Н. В. Коваленко, Г. П. Кутров, Ю. В. Филипчук, М. Ю. Корнилов

ВЗАИМОДЕЙСТВИЕ 1,3-ДИБРОМ- И 1,3-ДИХЛОРАЦЕТОНА С 2-АМИНОАЗАГЕТЕРОЦИКЛАМИ

Впервые проведена реакция 1,3-дибромацетона с 2-аминоазинами и 2-аминоазолами и выделены в индивидуальном состоянии промежуточные продукты — четвертичные соли, которые далее циклизуются в соответствующие имидазоазины и имидазоазолы, содержащие бромметильную группу. Подобные конденсации были проведены с 1,3-дихлорацетоном.

Ключевые слова: 1,3-дибромацетон, 1,3-дихлорацетон, имидазо[1,2-a]-пиридины, имидазо[1,2-a]пиримидины, имидазо[2,1-b]тиазолы.

Реакция моно- α -галогенкетонов с 2-аминоазагетероциклами, предложенная Чичибабиным [1], является одним из наиболее удачных способов аннелирования имидазольного ядра и синтеза имидазогетероциклов с узловым атомом азота. Тем не менее эта реакция для α,α' -дигалогенкетонов исследована мало. Известны лишь два сообщения об использовании 1,3-дибромацетона в подобной конденсации [2, 3]. В ряде работ описано применение 1,3-дихлорацетона [4–15].

Мы изучили взаимодействие 1,3-дибромацетона с 2-аминозамещенными пиридина, пиримидина, тиазола, 1,3,4-тиадиазола и их производными. Обнаружено, что при нагревании 1,3-дибромацетона с 2-аминопиридином в этаноле (в таких условиях обычно реагируют моно-α-галогенкетоны) происходит полное осмоление реакционной смеси, но, если реагенты растворить при комнатной температуре в этилацетате, спустя некоторое время выпадает бесцветный кристаллический продукт 1а. Подобным образом реагируют и другие упомянутые 2-аминоазагетероциклы. При этом в зависимости от природы гетероцикла образуются соли типа 1 (пиридин, пиримидин) либо типа 2 (тиазол, тиадиазол), которые при непродолжительном нагревании в уксусной кислоте превращаются в соли 3. 1,3-Дихлорацетон реагирует значительно медленнее и с более низкими выходами.

Соль типа 1 впервые была получена из 2-аминопиридина и ω-бромацетофенона, а ее строение установлено на основании данных ИК и УФ спектроскопии [16]. Изучая механизм реакции 2-аминопиридина с ω-бромацетофеноном, авторы работы [17] наблюдали появление соли типа 1 в ампуле спектрометра ЯМР ¹Н. Образующаяся соль являлась промежуточным продуктом реакции, существовала короткое время и быстро переходила в конечный продукт – 2-фенилимидазо[1,2-а]пиридин. О выделении близких по строению солей сообщалось в работах [12, 14, 18].

Соеди- нение*	RI	R ²	R ³	Z	A	Соеди- нение	R ⁵	R ⁶	Y	A
1a	Н	Н	Н	CH	Br	3a	Н	Н	CH=CH	Br
1b	Н	Н	Н	СН	CI	3b	Н	Н	СН=СН	Cl
1c	Н	Н	CH ₃	CH	Br	3e	CH ₃	Н	СН=СН	Br
1d	Н	H	CH ₃	CH	Cl	3d	CH₃	Н	СН=СН	Cl
1e	Н	Cl	H	CH	Br	3e	Н	Cl	СН=СН	Br
1f	Н	Cl	Н	CH	CI	3f	Н	Cl	CH=CH	CI
1g	Н	Н	Н	N	Br	3g	Н	Н	CH=N	Br
1 h	Н	Н	Н	N	CI	3h	Н	н	CH=N	CI
1i	CH₃	Н	CH ₃	N	Br	3i	CH ₃	Н	C(CH ₃)=N	Br
						3j	Н	Н	s	Br
						3k**	CH ₃	Н	s	Br

^{*} 2 а R^4 = H, X = CH; b R^4 = CH₃, X = N; a, b A = Br. Соль 2b в соль типа 3 не превращали.

