Е. Сулоева, М. Юре, Э. Гудриниеце, М. Петрова, А. Кемме^а

СВОЙСТВА 2,3-ДИГИДРО-7-ТРИФТОРМЕТИЛ-5-ФЕНИЛ-8-ЦИАНОИМИДАЗО[1,2-*a*]ПИРИДИНОВ

Изучены реакции алкилирования, ацилирования, галогенирования, нитрования, окисления и гидролиза 2,3-дигидро-7-трифторметил-5-фенил-8цианоимидазо[1,2-*a*]пиридина. Найдено, что его 6-галогенпроизводные присоединяют спирты с образованием ковалентных сольватов. Методом РСА изучены структуры одного из сольватов – 1,2,3,7-тетрагидро-7-трифторметил-5-фенил-6-хлор-8-циано-7-этоксиимидазо[1,2-*a*]пиридина, а также трифторацетата 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридина.

Ключевые слова: 2,3-дигидроимидазо[1,2-*а*]пиридины, ковалентные сольваты, соли 2,3-дигидроимидазо[1,2-*а*]пиридиния, РСА.

Согласно данным [1, 2], 2,3-дигидроимидазо[1,2-*a*]пиридины являются недостаточно изученной гетероциклической системой. Это побудило нас подробнее изучить химические и физические свойства 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридина (1).

Ранее мы показали, что имидазо[1,2-*а*]пиридин **1** легко протонируется кислотами [3, 4]. С алкилгалогенидами имидазопиридин **1**, подобно другим 2,3-дигидроимидазо[1,2-*a*]пиридинам [2], дает соли 1-алкил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния **2а,b** (табл. 1). До сих пор только в работе [5] описано ацилирование 2,3-дигидроимидазо[1,2-*a*]-пиридинов, протекающее по атому N₍₁₎. При кипячении имидазопиридина **1** в ацетилхлориде мы получили хлорид 1-ацетилимидазопиридиния (**3a**) в виде бесцветных игольчатых кристаллов. При нагревании имидазопиридина **1** в ацетонитриле с эквимолярным количеством бензоилхлорида с выходом 73% был получен описанный нами ранее [3] 2-(2-бензоилокси-этиламино)-4-трифторметил-6-фенил-3-цианопиридин. Замена ацетонитрила на хлороформ привела к образованию 1-бензоилимидазопиридиниевой соли **3b**.

Имидазопиридин 1 вступает в реакции электрофильного замещения в пиридиновом цикле. Так, бромированием в ДМФА и хлорированием в диоксане получены желтые соли 4, из которых при подщелачивании образуются, соответственно, 6-бром- и 6-хлоримидазопиридины 5a,b. В зависимости от условий реакции, соли 4 могут содержать переменное количество комплексно связанного брома – нам удалось выделить соединение 4c (n = 3). Соли 4a,b мы также получили при обработке имидазопиридинов 5a,b соответствующими кислотами.

2 a R = Me, X = I, b R = Pr, X = I, c R = H, X = CF₃COO [4], d R = H, X = HSeO₃; **3** a R¹ = Me, Y = Cl, b R¹ = Ph, Y = Cl; **4** a Hal = Cl, n = 1, b Hal = Br, n = 1, c Hal = Br, n = 3; **5** a Hal = Cl, b Hal = Br; **6** a n = 0 [3], b n = 1; **7** a Hal = Cl, b–e Hal = Br; **a**, c, R² = Et, b R² = Me, d R² = Bu, e R² = Ph

Для спектров ЯМР ¹Н 1-замещенных имидазопиридиниевых солей 2-4 (табл. 2) характерно расщепление сигнала протонов метиленовых групп фрагмента NCH₂CH₂N на два мультиплета. Очевидно, что структура соединений 2a,b, 3a,b и солей 4a,b подобна структуре ранее описанных [3, 4] солей 2 (R = H). Для ее полного установления применен РСА. Из всех полученных нами имидазопиридиниевых солей [3, 4] для РСА был 2,3-дигидро-7-трифторметил-5-фенил-8-циановыбран трифторацетат имидазо[1,2-a]пиридиния (2c), который, благодаря разветвленной системе сильных водородных связей, образует стабильные кристаллы. Пространственная модель молекулы с нумерацией атомов изображена на рис. 1. Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 3. Судя по длинам связей и величинам валентных углов (табл. 4, 5) положительный заряд локализован на атоме N₍₁₎ (N₍₂₎ на рис. 1). В молекуле исследуемого соединения присутствует сильная водородная связь между анионом и катионной частью: $d(H_{(2)}...O_{(2)}) = 1.97$ Å, ω (N₍₂₎-H₍₂₎...O₍₂₎) = 166°. Кроме того, в молекуле соли наблюдается нарушение сопряжения фенильного заместителя с гетероциклической системой: двугранный угол между плоскостями циклов составляет 132°, а длина межкольцевой связи – 1.484 Å.

