.53 9.75	208–210 (разл.)	87
2b	$C_{18}H_{17}F_3IN_3$	46.90 47.08	4.01 3.73	8.80 9.15	95–97 (разл.)	26
2d	C ₁₅ H ₁₀ F ₃ N ₃ •H ₂ SeO ₃	42.80 43.08	3.10 2.89	9.89 10.05	103–105 (разл.)	69
3a	C ₁₇ H ₁₃ ClF ₃ N ₃ O	55.63 55.52	3.50 3.56	11.49 11.43	130-132 (разл.)	79
3 b	$C_{22}H_{15}ClF_3N_3O$	61.42 61.48	3.38 3.52	9.75 9.78	150-152 (разл.)	67
4a	C ₁₅ H ₉ ClF ₃ N ₃ •HCl	49.82 50.02	2.93 2.80	11.54 11.67	232–234 (разл.)	48 (A), 90 (Б)
4 b	C ₁₅ H ₉ BrF ₃ N ₃ •HBr	40.02 40.12	2.36 2.24	9.10 9.36	253–254 (разл.)	82
4c	C ₁₅ H ₉ BrF ₃ N ₃ •HBr ₃	29.28 29.59	1.15 1.66	6.71 6.90	160–163 (разл.)	48
5a	C ₁₅ H ₉ ClF ₃ N ₃	55.03 55.66	2.78 2.80	12.79 12.98	158–160	11 (A), 72 (Б)
5b	$C_{15}H_9BrF_3N_3$	47.96 48.94	2.51 2.46	11.40 11.40	172–173	20 (A), 72 (Б)
6b	C ₁₅ H ₁₂ F ₃ N ₃ O•C ₂ H ₅ •OH	<u>56.97</u> 57.79	<u>5.13</u> 5.13	11.77 11.89	217-218 (разл.)	61
7a	C ₁₇ H ₁₅ Cl F ₃ N ₃ O	55.03 55.22	4.00 4.09	11.19 11.36	146–148 (разл.)	55
7 b	$C_{16}H_{13}BrF_3N_3O$	$\frac{48.35}{48.02}$	$\frac{3.35}{3.27}$	10.43 10.50	126–128 (разл.)	46
7c	$C_{17}H_{15}BrF_3N_3O$	49.27 49.29	3.50 3.65	10.14 10.14	151–152 (разл.)	53
7d	$C_{19}H_{19}BrF_3N_3O$	51.55 51.60	4.15 4.33	9.50 9.50	179–180 (разл.)	54
7e	$C_{21}H_{15}BrF_3N_3O$	55.32 54.56	3.21 3.27	9.26 9.09	178–180 (разл.)	56
8	$C_{20}H_{22}F_3N_3O$	63.30 63.65	<u>5.66</u> 5.86	11.06 11.13	93–95 (разл.)	50

Попытки получить нитропроизводное имидазопиридина **1** потерпели неудачу. При обработке имидазопиридина **1** азотной кислотой в уксусном ангидриде при комнатной температуре или нитрующей смесью на холоду мы получили лишь ранее нами описанный [3] нитрат 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния. Для проведения нитрования мы использовали и более жесткие условия: нагревание в азотной кислоте, в смеси азотной кислоты и ацетангидрида, в нитрующей смеси. Ни в одном из вышеперечисленных случаев 6-нитропроизводное имидазопиридина **1** выделить не удалось.

Неудачными также оказались попытки получить 2,3-дегидропроизводное соединения 1. При нагревании имидазопиридина 1 с хлоранилом в диоксане мы выделили продукт расщепления имидазольного цикла — ранее описанный [3] 4-трифторметил-6-фенил-2-(2-хлорэтиламино)-3-цианопиридин. Попытки окисления имидазопиридина 1 SeO_2 также привели к раскрытию имидазольного цикла с образованием известного [6] 4-трифторметил-6-фенил-3-цианопиридин-2-она. В более мягких условиях была получена соль селенистой кислоты 2d.

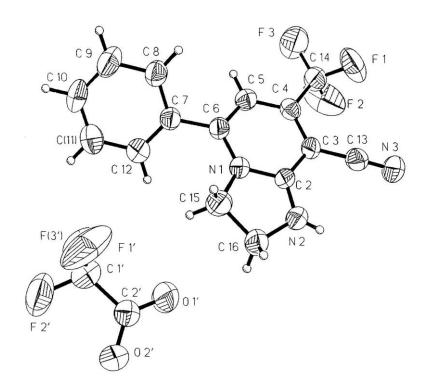


Рис. 1. Пространственная модель соединения 2с

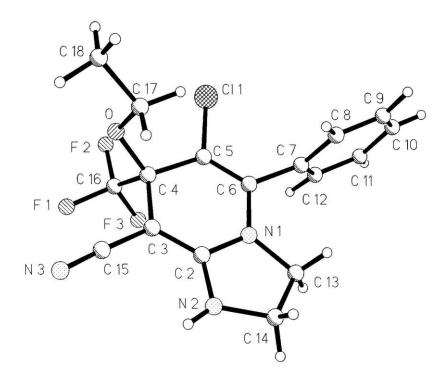


Рис. 2. Пространственная модель соединения 7а

 $T\ a\ б\ \pi\ u\ ц\ a\ 2$ Спектральные характеристики синтезированных соединений