Соли 1 и 2, строение которых подтверждено данными спектров ЯМР 1 Н и ИК, а также элементного анализа, действительно оказались неустойчивыми в растворе, однако при комнатной температуре существуют в кристаллическом состоянии (табл. 1–3). Характерной особенностью спектров ЯМР 1 Н солей 1 является наличие двух дублетов неэквивалентных протонов группы N^+ —СН $_2$ при 4.46—4.85 м. д. ($^2J=14$ —15 Γ п), а в спектрах солей 2 эта же группа дает синглет при 5.42—5.49 м. д. Кроме того, в спектрах ЯМР 1 Н солей 1 наблюдаются отдельно два синглета протонов групп ОН и NH, а солей 2 — только один двухпротонный синглет группы NH_2 . ИК спектры солей 2 содержат полосы поглощения $V_{C=0}$ в области 1680—1700 и V_{NH2} при 3300—3100 см $^{-1}$, в то время как в спектрах солей 1 полоса $V_{C=0}$ отсутствует.

^{**} В реакции 2-амино-4-метилтиазола и 1,3-дибромацетона образуется, согласно спектру ЯМР ¹Н, смесь солей типа **1–3** в приблизительно равных количествах, при нагревании которой в уксусной кислоте получается соль **3k.**

Таблица1 Характеристики синтезированных соединений*

Соеди-	Брутто-	_	Найдено. % ычислено,	-	Т. пл., °С***	Выход	
нение**	формула	С	Н	N	,	%	
1b	C ₈ H ₁₀ Cl ₂ N ₂ O	43.22 43.46	4.51 4.56	12.54 12.67	_	72	
1d	C ₉ H ₁₂ Cl ₂ N ₂ O	45.72 45.98	5.06 5.14	<u>11.75</u> 11.91	_	68	
1e	C ₈ H ₉ Br ₂ ClN ₂ O	27.78 27.90	2.58 2.63	8.02 8.13	-	91	
1f	C ₈ H ₉ Cl ₃ N ₂ O	37.34 37.60	3.47 3.55	10.82 10.96	_	65	
1h	C7H9Cl2N3O	<u>37.54</u> 37.86	4.01 4.08	18.76 18.92	_	58	
1i	C ₉ H ₁₃ Br ₂ N ₃ O	31.67 31.88	3.78 3.86	12.18 12.39	_	87	
2b	C ₆ H ₉ Br ₂ N ₃ OS	15.06 15.23	1.88 1.92	8.79 8.88	_	71	
3d	C9H10Cl2N2	<u>49.58</u> 49.79	4.57 4.64	12.77 12.90	187 (Уксусная кислота)	81	
3e	C ₈ H ₇ Br ₂ CIN ₂	29.32 29.44	2.11 2.16	8.52 8.58	204 (Уксусная кислота)	88	
3f	C ₈ H ₇ Cl ₃ N ₂	40.32 40.46	2.88 2.97	11.65 11.79	191 (Уксусная кислота)	78	
3i	C ₉ H ₁₁ Br ₂ N ₃	33.45 33.67	1.98 2.03	<u>9.29</u> 9.40	252 (Уксусная кислота)	87	
3k	C₁H8Br₂N₂S	26.79 26.95	2.50 2.58	<u>8.89</u> 8.98	176 (Уксусная кислота)	76	
4c	C ₉ H ₉ BrN ₂	47.69 48.03	3.94 4.03	12.31 12.45	195 (Циклогексан)	80	
4d	C9H9ClN2	<u>59.72</u> 59.84	<u>4.95</u> 5.02	15.40 15.51	133 (Ацетонитрил)	69	
4e	C ₈ H ₆ BrClN ₂	38.96 39.14	2.42 2.46	11.55 11.41	120 (Изопропанол)	87	
4f	C ₈ H ₆ Cl ₂ N ₂	47.63 47.79	<u>2.93</u> 3.01	13.81 13.93	119 (Этанол)	78	
4i	C9H10BrN3	44.87 45.02	4.15 4.20	17.37 17.50	234 (Хлорбензол)	62	
5a	C ₁₆ H ₁₄ Br ₂ N ₄	45.32 45.53	3.29 3.34	13.43 13.27	242 (Уксусная кислота)	71	

^{*} Характеристики соединений **1а,с,g, 2a, 3a,с** и **g** приведены в [2], **3b** – в [5, 10], **3h** – в [11, 14], **4a,g** – в [3], **4b** – в [4, 5, 10], **4h** – в [10, 13, 14]. ** Для соединений **1b,d**–**f,h,i** и **2b** т. пл. не определена вследствие легкой дегидратации.