	Ларактерист	ики синте	зированні	ых соедин	снии	
Соели-	Брутто-	Найдено, %				BUXOT %
нение	формула	В	Вычислено, %		Т. пл., °С	(метол)
nenne	φοριάζεια	С	Н	N		(метод)
29	CucHuaFaINa	44 35	2 90	9.53	208-210	87
24	01611313113	44.57	$\frac{2.90}{3.04}$	9.75	(pagg)	07
2h	C18H17F2IN2	46.90	4 01	8 80	95_97	26
-0		47.08	3.73	9.15	(разл.)	20
2d	C15H10E2N2 •H2SeO2	42.80	3.10	9.89	103–105	69
		43.08	2.89	10.05	(разл.)	
3a	C ₁₇ H ₁₃ ClF ₃ N ₃ O	55.63	3.50	11.49	130–132	79
		55.52	3.56	11.43	(разл.)	
3b	C ₂₂ H ₁₅ ClF ₃ N ₃ O	61.42	3.38	9.75	150-152	67
		61.48	3.52	9.78	(разл.)	
4a	C ₁₅ H ₉ ClF ₃ N ₃ •HCl	49.82	2.93	11.54	232-234	48 (A),
		50.02	2.80	11.67	(разл.)	90 (Б)
4b	C ₁₅ H ₉ BrF ₃ N ₃ •HBr	40.02	2.36	<u>9.10</u>	253-254	82
		40.12	2.24	9.36	(разл.)	
4 c	C ₁₅ H ₉ BrF ₃ N ₃ •HBr ₃	29.28	1.15	6.71	160-163	48
		29.59	1.66	6.90	(разл.)	
5a	$C_{15}H_9ClF_3N_3$	<u>55.03</u>	2.78	<u>12.79</u>	158-160	11 (A),
		55.66	2.80	12.98		72 (Б)
5b	$C_{15}H_9BrF_3N_3$	<u>47.96</u>	<u>2.51</u>	<u>11.40</u>	172–173	20 (A),
		48.94	2.46	11.40		72 (Б)
6b	$C_{15}H_{12}F_3N_3O\bullet C_2H_5\bullet OH$	<u>56.97</u>	<u>5.13</u>	<u>11.77</u>	217-218	61
_		57.79	5.13	11.89	(разл.)	
7 a	$C_{17}H_{15}CIF_3N_3O$	<u>55.03</u>	<u>4.00</u>	<u>11.19</u>	146–148	55
71		55.22 49.25	4.09	10.42	(pash.)	10
76	$C_{16}H_{13}BrF_3N_3O$	<u>48.35</u> <u>48.02</u>	<u>3.35</u> 3.27	$\frac{10.43}{10.50}$	126-128	46
7.	C II DE NO	40.02	2.50	10.50	(pasi.)	52
7 c	$C_{17}H_{15}BIF_3N_3O$	49.27	<u>3.50</u> 3.65	$\frac{10.14}{10.14}$	(page)	55
74	C., H., BrE.N.O	51 55	4.15	0.50	(pash.)	54
/u	C19H19BH13N3O	$\frac{51.55}{51.60}$	4.15	9.50	(pagit)	54
7e	CatH15BrF2N2O	55 32	3 21	9.26	178_180	56
	C21113D11 3130	<u>55.52</u> 54.56	3.27	9.09	(разл.)	50
8	C20H22F2N2O	63.30	5.66	11.06	93_95	50
0	-2022- 3- 30	63.65	5.86	11.13	(разл.)	
	1		1	1	U V	1

Характеристики синтезированных соединений

Попытки получить нитропроизводное имидазопиридина 1 потерпели неудачу. При обработке имидазопиридина 1 азотной кислотой в уксусном ангидриде при комнатной температуре или нитрующей смесью на холоду мы получили лишь ранее нами описанный [3] нитрат 2,3-дигидро-7трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния. Для проведения нитрования мы использовали и более жесткие условия: нагревание в азотной кислоте, в смеси азотной кислоты и ацетангидрида, в нитрующей смеси. Ни в одном из вышеперечисленных случаев 6-нитропроизводное имидазопиридина 1 выделить не удалось.

Неудачными также оказались попытки получить 2,3-дегидропроизводное соединения **1**. При нагревании имидазопиридина **1** с хлоранилом в диоксане мы выделили продукт расщепления имидазольного цикла – ранее описанный [3] 4-трифторметил-6-фенил-2-(2-хлорэтиламино)-3-цианопиридин. Попытки окисления имидазопиридина **1** SeO₂ также привели к раскрытию имидазольного цикла с образованием известного [6] 4-трифторметил-6-фенил-3-цианопиридин-2-она. В более мягких условиях была получена соль селенистой кислоты **2d**.