Соеди-	ИК спектр, v, см ⁻¹	Спектр ЯМР 1 Н, δ , м. д., J , Γ ц*
2a	3030, 2938, 2238, 1634, 1580	3.64 (3H, c, CH ₃); 4.40 (2H, τ , $J = 6$, CH ₂); 4.69 (2H, τ , $J = 6$, CH ₂); 6.89 (1H, c, -CH=); 7.33 (3H, τ , C ₆ H ₅); 7.78 (2H, τ , C ₆ H ₅)
2 b	3030, 2971, 2171, 1646, 1556	0.98 (3H, т, J = 6, CH ₃); 1.81 (2H, секст, J = 6, CH ₂); 3.89 (2H, т, J = 6, CH ₂); 4.12 (2H, м, CH ₂); 4.61 (2H, м, CH ₂); 7.52 (1H, c, -CH=); 7.74 (5H, м, C ₆ H ₅)
2d	3323, 2222, 1639, 1540	3.74-4.32 (4H, м, 2CH ₂); 6.09 (1H, с, –CH=); 7.16 (2H, уш. с, NH, HSeO ₃); 7.65 (5H, м, С ₆ H ₅)
3a	3079, 2235, 1678, 1596, 1552	2.16 (3H, c, CH ₃); 3.83 (2H, т, <i>J</i> = 6, CH ₂); 4.29 (2H, т, <i>J</i> = 6, CH ₂); 7.58 (3H, м, C ₆ H ₅); 8.05 (3H, м, C ₆ H ₅ , -CH=)
3b	3070, 2968, 2231, 1668, 1634, 1596, 1576, 1554	4.07 (2H, τ , $J=6$, CH_2); 4.52 (2H, τ , $J=6$, CH_2); 7.45 (5H, τ , C_6H_5); 7.69 (3H, τ , C_6H_5); 8.36 (2H, τ , C_6H_5); 8.47 (1H, τ , C_6H_5)
4 a	2550, 2226, 1654, 1580	4.01 (2H, м, CH ₂); 4.43 (2H, м, CH ₂); 7.65 (5H, м, C ₆ H ₅); 8.02 (1H, уш. c, NH)
4b	3483, 3063, 2239, 1632, 1570, 1524	3.87 (2H, м, CH ₂); 4.29 (2H, м, CH ₂); 7.44 (2H, м, С ₆ H ₅); 7.64 (3H, м, С ₆ H ₅); 9.07 (1H, уш. c, NH)
4c	3521, 3241, 3175–2830, 2229, 1647, 1571, 1533	2.91–3.56 (4H, м, CH ₂ CH ₂); 5.89 (5H, м, С ₆ H ₅); 8.60 (1H, уш. c, NH)
5a	2892, 2220, 1639, 1543, 1517	3.87 (4H, M, CH ₂ CH ₂); 7.24 (2H, M, C ₆ H ₅); 7.47 (3H, M, C ₆ H ₅)
5b	3054, 2926, 2230, 1632, 1544, 1518	3.71 (4H, м, CH ₂ CH ₂); 7.53 (5H, м, С ₆ H ₅)
6b	3250, 3120, 2976, 1691, 1641, 1585, 1557	1.07 (3H, т, J = 7, CH ₃); 3.74 (2H, кв, J = 7, CH ₂); 3.85 (4H, м, 2CH ₂); 4.36 (1H, уш. c, OH); 5.61 (1H, c, -CH=); 7.56 (5H, м, C ₆ H ₅); 8.01 (2H, уш. c, NH ₂)
7a	3284, 2980, 2936, 2900, 2188, 1657, 1607, 1593	1.21 (3H, т, <i>J</i> = 7, CH ₃); 3.41–3.76 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.36 (2H, м, C ₆ H ₅); 7.49 (3H, м, C ₆ H ₅); 7.81 (1H, с, NH)
7b	3270, 2930, 2900, 2190, 1651, 1605, 1589	3.20 (3H, c, CH ₃); 3.40 (4H, м, CH ₂ CH ₂); 7.23 (2H, м, C ₆ H ₅); 7.58 (3H, м, C ₆ H ₅); 7.83 (1H, c, NH)
7c	3283, 2965, 2883, 2171, 1653, 1605, 1589, 1541	1.23 (3H, т, <i>J</i> = 7, CH ₃); 3.38–3.72 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.29 (2H, м, C ₆ H ₅); 7.49 (3H, м, C ₆ H ₅); 7.78 (1H, с, NH)
7d	3275, 2959, 2875, 2187, 1652, 1604, 1588, 1560	0.89 (3H, т, <i>J</i> = 7, CH ₃); 1.23–1.69 (4H, м, CH ₂ CH ₂); 3.43 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.34 (2H, м, C ₆ H ₅); 7.52 (3H, м, C ₆ H ₅); 7.78 (1H, с, NH)
7e	3282, 2223, 1632, 1602, 1588, 1542, 1524	3.76 (4H, M, CH ₂ CH ₂); 6.81 (3H, M, C ₆ H ₅); 7.21 (2H, M, C ₆ H ₅); 7.54 (5H, M, C ₆ H ₅); 9.32 (1H, c, NH)
8	3084, 2968, 2880, 2180, 1646, 1556, 1466	0.89 (3H, т, J = 6, CH ₃); 1.21 (3H, т, J = 7, CH ₃); 1.65 (2H, секст, J = 6, CH ₂); 2.87–3.74 (8H, м, 4CH ₂); 5.16 (1H, с, =CH–); 7.41 (5H, м, C ₆ H ₅)

 $[\]overline{^*$ Спектр ЯМР 1 Н соединений **2а,b, 3a,b, 5a,b, 8** регистрировался в CDCl $_3$, остальных – в ДМСО- \mathbf{d}_6 .