*** В скобках указан растворитель.

Спектры ЯМР 1Н соединений 1, 3, 4 и 5а

Cooru	Химические сдвиги, δ , м. д., КССВ, $J(\Gamma$ ц)												
Соеди- нение	3-Н, с	5-H	6-H	7-H	8-H	CH ₂ N ⁺ , д	CH₂Hal, c	ОН	NH	Другие сигналы			
1a		8.42 , д, ${}^3J_{\text{H5, H6}} = 6.5$	7.12, д. д	8.11, д. д, ³ J _{H6, H7} = 6.7, ³ J _{H7, H8} = 8.6	7.18, д	$^{2}J_{H, H} = 15$	3.89	10.21, c*	7.55, уш. с*	-			
1b	_	$^{8.38}_{J_{H5, H6}}$ = 6.5	7.02, д. д	8.02 , д. д. $^3J_{H6, H7} = 6.7$, $^3J_{H7, H8} = 8.6$	7.14, д	${}^{4.59, 4.78,}_{^{2}J_{\rm H, H} = 14.7}$	3.97	10.48, c*	7.90, уш. с*	-			
1c			6.92, д	7.93, д. д, ${}^{3}J_{H6, H7} = 6.7,$ ${}^{3}J_{H7, H8} = 8.6$	7.00, д	$4.50, 4.76,$ $^2J_{H, H} = 14.6$	3.85	10.08, c*	7.42, уш. с*	2.48, c (CH ₃)			
1d	_	_	6.90, д	7.95, д. д, ${}^{3}J_{H6, H7} = 6.4,$ ${}^{3}J_{H7, H8} = 8.6$	6.98, д	${4.57, 4.74, \atop {}^{2}J_{\rm H, H} = 14.5}$	3.99	10.38, c*	7.80, уш. с*	2.52, c (CH ₃)			
1e		8.78, д, ⁴ <i>J</i> _{H5, H7} = 1.4	_	8.22 , д. д, ${}^3J_{\text{H7, H8}} = 8.6$	7.20, д	$4.58, 4.82,$ $^{2}J_{H, H} = 14.7$	3.88	10.42, c*	7.52, уш. с*	****			
1f	_	8.73 , д, ${}^3J_{\text{H5, H6}} = 6.5$		8.12 , д. д, ${}^{3}J_{H6, H7} = 6.4$, ${}^{3}J_{H7, H8} = 8.6$	7.18, д	$4.56, 4.75,$ $^{2}J_{H, H} = 14.2$	4.01	10.70, c*	7.52, уш. с*				
1g	_	8.93 , д, ${}^{3}J_{H5, H6} = 6.3$	7.25, д. д	8.89 , д, ${}^{3}J_{\text{H6, H7}} = 4.7$	_	$4.58, 4.81,$ $^{2}J_{H, H} = 14.4$	3.86	11.03, c*	7.60, уш. с*				
1h	_	8.96 , д, ${}^3J_{\text{H5, H6}} = 6.3$	7.21, д. д	8.88 , д, ${}^3J_{\text{H6, H7}} = 4.7$		$4.68, 4.72,$ $^{2}J_{H, H} = 14.1$	3.96	11.09, c*	7.62, уш. с*	_			
1i	-	,	7.04, c	_	_	$4.46, 4.68,$ $^{2}J_{H, H} = 14$	3.79	10.74, c*	7.44, уш. с	2.46, c, 2.50, c (CH ₃)			
3a	8.57	9.07, д, ³ J _{H5, H6} = 6.5	7.53**, м	8.02**, м	8.02**, м	-	5.02		9.53***	-			
3 b	8.52	9.01, д, ${}^{3}J_{\text{H5, H6}} = 6.5$	7.46**, м	7.95**, м	7.95**, м	_	5.09	-	9.05***	_			
3c	8.50	-	7.44**, м	7.92**, м	7.92**, м		5.02	-	8.80***	2.78, c (CH ₃)			
3d	8.43	_	7.38**, M	7.88**, M	7.88**, м	,	5.10	-	8.95***	2.76, c (CH ₃)			