813

Таблица 1

Рис. 1. Пространственная модель соединения 2с

Рис. 2. Пространственная модель соединения 7а

Спектральные характеристики синтезированных соединений

Соеди- нение	ИК спектр, v, см $^{-1}$	Спектр ЯМР ¹ Н, б, м. д., <i>Ј</i> , Гц*
2a	3030, 2938, 2238, 1634, 1580	3.64 (3H, c, CH ₃); 4.40 (2H, т, <i>J</i> = 6, CH ₂); 4.69 (2H, т, <i>J</i> = 6, CH ₂); 6.89 (1H, c, –CH=); 7.33 (3H, м, C ₆ H ₅); 7.78 (2H, м, C ₆ H ₅)
2b	3030, 2971, 2171, 1646, 1556	0.98 (3H, т, <i>J</i> = 6, CH ₃); 1.81 (2H, секст, <i>J</i> = 6, CH ₂); 3.89 (2H, т, <i>J</i> = 6, CH ₂); 4.12 (2H, м, CH ₂); 4.61 (2H, м, CH ₂); 7.52 (1H, с, –CH=); 7.74 (5H, м, C ₆ H ₅)
2d	3323, 2222, 1639, 1540	3.74-4.32 (4H, м, 2CH ₂); 6.09 (1H, с, –CH=); 7.16 (2H, уш. с, NH, HSeO ₃); 7.65 (5H, м, C ₆ H ₅)
3a	3079, 2235, 1678, 1596, 1552	2.16 (3H, c, CH ₃); 3.83 (2H, т, <i>J</i> = 6, CH ₂); 4.29 (2H, т, <i>J</i> = 6, CH ₂); 7.58 (3H, м, C ₆ H ₅); 8.05 (3H, м, C ₆ H ₅ , –CH=)
3b	3070, 2968, 2231, 1668, 1634, 1596, 1576, 1554	4.07 (2H, т, <i>J</i> = 6, CH ₂); 4.52 (2H, т, <i>J</i> = 6, CH ₂); 7.45 (5H, м, C ₆ H ₅); 7.69 (3H, м, C ₆ H ₅); 8.36 (2H, м, C ₆ H ₅); 8.47 (1H, с, –CH=)
4a	2550, 2226, 1654, 1580	4.01 (2H, м, CH ₂); 4.43 (2H, м, CH ₂); 7.65 (5H, м, C ₆ H ₅); 8.02 (1H, уш. с, NH)
4 b	3483, 3063, 2239, 1632, 1570, 1524	3.87 (2H, м, CH ₂); 4.29 (2H, м, CH ₂); 7.44 (2H, м, C ₆ H ₅); 7.64 (3H, м, C ₆ H ₅); 9.07 (1H, уш. с, NH)
4c	3521, 3241, 3175–2830, 2229, 1647, 1571, 1533	2.91–3.56 (4H, м, CH ₂ CH ₂); 5.89 (5H, м, C ₆ H ₅); 8.60 (1H, уш. с, NH)
5a	2892, 2220, 1639, 1543, 1517	3.87 (4H, м, CH ₂ CH ₂); 7.24 (2H, м, C ₆ H ₅); 7.47 (3H, м, C ₆ H ₅)
5b	3054, 2926, 2230, 1632, 1544, 1518	3.71 (4H, м, CH ₂ CH ₂); 7.53 (5H, м, C ₆ H ₅)
6b	3250, 3120, 2976, 1691, 1641, 1585, 1557	1.07 (3H, т, <i>J</i> = 7, CH ₃); 3.74 (2H, кв, <i>J</i> = 7, CH ₂); 3.85 (4H, м, 2CH ₂); 4.36 (1H, уш. с, OH); 5.61 (1H, с, –CH=); 7.56 (5H, м, C ₆ H ₅); 8.01 (2H, уш. с, NH ₂)
7a	3284, 2980, 2936, 2900, 2188, 1657, 1607, 1593	1.21 (3H, т, <i>J</i> = 7, CH ₃); 3.41–3.76 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.36 (2H, м, C ₆ H ₅); 7.49 (3H, м, C ₆ H ₅); 7.81 (1H, с, NH)
7b	3270, 2930, 2900, 2190, 1651, 1605, 1589	3.20 (3H, c, CH ₃); 3.40 (4H, м, CH ₂ CH ₂); 7.23 (2H, м, C ₆ H ₅); 7.58 (3H, м, C ₆ H ₅); 7.83 (1H, c, NH)
7c	3283, 2965, 2883, 2171, 1653, 1605, 1589, 1541	1.23 (3H, т, <i>J</i> = 7, CH ₃); 3.38–3.72 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.29 (2H, м, C ₆ H ₅); 7.49 (3H, м, C ₆ H ₅); 7.78 (1H, с, NH)
7d	3275, 2959, 2875, 2187, 1652, 1604, 1588, 1560	0.89 (3H, т, <i>J</i> = 7, CH ₃); 1.23–1.69 (4H, м, CH ₂ CH ₂); 3.43 (6H, м, CH ₂ , NCH ₂ CH ₂ N); 7.34 (2H, м, C ₆ H ₅); 7.52 (3H, м, C ₆ H ₅); 7.78 (1H, с, NH)
7e	3282, 2223, 1632, 1602, 1588, 1542, 1524	3.76 (4H, м, CH ₂ CH ₂); 6.81 (3H, м, C ₆ H ₅); 7.21 (2H, м, C ₆ H ₅); 7.54 (5H, м, C ₆ H ₅); 9.32 (1H, с, NH)
8	3084, 2968, 2880, 2180, 1646, 1556, 1466	0.89 (3H, т, <i>J</i> = 6, CH ₃); 1.21 (3H, т, <i>J</i> = 7, CH ₃); 1.65 (2H, секст, <i>J</i> = 6, CH ₂); 2.87–3.74 (8H, м, 4CH ₂); 5.16 (1H, с, =CH–); 7.41 (5H, м, C ₆ H ₅)

* Спектр ЯМР ¹Н соединений **2а,b, 3а,b, 5а,b, 8** регистрировался в CDCl₃, остальных – в ДМСО-d₆.

Таблица З

Атом	x	у	z	U(eq)
N(1)	6663(4)	8719(3)	1735(2)	42(1)
C(2)	5913(6)	8630(4)	959(3)	42(1)
C ₍₃₎	4464(6)	8095(4)	914(3)	43(1)
C ₍₄₎	3856(6)	7698(4)	1668(3)	43(1)
C(14)	2329(7)	7090(5)	1653(4)	56(2)
F ₍₁₎	1163(4)	7584(3)	1275(3)	94(1)
F(2)	2475(5)	6233(3)	1238(4)	127(2)
F ₍₃₎	1805(5)	6868(4)	2426(3)	112(2)
C(5)	4651(6)	7814(4)	2442(3)	46(1)
C ₍₆₎	6067(6)	8332(4)	2482(3)	44(1)
C ₍₇₎	6944(6)	8472(4)	3302(3)	44(1)
C ₍₈₎	6105(7)	8813(4)	4015(3)	54(2)
C ₍₉₎	6863(8)	8926(5)	4795(4)	71(2)
C(10)	8442(9)	8683(6)	4871(4)	81(2)
C(11)	9250(8)	8315(6)	4180(4)	80(2)
C(12)	8518(7)	8214(5)	3388(4)	65(2)
N(2)	6705(5)	9101(4)	348(3)	54(1)
C(13)	3690(6)	8008(4)	93(3)	52(1)
N(3)	3090(6)	7954(5)	-565(3)	75(2)
C(15)	8046(7)	9432(5)	1628(3)	67(2)
C(16)	8221(7)	9502(5)	668(3)	61(2)
O _(1')	8498(6)	9949(5)	-1327(3)	125(2)
C _(2')	7338(7)	9633(4)	-1678(3)	55(2)
O(2')	6067(5)	9346(4)	-1370(2)	78(1)
C _(1')	7460(8)	9566(5)	-2648(4)	64(2)
F(1')	8246(8)	8788(4)	-2924(3)	158(3)
F _(2')	6038(6)	9458(4)	-3035(2)	119(2)
F(3')	7997(6)	10400(4)	-3009(3)	121(2)