 $\label{eq:Table} \mbox{T a б л и ц a 3}$ Координаты (×10⁴) и эквивалентные изотропные тепловые параметры (Ų×10³) атомов в молекуле соединения 2c

Атом	x	y	z	U(eq)
N ₍₁₎	6663(4)	8719(3)	1735(2)	42(1)
$C_{(2)}$	5913(6)	8630(4)	959(3)	42(1)
C ₍₃₎	4464(6)	8095(4)	914(3)	43(1)
C ₍₄₎	3856(6)	7698(4)	1668(3)	43(1)
C ₍₁₄₎	2329(7)	7090(5)	1653(4)	56(2)
F ₍₁₎	1163(4)	7584(3)	1275(3)	94(1)
F ₍₂₎	2475(5)	6233(3)	1238(4)	127(2)
F ₍₃₎	1805(5)	6868(4)	2426(3)	112(2)
C ₍₅₎	4651(6)	7814(4)	2442(3)	46(1)
C ₍₆₎	6067(6)	8332(4)	2482(3)	44(1)
C ₍₇₎	6944(6)	8472(4)	3302(3)	44(1)
$C_{(8)}$	6105(7)	8813(4)	4015(3)	54(2)
C ₍₉₎	6863(8)	8926(5)	4795(4)	71(2)
$C_{(10)}$	8442(9)	8683(6)	4871(4)	81(2)
$C_{(11)}$	9250(8)	8315(6)	4180(4)	80(2)
$C_{(12)}$	8518(7)	8214(5)	3388(4)	65(2)
$N_{(2)}$	6705(5)	9101(4)	348(3)	54(1)
$C_{(13)}$	3690(6)	8008(4)	93(3)	52(1)
$N_{(3)}$	3090(6)	7954(5)	-565(3)	75(2)
$C_{(15)}$	8046(7)	9432(5)	1628(3)	67(2)
C ₍₁₆₎	8221(7)	9502(5)	668(3)	61(2)
$O_{(1')}$	8498(6)	9949(5)	-1327(3)	125(2)
$C_{(2')}$	7338(7)	9633(4)	-1678(3)	55(2)
$O_{(2')}$	6067(5)	9346(4)	-1370(2)	78(1)
$C_{(1')}$	7460(8)	9566(5)	-2648(4)	64(2)
$F_{(1')}$	8246(8)	8788(4)	-2924(3)	158(3)
$F_{(2')}$	6038(6)	9458(4)	-3035(2)	119(2)
F _(3')	7997(6)	10400(4)	-3009(3)	121(2)

 $T\ a\ б\ \pi\ u\ ц\ a\ 4$ Усредненные межатомные расстояния в молекуле соединения 2c

Связь	d, Å	Связь	d, Å	Связь	d, Å
$C_{(6)}-N_{(1)}$	1.362(6)	$C_{(8)}-C_{(7)}$	1.387(7)	$C_{(16)}$ – $H_{(16B)}$	0.9700
$C_{(2)}-N_{(1)}$	1.367(6)	$C_{(7)}-C_{(6)}$	1.484(6)	$C_{(8)}-H_{(8)}$	0.9300
$C_{(15)}-N_{(1)}$	1.498(7)	$C_{(12)}$ – $C_{(7)}$	1.374(7)	$C_{(9)}-H_{(9)}$	0.9300
$N_{(2)}$ – $C_{(2)}$	1.313(6)	$C_{(9)}-C_{(8)}$	1.379(7)	$C_{(10)}$ – $H_{(10)}$	0.9300
$C_{(4)}$ – $C_{(3)}$	1.381(7)	$C_{(10)}$ – $C_{(9)}$	1.371(9)	$C_{(11)}$ – $H_{(11)}$	0.9300
$C_{(13)}-C_{(3)}$	1.437(7)	$C_{(11)}$ – $C_{(10)}$	1.360(9)	$C_{(12)}-H_{(12)}$	0.9300
$C_{(5)}-C_{(4)}$	1.383(7)	$C_{(12)}$ – $C_{(11)}$	1.383(8)	$N_{(2)}-H_{(2)}$	0.82(5)
$C_{(3)}$ – $C_{(2)}$	1.406(7)	$N_{(2)}$ – $C_{(16)}$	1.465(7)	$C_{(2')} - O_{(1')}$	1.191(6)
$C_{(14)}-C_{(4)}$	1.510(7)	$N_{(3)}$ – $C_{(13)}$	1.142(6)	$C_{(2')}$ – $O_{(2')}$	1.231(6)
$F_{(1)}$ – $C_{(14)}$	1.311(6)	$C_{(15)}$ – $C_{(16)}$	1.503(7)	$C_{(2')}$ – $C_{(1')}$	1.514(8)
$F_{(2)}$ – $C_{(14)}$	1.293(7)	$C_{(15)}-H_{(15A)}$	0.9700	$C_{(1')}$ – $F_{(1')}$	1.284(7)
$F_{(3)}$ – $C_{(14)}$	1.313(6)	$C_{(15)}-H_{(15B)}$	0.9700	$C_{(1')}$ – $F_{(2')}$	1.346(7)
$C_{(6)}$ – $C_{(5)}$	1.371(7)	$C_{(16)}$ – $H_{(16A)}$	0.9700	$C_{(1')}$ – $F_{(3')}$	1.302(7)

 $\label{eq:Tadin} T\,a\, {\rm d}\, \pi\, u\, {\rm ц}\, a\ \, 5$ Валентные углы в молекуле соединения 2c