3e	8.42	9.30, c	1	7.95, c	7.95, c	l _	4.93	_	6.24***	_
3f	8.42	9.30, c	-	7.93, C 7.90, c	7.90, c		5.06		13.20***	_
	8.48		767	9.10, д. д,	7.90,0		4.95		12.8***	
3g	0,40	9.48, д. д, ${}^{3}J_{H5, H6} = 6.5;$ ${}^{4}J_{H5, H7} = 2$	7.67, д. д	$^{3}J_{H7, H6} = 4.4$	_	_	4.90			_
3h	8.43	9.42, д. д, ${}^{3}J_{H5, H6} = 6.7;$ ${}^{4}J_{H5, H7} = 2$	7.58, д. д	8.97, д. д, ³ J _{H7, H6} = 4.4	_	_	5.07		7.42***	-
3i	8.38		7.52, c	_	_	_	4.93		9,53***	2.67, c, 2.76, c (CH ₃)
4 a	7.66	$^{3}J_{H5, H6} = 6.5$	6,82, д. д	7.23, д, д, ³ J _{H7, H8} = 8.7, ³ J _{H7, H6} = 6.8	7.61, д	_	4.69		_	
4b	7.62	8.07, д, ³ J _{H5, H6} = 6.6	6.80, д. д	7.21, д, д, $^{3}J_{H7, H8} = 8.8,$ $^{3}J_{H7, H6} = 6.7$	7.57, д	_	4.78	_		_
4c	7.52		6.62, д	7.18, д, д, $^3J_{H7, H8} = 8.2,$ $^3J_{H7, H6} = 6.8$	7.48, д		4.69	-	-	2.56, c (CH ₃)
4d	7.53	-	6,63, д	7.20, д, д, ³ J _{H7, H8} = 8.8, ³ J _{H7, H6} = 6.5	7.50, д	_	4.81		- ,	2.60, c (CH ₃)
4e	7.95, c	8.61, д, ⁴ J _{H5, H7} = 1.6		7.24, д. д, ${}^3J_{\text{H7, H8}} = 8.6$	7.53, д	_	4.72	-	_	_
4f	7.98, c	8.66, д, ⁴ J _{H5, H7} = 1.4	_	7.27, д. д, ${}^3J_{\text{H7, H8}} = 8.6$	7.55, д		4.81		-	
4 g	7.93, c	8.88, д. д. ³ J _{H5, H6} = 6.4; ⁴ J _{H5, H7} = 1.8	7.04, д. д	8.56 , д. д, ${}^3J_{\text{H7, H8}} = 4.4$	_	_	4.74	_	_	_
4i	7.43, c		6.59, c				4.67			2.57, c (CH ₃)
5a	8.44, c	8.78 , д, ${}^3J_{\text{H5, H6}} = 6.8$	7.67**, м	8.25 , д, $^{3}J_{H8, H7} = 8.2$	8.15 д	6.22, c	_			_

^{*} Обменивается с D₂O.

** Центр мультиплета.

*** Широкий сигнал, общий с сигналом воды растворителя, что следует из интегральной кривой спектра ЯМР ¹Н.

Соеди-	R	R ¹	Y	A	Соеди- нение	R	R ^I	Y	A
4a	Н	Н	CH=CH	Br	4f	Cl	Н	СН=СН	C1
4b	Н	Н	СН=СН	Cl	4g	. Н	Н	CH=N	Br
4c	Н	CH ₃	СН=СН	Br	4h	Н	Н	CH=N	CI
4d	Н	CH ₃	СН=СН	C1	4i	Н	СН₃	C(CH ₃)=N	Br
4e	CI	Н	СН=СН	Br					

Таблица 3

Спектры ЯМР ¹Н солей 2, 3j, 3k

Со- еди- не- ние		Химические сдвиги, δ , м. д., КССВ, $J(\Gamma \mu)$											
	2-Н	3-H	4-H	5-H	NH ₂ ,	CH ₂ -N ⁺ ,	CH ₂ Br,	NH	Дру- гие сигна- лы				
2a		_	7. 06, Д, ³ J _{H4. H5} = = 4.4	7.32, д	9.64*	5.42	4.56	. –	_				
2b	-	_	_	-	10.02*	5.49	4.58	_	2.54, c (CH ₃)				
3j	7.70 , д, ${}^{3}J_{\text{H2, H3}} = = 4.1$	8.26, д	_	8.29, c	-	_	4.93	8.02**	-				
3k	7.36, c		_	8.31, e	_	_	4.92	8.60**	2.51, c (CH ₃)				

^{*} Обменивается с D_2O .