Координаты (×10⁴) и эквивалентные изотропные тепловые параметры (Å²×10³) атомов в молекуле соединения 2с

Таблица 4

Усредненные межатомные расстояния в молекуле соединения 2с

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
C ₍₆₎ -N ₍₁₎	1.362(6)	C ₍₈₎ -C ₍₇₎	1.387(7)	C(16)-H(16B)	0.9700
C(2)-N(1)	1.367(6)	C(7)-C(6)	1.484(6)	C(8)-H(8)	0.9300
C(15)-N(1)	1.498(7)	C(12)-C(7)	1.374(7)	C(9)-H(9)	0.9300
N(2)-C(2)	1.313(6)	C(9)-C(8)	1.379(7)	C(10)-H(10)	0.9300
$C_{(4)} - C_{(3)}$	1.381(7)	C(10)-C(9)	1.371(9)	C(11)-H(11)	0.9300
$C_{(13)} - C_{(3)}$	1.437(7)	C ₍₁₁₎ -C ₍₁₀₎	1.360(9)	C(12)-H(12)	0.9300
C(5)-C(4)	1.383(7)	$C_{(12)} - C_{(11)}$	1.383(8)	N(2)-H(2)	0.82(5)
C(3)-C(2)	1.406(7)	N(2)-C(16)	1.465(7)	C(2')-O(1')	1.191(6)
$C_{(14)} - C_{(4)}$	1.510(7)	N(3)-C(13)	1.142(6)	C _(2') –O _(2')	1.231(6)
$F_{(1)}-C_{(14)}$	1.311(6)	C(15)-C(16)	1.503(7)	C(2')-C(1')	1.514(8)
$F_{(2)}-C_{(14)}$	1.293(7)	C(15)-H(15A)	0.9700	C _(1') –F _(1')	1.284(7)
F(3)-C(14)	1.313(6)	C(15)-H(15B)	0.9700	C(1')-F(2')	1.346(7)
C(6)-C(5)	1.371(7)	C(16)-H(16A)	0.9700	C(1')-F(3')	1.302(7)

Таблица 5

Валентные углы в молекуле соединения 2с						
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.	
C ₍₂₎ -N ₍₁₎ -C ₍₆₎	123.4(4)	$C_{(6)}-C_{(7)}-C_{(12)}$	122.2(5)	$H_{(12)}-C_{(12)}-C_{(7)}$	120.3	
$N_{(1)}-C_{(2)}-C_{(3)}$	119.0(4)	$C_{(6)} - C_{(7)} - C_{(8)}$	118.2(5)	$H_{(12)}-C_{(12)}-C_{(11)}$	120.3	
$N_{(1)} - C_{(2)} - N_{(2)}$	111.4(5)	$C_{(7)}$ - $C_{(8)}$ - $C_{(9)}$	120.1(6)	H _(15A) -C ₍₁₅₎ -N ₍₁₎	111.2	
$C_{(6)} - N_{(1)} - C_{(15)}$	127.7(4)	C(8)-C(9)-C(10)	119.9(6)	H(15A)-C(15)-C(16)	111.2	
$C_{(2)} - N_{(1)} - C_{(15)}$	108.2(4)	$C_{(9)}-C_{(10)}-C_{(11)}$	120.0(6)	$H_{(15B)}-C_{(15)}-N_{(1)}$	111.2	
$C_{(3)} - C_{(2)} - N_{(2)}$	129.6(4)	$C_{(10)} - C_{(11)} - C_{(12)}$	120.9(6)	$H_{(15B)}$ - $C_{(15)}$ - $C_{(16)}$	111.2	
$C_{(2)}-C_{(3)}-C_{(4)}$	117.8(4)	$C_{(7)}-C_{(12)}-C_{(11)}$	119.5(6)	$H_{(15A)}$ - $C_{(15)}$ - $H_{(15B)}$	109.1	
$C_{(4)}$ - $C_{(3)}$ - $C_{(13)}$	123.8(5)	$C_{(2)} - N_{(2)} - C_{(16)}$	111.4(4)	$H_{(16A)}$ - $C_{(16)}$ - $N_{(2)}$	111.1	
$C_{(2)}-C_{(3)}-C_{(13)}$	118.4(5)	C(3)-C(13)-N(3)	178.7(6)	$H_{(16A)}$ - $C_{(16)}$ - $C_{(15)}$	111.1	
$C_{(3)} - C_{(4)} - C_{(5)}$	121.2(5)	$N_{(1)}-C_{(15)}-C_{(16)}$	103.1(4)	$H_{(16B)}$ - $C_{(16)}$ - $N_{(2)}$	111.1	
$C_{(5)}-C_{(4)}-C_{(14)}$	118.8(5)	$C_{(15)} - C_{(16)} - N_{(2)}$	103.2(4)	$H_{(16B)}$ - $C_{(16)}$ - $C_{(15)}$	111.1	
$C_{(3)} - C_{(4)} - C_{(14)}$	120.0(4)	$H_{(2)} - N_{(2)} - C_{(2)}$	124(4)	$H_{(16A)}$ - $C_{(16)}$ - $H_{(16B)}$	109.1	
$F_{(1)}$ - $C_{(14)}$ - $F_{(2)}$	105.8(5)	$H_{(2)}-N_{(2)}-C_{(16)}$	123(4)	$O_{(2')} - C_{(2')} - O_{(1')}$	129.8(6)	
$F_{(2)}$ - $C_{(14)}$ - $F_{(3)}$	107.4(5)	$H_{(5)} - C_{(5)} - C_{(6)}$	119.6	$C_{(1')} - C_{(2')} - O_{(1')}$	114.7(5)	
$F_{(1)}$ - $C_{(14)}$ - $F_{(3)}$	105.4(5)	$H_{(5)}-C_{(5)}-C_{(4)}$	119.6	$C_{(1')} - C_{(2')} - O_{(2')}$	115.5(5)	
$C_{(4)}$ - $C_{(14)}$ - $F_{(2)}$	112.2(5)	$H_{(8)} - C_{(8)} - C_{(9)}$	120.0	$F_{(3')}-C_{(1')}-F_{(1')}$	109.4(6)	
$C_{(4)}$ - $C_{(14)}$ - $F_{(1)}$	112.8(5)	$H_{(8)}$ - $C_{(8)}$ - $C_{(7)}$	120.0	$F_{(2')}-C_{(1')}-F_{(1')}$	103.1(6)	
$C_{(4)}$ - $C_{(14)}$ - $F_{(3)}$	112.8(5)	$H_{(9)}-C_{(9)}-C_{(10)}$	120.0	$F_{(2')}$ - $C_{(1')}$ - $F_{(3')}$	101.7(5)	
$C_{(4)} - C_{(5)} - C_{(6)}$	120.8(5)	$H_{(9)} - C_{(9)} - C_{(8)}$	120.0	$C_{(2')}-C_{(1')}-F_{(1')}$	114.5(5)	
$N_{(1)}-C_{(6)}-C_{(5)}$	117.7(4)	$H_{(10)}-C_{(10)}-C_{(11)}$	120.0	$C_{(2')}-C_{(1')}-F_{(3')}$	113.9(5)	
$N_{(1)}-C_{(6)}-C_{(7)}$	120.2(4)	H(10)-C(10)-C(9)	120.0	$C_{(2')} - C_{(1')} - F_{(2')}$	112.9(5)	
$C_{(5)} - C_{(6)} - C_{(7)}$	122.1(5)	$H_{(11)}-C_{(11)}-C_{(10)}$	119.5			
$C_{(8)}$ - $C_{(7)}$ - $C_{(12)}$	119.6(5)	$H_{(11)}$ - $C_{(11)}$ - $C_{(12)}$	119.5			