			1		1
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
$C_{(2)}-N_{(1)}-C_{(6)}$	123.4(4)	$C_{(6)}$ – $C_{(7)}$ – $C_{(12)}$	122.2(5)	$H_{(12)}-C_{(12)}-C_{(7)}$	120.3
$N_{(1)}$ – $C_{(2)}$ – $C_{(3)}$	119.0(4)	$C_{(6)}-C_{(7)}-C_{(8)}$	118.2(5)	$H_{(12)}-C_{(12)}-C_{(11)}$	120.3
$N_{(1)}$ - $C_{(2)}$ - $N_{(2)}$	111.4(5)	$C_{(7)}$ – $C_{(8)}$ – $C_{(9)}$	120.1(6)	$H_{(15A)}-C_{(15)}-N_{(1)}$	111.2
$C_{(6)}-N_{(1)}-C_{(15)}$	127.7(4)	$C_{(8)}$ – $C_{(9)}$ – $C_{(10)}$	119.9(6)	$H_{(15A)}$ – $C_{(15)}$ – $C_{(16)}$	111.2
$C_{(2)}-N_{(1)}-C_{(15)}$	108.2(4)	$C_{(9)}$ – $C_{(10)}$ – $C_{(11)}$	120.0(6)	$H_{(15B)}$ – $C_{(15)}$ – $N_{(1)}$	111.2
$C_{(3)}$ – $C_{(2)}$ – $N_{(2)}$	129.6(4)	$C_{(10)}$ – $C_{(11)}$ – $C_{(12)}$	120.9(6)	$H_{(15B)}$ – $C_{(15)}$ – $C_{(16)}$	111.2
$C_{(2)}$ – $C_{(3)}$ – $C_{(4)}$	117.8(4)	$C_{(7)}$ – $C_{(12)}$ – $C_{(11)}$	119.5(6)	$H_{(15A)}$ – $C_{(15)}$ – $H_{(15B)}$	109.1
$C_{(4)}$ – $C_{(3)}$ – $C_{(13)}$	123.8(5)	$C_{(2)}-N_{(2)}-C_{(16)}$	111.4(4)	$H_{(16A)}-C_{(16)}-N_{(2)}$	111.1
$C_{(2)}$ – $C_{(3)}$ – $C_{(13)}$	118.4(5)	$C_{(3)}$ – $C_{(13)}$ – $N_{(3)}$	178.7(6)	$H_{(16A)}$ – $C_{(16)}$ – $C_{(15)}$	111.1
$C_{(3)}-C_{(4)}-C_{(5)}$	121.2(5)	$N_{(1)}$ - $C_{(15)}$ - $C_{(16)}$	103.1(4)	$H_{(16B)}$ – $C_{(16)}$ – $N_{(2)}$	111.1
$C_{(5)}$ – $C_{(4)}$ – $C_{(14)}$	118.8(5)	$C_{(15)}$ – $C_{(16)}$ – $N_{(2)}$	103.2(4)	$H_{(16B)}$ – $C_{(16)}$ – $C_{(15)}$	111.1
$C_{(3)}$ – $C_{(4)}$ – $C_{(14)}$	120.0(4)	$H_{(2)}-N_{(2)}-C_{(2)}$	124(4)	$H_{(16A)}$ – $C_{(16)}$ – $H_{(16B)}$	109.1
$F_{(1)}$ – $C_{(14)}$ – $F_{(2)}$	105.8(5)	$H_{(2)}-N_{(2)}-C_{(16)}$	123(4)	$O_{(2')}$ – $C_{(2')}$ – $O_{(1')}$	129.8(6)
$F_{(2)}$ – $C_{(14)}$ – $F_{(3)}$	107.4(5)	$H_{(5)}-C_{(5)}-C_{(6)}$	119.6	$C_{(1')}$ – $C_{(2')}$ – $O_{(1')}$	114.7(5)
$F_{(1)}$ – $C_{(14)}$ – $F_{(3)}$	105.4(5)	$H_{(5)}-C_{(5)}-C_{(4)}$	119.6	$C_{(1')}$ – $C_{(2')}$ – $O_{(2')}$	115.5(5)
$C_{(4)}$ – $C_{(14)}$ – $F_{(2)}$	112.2(5)	$H_{(8)}-C_{(8)}-C_{(9)}$	120.0	$F_{(3')}$ – $C_{(1')}$ – $F_{(1')}$	109.4(6)
$C_{(4)}$ – $C_{(14)}$ – $F_{(1)}$	112.8(5)	$H_{(8)}-C_{(8)}-C_{(7)}$	120.0	$F_{(2')}$ – $C_{(1')}$ – $F_{(1')}$	103.1(6)
$C_{(4)}$ – $C_{(14)}$ – $F_{(3)}$	112.8(5)	$H_{(9)}-C_{(9)}-C_{(10)}$	120.0	$F_{(2')}$ – $C_{(1')}$ – $F_{(3')}$	101.7(5)
$C_{(4)}$ – $C_{(5)}$ – $C_{(6)}$	120.8(5)	$H_{(9)}-C_{(9)}-C_{(8)}$	120.0	$C_{(2')}$ – $C_{(1')}$ – $F_{(1')}$	114.5(5)
$N_{(1)}$ - $C_{(6)}$ - $C_{(5)}$	117.7(4)	$H_{(10)}$ – $C_{(10)}$ – $C_{(11)}$	120.0	$C_{(2')}-C_{(1')}-F_{(3')}$	113.9(5)
$N_{(1)}$ – $C_{(6)}$ – $C_{(7)}$	120.2(4)	$H_{(10)}-C_{(10)}-C_{(9)}$	120.0	$C_{(2')}$ – $C_{(1')}$ – $F_{(2')}$	112.9(5)
$C_{(5)}-C_{(6)}-C_{(7)}$	122.1(5)	$H_{(11)}$ – $C_{(11)}$ – $C_{(10)}$	119.5		
$C_{(8)}$ – $C_{(7)}$ – $C_{(12)}$	119.6(5)	$H_{(11)}$ – $C_{(11)}$ – $C_{(12)}$	119.5		

Таблица 6 Координаты ($\times 10^4$) и эквивалентные изотропные тепловые параметры ($\mathring{A}^2 \times 10^3$) атомов в молекуле соединения 7а