Таблица б Координаты (×10⁴) и эквивалентные изотропные тепловые параметры (Å²×10³) атомов в молекуле соединения 7а

	атомов в молекуле соединения /а							
Атом	x	у	z	U(eq)				
Cl ₍₁₎	506(1)	2342(1)	3629(1)	62(1)				
0	805(1)	-466(2)	3453(1)	45(1)				
F ₍₁₎	1431(1)	-350(2)	2089(1)	62(1)				
F(2)	8489(1)	1097(2)	1866(1)	63(1)				
F ₍₃₎	1637(1)	1601(2)	2536(1)	67(1)				
N ₍₁₎	1889(1)	1631(2)	5494(2)	40(1)				
N(2)	2465(1)	68(3)	5828(2)	50(1)				
N ₍₃₎	1989(1)	-2464(3)	3938(2)	67(1)				
C(2)	2015(1)	445(3)	5197(2)	38(1)				
C ₍₃₎	1717(1)	-168(3)	4314(2)	40(1)				
C ₍₄₎	1223(1)	421(3)	3652(2)	41(1)				
C ₍₅₎	1105(1)	1661(3)	4166(2)	42(1)				
C ₍₆₎	1415(1)	2205(3)	5019(2)	38(1)				
C ₍₇₎	1284(1)	3398(3)	5534(2)	40(1)				
C ₍₈₎	1049(1)	3320(4)	6352(3)	59(1)				
C ₍₉₎	907(2)	4418(4)	6807(3)	77(1)				
C(10)	1000(2)	5598(4)	6453(4)	78(1)				
C ₍₁₁₎	1244(2)	5696(4)	5666(5)	97(2)				
C(12)	1384(2)	4603(3)	5193(3)	75(1)				
C ₍₁₃₎	2284(1)	2109(3)	6400(3)	47(1)				
C(14)	2624(2)	923(4)	6722(3)	61(1)				
C ₍₁₅₎	1861(1)	-1435(3)	4091(2)	48(1)				
C ₍₁₆₎	1282(1)	692(3)	2529(2)	45(1)				
C(17)	645(2)	-881(4)	4371(3)	59(1)				
C ₍₁₈₎	209(2)	-1791(7)	4011(4)	97(1)				

Таблица 7

Cherry	J Å	Chart	۸ L	Cherry	ÅL
Связь	<i>a</i> , A	Связь	<i>a</i> , A	Связь	<i>d</i> , A
Cl ₍₁₀₎ -C ₍₅₎	1.727(3)	C ₍₃₎ -C ₍₁₅₎	1.417(4)	C(11)-C(12)	1.385(6)
O-C ₍₄₎	1.419(3)	$C_{(3)} - C_{(4)}$	1.514(4)	C(11)-H(11)	0.91(4)
O-C(17)	1.436(4)	C(4)-C(5)	1.518(4)	C(12)-H(12)	1.00(4)
$F_{(1)}-C_{(16)}$	1.330(3)	$C_{(4)} - C_{(16)}$	1.541(4)	C(13)-C(14)	1.521(5)
$F_{(2)}-C_{(16)}$	1.330(3)	C(5)-C(6)	1.339(4)	C(13)-H(13A)	0.93(3)
F(3)-C(16)	1.333(3)	$C_{(6)} - C_{(7)}$	1.488(4)	C(13)-H(13B)	0.91(3)
N(1)-C(2)	1.364(3)	$C_{(7)} - C_{(8)}$	1.370(4)	C(14)-H(14A)	0.95(3)
N(1)-C(6)	1.395(3)	$C_{(7)}-C_{(12)}$	1.373(4)	C(14)-H(14B)	0.92(4)
$N_{(1)}-C_{(13)}$	1.465(3)	C(8)-C(9)	1.380(5)	C(17)-C(18)	1.478(6)
N(2)-C(2)	1.345(3)	C(8)-H(8)	0.91(3)	C(17)-H(17A)	1.02(4)
N(2)-C(14)	1.445(4)	C(9)-C(10)	1.351(6)	C(17)-H(17B)	0.92(3)
N(2)-H(2)	0.85(3)	C(9)-H(9)	0.95(4)	C(18)-H(18A)	0.94(4)
N(3)-C(15)	1.151(4)	$C_{(10)}-C_{(11)}$	1.353(6)	C(18)-H(18B)	1.05(4)
C(2)-C(3)	1.369(4)	$C_{(10)}-H_{(10)}$	0.94(4)	C(18)-H(18C)	0.95(6)

Усредненные межатомные расстояния в молекуле соединения 7а

Таблица 8

Валентные уг	лы в моле	куле соеди	нения 7а
--------------	-----------	------------	----------

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
C(4)=0=C(47)	115.0(2)	C	120.6(3)	$N_{(2)}=C_{(1,1)}=C_{(1,2)}$	103 6(3)
$C_{(4)} = V_{(1)}$	120.9(2)	$C_{(8)} = C_{(7)} = C_{(6)}$	120.0(3) 121.4(3)	$N_{(2)} = C_{(14)} = H_{(144)}$	105.0(5) 107.4(19)
$C_{(2)} = N_{(1)} = C_{(3)}$	120.5(2) 111.5(2)	$C_{(12)} = C_{(7)} = C_{(6)}$	121.4(3) 121.1(4)	$\Gamma_{(2)} = C_{(14)} = H_{(14A)}$	113 3(19)
$C_{(2)} = N_{(1)} = C_{(13)}$	127.5(2)	$C_{(7)} = C_{(8)} = H_{(9)}$	118(2)	$V_{(13)} = C_{(14)} = H_{(14A)}$	113(3)
$C_{(0)} = N_{(1)} = C_{(13)}$	111 8(3)	$C_{(7)} = C_{(8)} = H_{(8)}$	121(2)	$\Gamma_{(2)} = C_{(14)} = H_{(14B)}$	112(3)
$C_{(2)} = N_{(2)} = C_{(14)}$	120(2)	$C_{(9)} = C_{(8)} = \Gamma_{(8)}$	121(2) 120 2(4)	$H_{(14)} = C_{(14)} = H_{(14B)}$	107(3)
$C_{(2)} = N_{(2)} = H_{(2)}$	120(2) 126(2)	$C_{(10)} - C_{(9)} - C_{(8)}$	118(3)	$N_{(14A)} - C_{(14)} - \Pi_{(14B)}$	107(3) 178 0(3)
$C_{(14)} = N_{(2)} = \Pi_{(2)}$	120(2) 108 6(2)	$C_{(10)} - C_{(9)} - \Pi_{(9)}$	121(3)	$R_{(3)} - C_{(15)} - C_{(3)}$	178.0(3) 106.2(2)
$N_{(2)} - C_{(2)} - N_{(1)}$	108.0(2) 120.2(2)	$C_{(8)} - C_{(9)} - \Pi_{(9)}$	121(3)	$\Gamma_{(2)} = C_{(16)} = \Gamma_{(1)}$	100.2(2)
$N_{(2)} - C_{(2)} - C_{(3)}$	129.3(3)	$C_{(9)} - C_{(10)} - C_{(11)}$	119.3(4)	$\Gamma_{(2)} - C_{(16)} - \Gamma_{(3)}$	100.3(2)
$N_{(1)} - C_{(2)} - C_{(3)}$	122.1(2)	$C_{(9)} - C_{(10)} - \Pi_{(10)}$	125(2)	$\Gamma_{(1)} - C_{(16)} - \Gamma_{(3)}$	100.7(2)
$C_{(2)} - C_{(3)} - C_{(15)}$	117.9(2)	$C_{(11)}-C_{(10)}-H_{(10)}$	118(2)	$F_{(2)}-C_{(16)}-C_{(4)}$	113.8(2)
$C_{(2)} - C_{(3)} - C_{(4)}$	122.1(2)	$C_{(10)} - C_{(11)} - C_{(12)}$	120.8(4)	$F_{(1)}-C_{(16)}-C_{(4)}$	112.2(2)
$C_{(15)} - C_{(3)} - C_{(4)}$	119.8(2)	$C_{(10)}-C_{(11)}-H_{(11)}$	123(3)	$F_{(3)}-C_{(16)}-C_{(4)}$	111.1(2)
$O-C_{(4)}-C_{(3)}$	112.2(2)	$C_{(12)}-C_{(11)}-H_{(11)}$	116(3)	$O-C_{(17)}-C_{(18)}$	107.2(3)
$O-C_{(4)}-C_{(5)}$	112.9(2)	$C_{(7)}-C_{(12)}-C_{(11)}$	120.2(4)	$O-C_{(17)}-H_{(17A)}$	108(2)
$C_{(3)} - C_{(4)} - C_{(5)}$	109.5(2)	$C_{(7)}-C_{(12)}-H_{(12)}$	117(2)	C(18)-C(17)-H(17A)	113(2)
$O-C_{(4)}-C_{(16)}$	101.7(2)	$C_{(11)}$ - $C_{(12)}$ - $H_{(12)}$	122(2)	O-C(17)-H(17B)	111(2)
$C_{(3)} - C_{(4)} - C_{(16)}$	109.9(2)	N ₍₁₎ -C ₍₁₃₎ -C ₍₁₄₎	102.2(2)	C(18)-C(17)-H(17B)	112(2)
$C_{(5)} - C_{(4)} - C_{(16)}$	110.5(2)	N(1)-C(13)-H(13A)	108.9(18)	H _(17A) -C ₍₁₇₎ -H _(17B)	106(3)
$C_{(6)} - C_{(5)} - C_{(4)}$	124.9(2)	C(14)-C(13)-H(13A)	113.7(17)	C(17)-C(18)-H(18A)	106(2)
C(6)-C(5)-Cl(1)	119.1(2)	N(1)-C(13)-H(13B)	109(2)	C(17)-C(18)-H(18B)	101(2)
$C_{(4)} - C_{(5)} - Cl_{(1)}$	115.9(19)	$C_{(14)}-C_{(13)}-H_{(13B)}$	115(2)	H _(18A) -C ₍₁₈₎ -H _(18B)	109(3)
C(5)-C(6)-N(1)	119.8(2)	C(14)-C(13)-H(13A)	113.7(17)	C(17)-C(18)-H(18C)	115(4)
C(5)-C(6)-C(7)	124.1(2)	N(1)-C(13)-H(13B)	109(2)	H _(18A) -C ₍₁₈₎ -H _(18C)	107(4)
$N_{(1)}-C_{(6)}-C_{(7)}$	116.1(2)	C ₍₁₄₎ -C ₍₁₃₎ -H _(13B)	115(2)	$H_{(18B)}-C_{(18)}-H_{(18C)}$	119(5)
C ₍₈₎ –C ₍₇₎ –C ₍₁₂₎	118.1(3)	H _(13A) -C ₍₁₃₎ -H _(13B)	108(3)		