Атом	x	у	z	U(eq)
Cl ₍₁₎	506(1)	2342(1)	3629(1)	62(1)
O	805(1)	-466(2)	3453(1)	45(1)
F ₍₁₎	1431(1)	-350(2)	2089(1)	62(1)
F ₍₂₎	8489(1)	1097(2)	1866(1)	63(1)
F ₍₃₎	1637(1)	1601(2)	2536(1)	67(1)
$N_{(1)}$	1889(1)	1631(2)	5494(2)	40(1)
$N_{(2)}$	2465(1)	68(3)	5828(2)	50(1)
N ₍₃₎	1989(1)	-2464(3)	3938(2)	67(1)
$C_{(2)}$	2015(1)	445(3)	5197(2)	38(1)
$C_{(3)}$	1717(1)	-168(3)	4314(2)	40(1)
C ₍₄₎	1223(1)	421(3)	3652(2)	41(1)
C ₍₅₎	1105(1)	1661(3)	4166(2)	42(1)
C ₍₆₎	1415(1)	2205(3)	5019(2)	38(1)
C ₍₇₎	1284(1)	3398(3)	5534(2)	40(1)
$C_{(8)}$	1049(1)	3320(4)	6352(3)	59(1)
$C_{(9)}$	907(2)	4418(4)	6807(3)	77(1)
$C_{(10)}$	1000(2)	5598(4)	6453(4)	78(1)
$C_{(11)}$	1244(2)	5696(4)	5666(5)	97(2)
$C_{(12)}$	1384(2)	4603(3)	5193(3)	75(1)
$C_{(13)}$	2284(1)	2109(3)	6400(3)	47(1)
C ₍₁₄₎	2624(2)	923(4)	6722(3)	61(1)
$C_{(15)}$	1861(1)	-1435(3)	4091(2)	48(1)
C ₍₁₆₎	1282(1)	692(3)	2529(2)	45(1)
C ₍₁₇₎	645(2)	-881(4)	4371(3)	59(1)
C ₍₁₈₎	209(2)	-1791(7)	4011(4)	97(1)

 $\begin{tabular}{ll} T аблица & 7 \end{tabular}$ Усредненные межатомные расстояния в молекуле соединения 7a

Связь	d, Å	Связь	d, Å	Связь	d, Å
Cl ₍₁₀₎ -C ₍₅₎	1.727(3)	$C_{(3)}-C_{(15)}$	1.417(4)	$C_{(11)}-C_{(12)}$	1.385(6)
O-C ₍₄₎	1.419(3)	C ₍₃₎ -C ₍₄₎	1.514(4)	$C_{(11)}-H_{(11)}$	0.91(4)
$O-C_{(17)}$	1.436(4)	$C_{(4)}-C_{(5)}$	1.518(4)	$C_{(12)}-H_{(12)}$	1.00(4)
$F_{(1)}$ – $C_{(16)}$	1.330(3)	$C_{(4)}$ – $C_{(16)}$	1.541(4)	$C_{(13)}$ – $C_{(14)}$	1.521(5)
$F_{(2)}$ – $C_{(16)}$	1.330(3)	$C_{(5)}-C_{(6)}$	1.339(4)	$C_{(13)}-H_{(13A)}$	0.93(3)
$F_{(3)}$ – $C_{(16)}$	1.333(3)	$C_{(6)}-C_{(7)}$	1.488(4)	$C_{(13)}$ – $H_{(13B)}$	0.91(3)
$N_{(1)}$ – $C_{(2)}$	1.364(3)	$C_{(7)}-C_{(8)}$	1.370(4)	$C_{(14)} - H_{(14A)}$	0.95(3)
$N_{(1)}$ – $C_{(6)}$	1.395(3)	$C_{(7)}$ – $C_{(12)}$	1.373(4)	$C_{(14)} - H_{(14B)}$	0.92(4)
$N_{(1)}$ – $C_{(13)}$	1.465(3)	$C_{(8)}$ – $C_{(9)}$	1.380(5)	$C_{(17)}-C_{(18)}$	1.478(6)
$N_{(2)}$ – $C_{(2)}$	1.345(3)	$C_{(8)}$ – $H_{(8)}$	0.91(3)	$C_{(17)}-H_{(17A)}$	1.02(4)
$N_{(2)}$ – $C_{(14)}$	1.445(4)	$C_{(9)}$ – $C_{(10)}$	1.351(6)	$C_{(17)} - H_{(17B)}$	0.92(3)
$N_{(2)}\!\!-\!\!H_{(2)}$	0.85(3)	$C_{(9)}$ – $H_{(9)}$	0.95(4)	$C_{(18)}-H_{(18A)}$	0.94(4)
$N_{(3)}$ – $C_{(15)}$	1.151(4)	$C_{(10)}$ – $C_{(11)}$	1.353(6)	$C_{(18)}-H_{(18B)}$	1.05(4)
$C_{(2)}$ – $C_{(3)}$	1.369(4)	$C_{(10)}$ – $H_{(10)}$	0.94(4)	$C_{(18)}$ – $H_{(18C)}$	0.95(6)

 $\label{eq:Tadinu} T\,a\,{\rm fi}\,\pi\,u\,{\rm i}\,u\,\,8$ Валентные углы в молекуле соединения 7а