Согласно данным [2], 2,3-дигидроимидазо[1,2-а]пиридины вступают в реакции с различными нуклеофилами, и при этом обычно происходит расщепление имидазольного цикла с образованием 2-алкиламинопиридинов или 1-алкил-2-иминопиридинов. Однако, при нагревании имидазопиридина 1 в щелочно-этанольном растворе происходит только гидролиз цианогруппы. Образовавшийся амид 6 из реакционной смеси выделен в виде сольвата с молекулой этанола. Сольват 6b образуется также при перекристаллизации из этанола амида 6а, полученного кислотным гидролизом нитрила 1 [3]. Соединение 6b при нагревании в вакууме при 100 °С теряет молекулу спирта.

Исследуя реакции 2,3-дигидроимидазо [1,2-а] пиридинов с нуклеофилами, мы обнаружили необычное явление – присоединение спиртов с образованием ковалентных сольватов, называемых также псевдооснованиями. Образование псевдооснований этой бициклической системой описано лишь однажды [7], как присоединение воды по двойной связи C_(8a)=N₍₁₎, хотя для ряда других гетероциклов это явление известно давно. В нашем случае происходит присоединение молекулы спирта по сопряженной системе связей С₍₇₎=С₍₈₎-С_(8a)=N₍₁₎ с образованием соединений 7а-е и 8. Эта реакция обратима и протекает с электронодефицитными 2,3-дигидроимидазо[1,2-a]пиридинами – 6-галогенпроизводными **5а,b** и солью **2b**. Соединения 7а-е теряют молекулу спирта при нагревании в вакууме при 100 °С. Образование псевдооснований с водой, малононитрилом, изопропанолом и аминами в аналогичных условиях не наблюдалось. Ковалентные сольваты 7а-е обладают менее интенсивной окраской по сравнению с имидазопиридинами 5а, b. Все они плавятся с разложением в интервале 93-163 °С. В ИК спектрах для соединений 7 характерны максимумы v C=N в области 2171-2190 и v N-Н в области 3270-3284 см⁻¹. Для спектров ЯМР ¹Н псевдооснований 7 характерно появление уширенного сигнала N-H в слабых полях в интервале 7.78-9.32 м. д. Сигнал метиленовых протонов наблюдается в виде мультиплета в районе 3.40-3.76 м. д.

Для определения молекулярно-кристаллической структуры ковалентных сольватов проведен РСА соединения **7a** (рис. 2). Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 6, а усредненные межатомные расстояния и валентные углы даны в табл. 7, 8. Двугранный угол между плоскостями фенильного заместителя и гетероциклической системы равен 96°, длина связи $C_{(6)}$ – $C_{(7)}$ составляет 1.488 Å, что свидетельствует о нарушении сопряжения ароматического кольца с бициклической системой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Specord IR-75 в парафиновом масле (призма NaCl, район 1500–1800 см⁻¹) и гексахлорбутадиене (призма LiF, район 2000–3600 см⁻¹). Спектры ЯМР ¹Н регистрировались на приборе Bruker WH-90/DS (90 МГц), внутренний стандарт ТМС или ГМДС. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли с помощью ТСХ на пластинках Silufol UV-254 в системе этанол-хлороформ, 1 : 9. Параметры элементарной ячейки и интенсивность отражений измерены 819

на автоматическом дифрактометре Syntex P2₁, используя монохроматическое молибденовое излучение (графитовый монохроматор), методом ω-сканирования. Структура расшифрована прямым методом [8] и уточнена методом наименьших квадратов в полноматричном анизотропном приближении. Все расчеты проведены программным комплексом [9].

Данные о синтезированых соединениях обобщены в табл. 1 и 2.

Иодид 2,3-дигидро-1-метил-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния (2а). К раствору 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл хлороформа приливают 0.04 мл метилиодида. Реакционную смесь выдерживают при комнатной температуре 24 ч. Растворитель отгоняют в вакууме, образовавшееся масло перекристаллизовывают из диэтилового эфира.

Иодид 2,3-дигидро-1-пропил-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния (2b). К раствору 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл ацетонитрила приливают 0.34 мл (3.5 ммоль) пропилиодида и кипятят 8 ч. Реакционную смесь упаривают в вакууме досуха, к остатку добавляют 50 мл воды, осадок перекристаллизовывают из этанола, а водный фильтрат используют в синтезе соединения 8.

Гидроселенит 2,3-дигидро-(1Н)-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (2d). Раствор 0.5 г (1.73 ммоль) имидазопиридина 1 и 0.2 г (1.73 ммоль) диоксида селена в 5 мл тетрагидрофурана выдерживают при комнатной температуре 7 ч. Осадок отфильтровывают.

Хлорид 1-ацетил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (3а). Раствор 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл свежеперегнанного ацетилхлорида кипятят 4 ч. Реакционную смесь выливают на 50 г измельченного льда. Осадок перекристаллизовывают из этанола.

Хлорид 1-бензоил-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (3b). Раствор 0.2 г (0.69 ммоль) имидазопиридина 1 и 0.1 мл (0.9 ммоль) бензоилхлорида в 5 мл хлороформа кипятят 1 ч. Растворитель отгоняют в вакууме, остаток перекристаллизовывают из этанола.

Хлорид 2,3-дигидро-7-трифторметил-5-фенил-6-хлор-8-цианоимидазо[1,2-а]пиридиния (4а). А. К раствору 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл абсолютного диоксана приливают раствор 0.06 г (0.9 ммоль) хлора в 5 мл диоксана. Реакционную смесь выдерживают при комнатной температуре 24 ч. Осадок отфильтровывают, а фильтрат используют для получения соединения 5а.

Галогениды 6-галоген-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридиния (4a,b). Б. К раствору 0.69 ммоль имидазопиридина 5a или 5b в 5 мл тетрагидрофурана приливают 0.69 ммоль соответствующей кислоты. Реакционную смесь выдерживают при комнатной температуре 4 ч. Образовавшиеся кристаллы отфильтровывают.

Трибромид 6-бром-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (4c). К раствору 0.2 г (0.69 ммоль) имидазопиридина 1 в 5 мл ДМФА приливают 0.04 мл (0.69 ммоль) брома. Реакционную смесь выдерживают при комнатной температуре 24 ч. Раствор выливают в 50 мл воды, осадок отфильтровывают. Фильтрат используют для получения соединения 5b.

6-Галоген-2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо-[1,2-а]пиридины (**5а,b**). А. Фильтрат, полученный в синтезе соединения **4a** (метод A) или **4c**, подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из изопропанола.

Б. Растворяют при нагревании 0.2 г соли имидазопиридиния **4а–с** в 10 мл воды. Раствор подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из изопропанола.

8-Аминокарбонил-2,3-дигидро-7-трифторметил-5-фенилимидазо[1,2-*а*]пиридин ЕtOH (**6b**). Раствор 0.2 г (0.69 ммоль) имидазопиридина 1 и 0.04 г КОН в 5 мл этанола нагревают 4 ч. Реакционную смесь охлаждают до комнатной температуры. Осадок отфильтровывают.

7-Алкокси-6-галоген-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-8-цианоимидазо-[**1,2**-*a*]**пиридины (7а–d).** Раствор 0.2 г имидазопиридина **5а,b** в 5 мл соответствующего спирта нагревают до кипения и оставляют при комнатной температуре на 24 ч. Образовавшиеся кристаллы отфильтровывают.

6-Бром-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-7-фенокси-8-цианоимидазо-[1,2-а]пиридин (7е). К раствору 0.2 г (0.54 ммоль) имидазопиридина 5b в 5 мл хлороформа добавляют 0.05 г (0.54 ммоль) фенола, нагревают до кипения и оставляют при комнатной температуре на 24 ч. Образовавшиеся ярко-красные кристаллы отфильтровывают, промывая на фильтре хлороформом.

1-Пропил-1,2,3,7-тетрагидро-7-трифторметил-5-фенил-8-циано-7-этоксиимидазо-[**1,2**-*a*]**пиридин (8).** Водный фильтрат, полученный в синтезе соединения **2b**, подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Образовавшийся осадок перекристаллизовывают из этанола.

Рентгеноструктурный анализ трифторацетата 2,3-дигидро-7-трифторметил-5фенил-8-цианоимидазо[1,2-*a*]пиридиния (2с). Кристаллы исследуемого соединения – моноклинные. Параметры элементарной ячейки: *a* = 8.421(2), *b* = 13.005(3), *c* = 15.546(3) Å, $\beta = 90.10(3)^\circ$, *V* = 1702.5(7) Å³, *d*_{выч} = 1.573 мг/м³, *Z* = 4; пространственная группа *P*2(1)*c*. Получено 2145 независимых отражений, $2\theta_{max} = 25.05^\circ$, конечный *R*-фактор 0.0724.

Рентгеноструктурный анализ 1,2,3,7-тетрагидро-7-трифторметил-5-фенил-6-хлор-8-циано-7-этоксиимидазо[1,2-*a*]пиридина (7а). Кристаллы исследуемого соединения моноклинные. Параметры элементарной ячейки: *a* = 26.650(5), *b* = 10.352(2), *c* = 13.095(3) Å, $\beta = 104.30(3)^\circ$, *V* = 3500.7(12) Å³, $d_{\text{выч}} = 1.403 \text{ мг/м}^3$, *Z* = 8; пространственная группа *C*2/*c*. Получено 2450 независимых отражений, $2\theta_{\text{max}} = 25.06^\circ$, конечный *R*-фактор 0.0451.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. Сулоева, М. Юре, Э. Гудриниеце, *ХГС*, 1299 (1999).
- 2. Е. Сулоева, М. Юре, Э. Гудриниеце, *ХГС*, 1011 (2000).
- 3. Е. Сулоева, М. Юре, Э. Гудриниеце, С. Беляков, М. Петрова, И. Калните, *ХГС*, 358 (2001).
- 4. J. Sulojeva, M. Petrova, E. Gudriniece, M. Jure, *RTU Zinātniskie raksti. Materiālzinātne un lietišķā ķīmija*, Rīga, 2000, 1, 121.
- 5. T. Kato, T. Sakamoto, Yakugaku zasshi, 91, 1174 (1971); Chem. Abstr., 76, 46141 (1971).
- 6. S. Portnoy, J. Org. Chem., 3377 (1965).
- 7. O. Bremer, Lieb. Ann. Chem., 521, 286 (1936).
- 8. А. Ф. Мишнев, С. В. Беляков, *Кристаллография*, **33**, вып. 4, 835 (1988).
- 9. П. Глузинский, Я. Краевский, А. Кемме, А. Мишнев, в кн. *Прецизионные структурные* исследования кристаллов. Тез. докл. II Всесоюз. совещ., Рига, 1990, 30.

Рижский технический университет, Рига LV-1048, Латвия e-mail: mara@ktf.rtu.lv Поступило в редакцию 16.05.2001

^аЛатвийский институт органического синтеза Рига, LV-1006, Латвия e-mail: akemme@osi.lv