***		X7		X7	
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
$C_{(4)}$ $-O-C_{(17)}$	115.0(2)	$C_{(8)}$ – $C_{(7)}$ – $C_{(6)}$	120.6(3)	$N_{(2)}$ – $C_{(14)}$ – $C_{(13)}$	103.6(3)
$C_{(2)}$ - $N_{(1)}$ - $C_{(6)}$	120.9(2)	$C_{(12)}$ – $C_{(7)}$ – $C_{(6)}$	121.4(3)	$N_{(2)}$ – $C_{(14)}$ – $H_{(14A)}$	107.4(19)
$C_{(2)}$ - $N_{(1)}$ - $C_{(13)}$	111.5(2)	$C_{(7)}$ – $C_{(8)}$ – $C_{(9)}$	121.1(4)	$C_{(13)}$ – $C_{(14)}$ – $H_{(14A)}$	113.3(19)
$C_{(6)}$ - $N_{(1)}$ - $C_{(13)}$	127.5(2)	$C_{(7)}$ – $C_{(8)}$ – $H_{(8)}$	118(2)	$N_{(2)}$ – $C_{(14)}$ – $H_{(14B)}$	113(3)
$C_{(2)}$ - $N_{(2)}$ - $C_{(14)}$	111.8(3)	$C_{(9)}-C_{(8)}-H_{(8)}$	121(2)	$C_{(13)}$ – $C_{(14)}$ – $H_{(14B)}$	112(3)
$C_{(2)}$ - $N_{(2)}$ - $H_{(2)}$	120(2)	$C_{(10)}$ – $C_{(9)}$ – $C_{(8)}$	120.2(4)	$H_{(14A)} - C_{(14)} - H_{(14B)}$	107(3)
$C_{(14)}$ - $N_{(2)}$ - $H_{(2)}$	126(2)	$C_{(10)}-C_{(9)}-H_{(9)}$	118(3)	$N_{(3)}$ – $C_{(15)}$ – $C_{(3)}$	178.0(3)
$N_{(2)}$ – $C_{(2)}$ – $N_{(1)}$	108.6(2)	$C_{(8)}-C_{(9)}-H_{(9)}$	121(3)	$F_{(2)}$ – $C_{(16)}$ – $F_{(1)}$	106.2(2)
$N_{(2)}$ – $C_{(2)}$ – $C_{(3)}$	129.3(3)	$C_{(9)}$ – $C_{(10)}$ – $C_{(11)}$	119.5(4)	$F_{(2)}$ – $C_{(16)}$ – $F_{(3)}$	106.5(2)
$N_{(1)}$ – $C_{(2)}$ – $C_{(3)}$	122.1(2)	$C_{(9)}$ – $C_{(10)}$ – $H_{(10)}$	123(2)	$F_{(1)}$ – $C_{(16)}$ – $F_{(3)}$	106.7(2)
$C_{(2)}$ – $C_{(3)}$ – $C_{(15)}$	117.9(2)	$C_{(11)}$ – $C_{(10)}$ – $H_{(10)}$	118(2)	$F_{(2)}$ - $C_{(16)}$ - $C_{(4)}$	113.8(2)
$C_{(2)}$ – $C_{(3)}$ – $C_{(4)}$	122.1(2)	$C_{(10)}$ – $C_{(11)}$ – $C_{(12)}$	120.8(4)	$F_{(1)}$ – $C_{(16)}$ – $C_{(4)}$	112.2(2)
$C_{(15)}$ – $C_{(3)}$ – $C_{(4)}$	119.8(2)	$C_{(10)}$ – $C_{(11)}$ – $H_{(11)}$	123(3)	$F_{(3)}$ – $C_{(16)}$ – $C_{(4)}$	111.1(2)
$O-C_{(4)}-C_{(3)}$	112.2(2)	$C_{(12)}$ – $C_{(11)}$ – $H_{(11)}$	116(3)	$O-C_{(17)}-C_{(18)}$	107.2(3)
$O-C_{(4)}-C_{(5)}$	112.9(2)	$C_{(7)}$ – $C_{(12)}$ – $C_{(11)}$	120.2(4)	$O-C_{(17)}-H_{(17A)}$	108(2)
$C_{(3)}$ – $C_{(4)}$ – $C_{(5)}$	109.5(2)	$C_{(7)}$ – $C_{(12)}$ – $H_{(12)}$	117(2)	$C_{(18)}$ – $C_{(17)}$ – $H_{(17A)}$	113(2)
$O-C_{(4)}-C_{(16)}$	101.7(2)	$C_{(11)}$ – $C_{(12)}$ – $H_{(12)}$	122(2)	$O-C_{(17)}-H_{(17B)}$	111(2)
$C_{(3)}$ – $C_{(4)}$ – $C_{(16)}$	109.9(2)	$N_{(1)}$ – $C_{(13)}$ – $C_{(14)}$	102.2(2)	$C_{(18)}$ – $C_{(17)}$ – $H_{(17B)}$	112(2)
$C_{(5)}$ – $C_{(4)}$ – $C_{(16)}$	110.5(2)	$N_{(1)}$ – $C_{(13)}$ – $H_{(13A)}$	108.9(18)	$H_{(17A)}$ – $C_{(17)}$ – $H_{(17B)}$	106(3)
$C_{(6)}$ – $C_{(5)}$ – $C_{(4)}$	124.9(2)	$C_{(14)}$ – $C_{(13)}$ – $H_{(13A)}$	113.7(17)	$C_{(17)}$ – $C_{(18)}$ – $H_{(18A)}$	106(2)
$C_{(6)}$ – $C_{(5)}$ – $Cl_{(1)}$	119.1(2)	$N_{(1)}$ – $C_{(13)}$ – $H_{(13B)}$	109(2)	$C_{(17)}$ – $C_{(18)}$ – $H_{(18B)}$	101(2)
$C_{(4)}$ – $C_{(5)}$ – $Cl_{(1)}$	115.9(19)	$C_{(14)}$ – $C_{(13)}$ – $H_{(13B)}$	115(2)	$H_{(18A)}$ – $C_{(18)}$ – $H_{(18B)}$	109(3)
$C_{(5)}$ – $C_{(6)}$ – $N_{(1)}$	119.8(2)	$C_{(14)}$ – $C_{(13)}$ – $H_{(13A)}$	113.7(17)	$C_{(17)}$ – $C_{(18)}$ – $H_{(18C)}$	115(4)
$C_{(5)}$ – $C_{(6)}$ – $C_{(7)}$	124.1(2)	$N_{(1)}$ – $C_{(13)}$ – $H_{(13B)}$	109(2)	$H_{(18A)}$ – $C_{(18)}$ – $H_{(18C)}$	107(4)
$N_{(1)}$ – $C_{(6)}$ – $C_{(7)}$	116.1(2)	$C_{(14)}$ – $C_{(13)}$ – $H_{(13B)}$	115(2)	$H_{(18B)}$ – $C_{(18)}$ – $H_{(18C)}$	119(5)
$C_{(8)}$ – $C_{(7)}$ – $C_{(12)}$	118.1(3)	$H_{(13A)}$ – $C_{(13)}$ – $H_{(13B)}$	108(3)		

Согласно данным [2], 2,3-дигидроимидазо[1,2-а]пиридины вступают в реакции с различными нуклеофилами, и при этом обычно происходит расщепление имидазольного цикла с образованием 2-алкиламинопиридинов или 1-алкил-2-иминопиридинов. Однако, при нагревании имидазопиридина 1 в щелочно-этанольном растворе происходит только гидролиз цианогруппы. Образовавшийся амид 6 из реакционной смеси выделен в виде сольвата с молекулой этанола. Сольват 6b образуется также при перекристаллизации из этанола амида 6a, полученного кислотным гидролизом нитрила 1 [3]. Соединение 6b при нагревании в вакууме при 100 °С теряет молекулу спирта.

Исследуя реакции 2,3-дигидроимидазо[1,2-а] пиридинов с нуклеофилами, мы обнаружили необычное явление – присоединение спиртов с образованием ковалентных сольватов, называемых также псевдооснованиями. Образование псевдооснований этой бициклической системой описано лишь однажды [7], как присоединение воды по двойной связи $C_{(8a)}=N_{(1)}$, хотя для ряда других гетероциклов это явление известно давно. В нашем случае происходит присоединение молекулы спирта по сопряженной системе связей $C_{(7)} = C_{(8)} - C_{(8a)} = N_{(1)}$ с образованием соединений **7а**-е и **8**. Эта реакция обратима и протекает с электронодефицитными 2,3-дигидроимидазо[1,2-a]пиридинами – 6-галогенпроизводными **5a,b** и солью **2b**. Соединения 7а-е теряют молекулу спирта при нагревании в вакууме при 100 °C. Образование псевдооснований с водой, малононитрилом, изопропанолом и аминами в аналогичных условиях не наблюдалось. Ковалентные сольваты 7а-е обладают менее интенсивной окраской по сравнению с имидазопиридинами 5а,b. Все они плавятся с разложением в интервале 93-163 °C. В ИК спектрах для соединений 7 характерны максимумы v C≡N в области 2171–2190 и v N-H в области 3270–3284 см⁻¹. Для спектров ЯМР ¹Н псевдооснований 7 характерно появление уширенного сигнала N-H в слабых полях в интервале 7.78-9.32 м. д. Сигнал метиленовых протонов наблюдается в виде мультиплета в районе 3.40-

Для определения молекулярно-кристаллической структуры ковалентных сольватов проведен PCA соединения **7a** (рис. 2). Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 6, а усредненные межатомные расстояния и валентные углы даны в табл. 7, 8. Двугранный угол между плоскостями фенильного заместителя и гетероциклической системы равен 96°, длина связи $C_{(6)}$ — $C_{(7)}$ составляет 1.488 Å, что свидетельствует о нарушении сопряжения ароматического кольца с бициклической системой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Specord IR-75 в парафиновом масле (призма NaCl, район $1500-1800~{\rm cm}^{-1}$) и гексахлорбутадиене (призма LiF, район $2000-3600~{\rm cm}^{-1}$). Спектры ЯМР ¹H регистрировались на приборе Bruker WH-90/DS (90 МГц), внутренний стандарт ТМС или ГМДС. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли с помощью ТСХ на пластинках Silufol UV-254 в системе этанол-хлороформ, 1:9. Параметры элементарной ячейки и интенсивность отражений измерены

на автоматическом дифрактометре Syntex $P2_1$, используя монохроматическое молибденовое излучение (графитовый монохроматор), методом ω -сканирования. Структура расшифрована прямым методом [8] и уточнена методом наименьших квадратов в полноматричном анизотропном приближении. Все расчеты проведены программным комплексом [9].

Данные о синтезированых соединениях обобщены в табл. 1 и 2.

Иодид 2,3-дигидро-1-метил-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*а*]пиридиния **(2а).** К раствору 0.2 г (0.69 ммоль) имидазопиридина **1** в 5 мл хлороформа приливают 0.04 мл метилиодида. Реакционную смесь выдерживают при комнатной температуре 24 ч. Растворитель отгоняют в вакууме, образовавшееся масло перекристаллизовывают из диэтилового эфира.

Иодид 2,3-дигидро-1-пропил-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*а*]пиридиния **(2b).** К раствору 0.2 г (0.69 ммоль) имидазопиридина **1** в 5 мл ацетонитрила приливают 0.34 мл (3.5 ммоль) пропилиодида и кипятят 8 ч. Реакционную смесь упаривают в вакууме досуха, к остатку добавляют 50 мл воды, осадок перекристаллизовывают из этанола, а водный фильтрат используют в синтезе соединения **8**.

Гидроселенит **2,3-дигидро-(1H)-7-трифторметил-5-фенил-8-цианоимидазо[1,2-**a]пиридиния **(2d).** Раствор 0.5 г (1.73 ммоль) имидазопиридина **1** и 0.2 г (1.73 ммоль) диоксида селена в 5 мл тетрагидрофурана выдерживают при комнатной температуре 7 ч. Осадок отфильтровывают.

Хлорид 1-ацетил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния (3а). Раствор 0.2 г (0.69 ммоль) имидазопиридина **1** в 5 мл свежеперегнанного ацетилхлорида кипятят 4 ч. Реакционную смесь выливают на 50 г измельченного льда. Осадок перекристаллизовывают из этанола.

Хлорид 1-бензоил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (**3b**). Раствор 0.2 г (0.69 ммоль) имидазопиридина **1** и 0.1 мл (0.9 ммоль) бензоилхлорида в 5 мл хлороформа кипятят 1 ч. Растворитель отгоняют в вакууме, остаток перекристаллизовывают из этанола.

Хлорид 2,3-дигидро-7-трифторметил-5-фенил-6-хлор-8-цианоимидазо[1,2-*а*]пиридиния **(4а).** А. К раствору 0.2 г (0.69 ммоль) имидазопиридина **1** в 5 мл абсолютного диоксана приливают раствор 0.06 г (0.9 ммоль) хлора в 5 мл диоксана. Реакционную смесь выдерживают при комнатной температуре 24 ч. Осадок отфильтровывают, а фильтрат используют для получения соединения **5а**.

Галогениды 6-галоген-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*а*]-**пиридиния (4а,b).** Б. К раствору 0.69 ммоль имидазопиридина **5a** или **5b** в 5 мл тетрагидрофурана приливают 0.69 ммоль соответствующей кислоты. Реакционную смесь выдерживают при комнатной температуре 4 ч. Образовавшиеся кристаллы отфильтровывают.

Трибромид 6-бром-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния (4c). К раствору 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл ДМФА приливают 0.04 мл (0.69 ммоль) брома. Реакционную смесь выдерживают при комнатной температуре 24 ч. Раствор выливают в 50 мл воды, осадок отфильтровывают. Фильтрат используют для получения соединения 5b.

6-Галоген-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо-[1,2-*а***]пиридины (5а,b).** А. Фильтрат, полученный в синтезе соединения **4a** (метод A) или **4c**, подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из изопропанола.

Б. Растворяют при нагревании 0.2 г соли имидазопиридиния **4а-с** в 10 мл воды. Раствор подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из изопропанола.

8-Аминокарбонил-2,3-дигидро-7-трифторметил-5-фенилимидазо[1,2-*a*]пиридин·**EtOH** (**6b**). Раствор 0.2 г (0.69 ммоль) имидазопиридина **1** и 0.04 г КОН в 5 мл этанола нагревают 4 ч. Реакционную смесь охлаждают до комнатной температуры. Осадок отфильтровывают.

7-Алкокси-6-галоген-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-8-цианоимидазо-[**1,2-***a*]**пиридины (7a–d).** Раствор 0.2 г имидазопиридина **5a,b** в 5 мл соответствующего спирта нагревают до кипения и оставляют при комнатной температуре на 24 ч. Образовавшиеся кристаллы отфильтровывают.

6-Бром-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-7-фенокси-8-цианоимидазо- [**1,2-***a*] **пиридин (7e).** К раствору 0.2 г (0.54 ммоль) имидазопиридина **5b** в 5 мл хлороформа

добавляют 0.05 г (0.54 ммоль) фенола, нагревают до кипения и оставляют при комнатной температуре на 24 ч. Образовавшиеся ярко-красные кристаллы отфильтровывают, промывая на фильтре хлороформом.

1-Пропил-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-8-циано-7-этоксиимидазо- [**1,2-***a*] **пиридин (8).** Водный фильтрат, полученный в синтезе соединения **2b,** подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Образовавшийся осадок перекристаллизовывают из этанола.

Рентгеноструктурный анализ трифторацетата 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-a]пиридиния (2c). Кристаллы исследуемого соединения — моноклинные. Параметры элементарной ячейки: a=8.421(2), b=13.005(3), c=15.546(3) Å, $\beta=90.10(3)^\circ, V=1702.5(7)$ ų, $d_{\text{выч}}=1.573$ мг/м³, Z=4; пространственная группа P2(1)c. Получено 2145 независимых отражений, $2\theta_{\text{max}}=25.05^\circ$, конечный R-фактор 0.0724.

Рентгеноструктурный анализ 1,2,3,7-тетрагидро-7-трифторметил-5-фенил-6-хлор-8-циано-7-этоксиимидазо[1,2-a]пиридина (7a). Кристаллы исследуемого соединения моноклинные. Параметры элементарной ячейки: $a=26.650(5),\,b=10.352(2),\,c=13.095(3)$ Å, $\beta=104.30(3)^\circ,\,V=3500.7(12)$ ų, $d_{\rm выч}=1.403$ мг/м³, Z=8; пространственная группа C2/c. Получено 2450 независимых отражений, $2\theta_{\rm max}=25.06^\circ$, конечный R-фактор 0.0451.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. Сулоева, М. Юре, Э. Гудриниеце, ХГС, 1299 (1999).
- 2. Е. Сулоева, М. Юре, Э. Гудриниеце, ХГС, 1011 (2000).
- 3. Е. Сулоева, М. Юре, Э. Гудриниеце, С. Беляков, М. Петрова, И. Калните, *XГС*, 358 (2001).
- 4. J. Sulojeva, M. Petrova, E. Gudriniece, M. Jure, *RTU Zinātniskie raksti. Materiālzinātne un lietišķā ķīmija*, Rīga, 2000, 1, 121.
- 5. T. Kato, T. Sakamoto, Yakugaku zasshi, 91, 1174 (1971); Chem. Abstr., 76, 46141 (1971).
- 6. S. Portnoy, J. Org. Chem., 3377 (1965).
- 7. O. Bremer, Lieb. Ann. Chem., **521**, 286 (1936).
- 8. А. Ф. Мишнев, С. В. Беляков, Кристаллография, 33, вып. 4, 835 (1988).
- 9. П. Глузинский, Я. Краевский, А. Кемме, А. Мишнев, в кн. *Прецизионные структурные исследования кристаллов*. Тез. докл. II Всесоюз. совещ., Рига, 1990, 30.

Рижский технический университет, Puгa LV-1048, Латвия e-mail: mara@ktf.rtu.lv Поступило в редакцию 16.05.2001

^аЛатвийский институт органического синтеза Рига, LV-1006, Латвия e-mail: akemme@osi.lv