** Широкий сигнал, общий с сигналом воды растворителя, что следует из интегральной кривой спектра ЯМР 1 Н.

Соли 1 и 2 получены с хорошими выходами и часто в аналитически чистом состоянии. Они представляют собой бесцветные кристаллические вещества, растворимые в воде, легко дегидратирующиеся и потому не выдерживающие длительного хранения. При непродолжительном нагревании в ледяной уксусной кислоте соли 1 и 2 превращаются в соли 3. Последние растворимы в воде и под действием оснований (сода, бикарбонат натрия или водный аммиак) превращаются в имидазогетероциклы 4. Из солей 3j,k соответствующие основания получить не удалось.

Соединения **4**а—**i** растворимы в хлороформе и ацетоне. Основания с хлорметильной группой достаточно устойчивы, в то время как бромметильные производные, особенно в случае имидазо[1,2-а]пиридина, уже через несколько суток превращаются в не растворимые в хлороформе солеобразные продукты, строение которых не устанавливалось. Возможно, происходит самоалкилирование этих оснований, подтверждаемое тем, что при непродолжительном нагревании 2-(бромметил)имидазо[1,2-а]пиридина (**4**а) в изопропиловом спирте образуется соль **5**а, строение которой подтверждено данными спектра ЯМР ¹Н и элементного анализа.

Таким образом, нами разработан простой и удобный способ получения имидазопиридинов, имидазопиримидинов и имидазотиазолов, содержащих бром- или хлорметильную группу в имидазольном ядре, и подтвержден предложенный ранее механизм реакции Чичибабина [17].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на спектрометре WP-100 SY (100 МГц) в ДМСО- d_{6} для солей **1–3**, в CF₃COOD — для **5а**, в (CD₃)₂CO — для **4e,f,g** и в CDCl₃ — для **4a–d,h–i** (внутренний стандарт ТМС). ИК спектры сняты на спектрофотометре Pye-Unicam SP3-300 в таблетках КВг.

Общая методика синтеза солей 1 и 2. К раствору 0.01 моль соответствующего 2-аминогетероцикла в 10–50 мл этилацетата при перемешивании добавляют 0.01 моль 1,3-дибром- или 1,3-дихлорацетона в 5–10 мл этилацетата и оставляют на 2–5 сут. Выпавший осадок отфильтровывают, промывают ацетоном и эфиром, высушивают на воздухе и получают: бромиды 2-(бромметил)-2-гидрокси-1H,2H,3H-имидазо[1,2-а]пиридиния (1a), 2-(бромметил)-2-гидрокси-6-хлор-1H,2H,3H-имидазо[1,2-а]пиридиния (1e), 2-(бромметил)-2-гидрокси-6-хлор-1H,2H,3H-имидазо[1,2-а]пиримидиния (1g), 2-(бромметил)-2-гидрокси-5,7-диметил-1H,2H,3H-имидазо[1,2-а]пиримидиния (1i), 2-амино-3-(3-бром-2-оксопроп-1-ил)-1,3-тиазолия (2a), 2-амино-3-(3-бром-2-оксопроп-1-ил)-5-метил-1,3,4-тиадиазолия (2b) и хлориды 2-гидрокси-2-(хлорметил)-1H,2H,3H-имидазо[1,2-а]пиридиния (1b), 2-гидрокси-5-метил-2-(хлорметил)-1H,2H,3H-имидазо[1,2-а]пиридиния (1d), 2-гидрокси-6-хлор-2-(хлорметил)-1H,2H,3H-имидазо[1,2-а]пиримидиния (1f), 2-гидрокси-2-(хлорметил)-1H,2H,3H-имидазо[1,2-а]пиримидиния (1f), 2-гидрокси-2-(хлорметил)-1

Общая методика синтеза солей 3a—j. Раствор 0.01 моль соли 1a—i или 2a в 10—20 мл ледяной уксусной кислоты нагревают при перемешивании в течение 15—30 мин при 80— $100\,^{\circ}$ С. Выпавший после охлаждения осадок отфильтровывают, промывают небольшим количеством уксусной кислоты, затем ацетоном и эфиром и получают: бромиды 2-(бромметил)-1H-имидазо[1,2-a]пиридиния (3a), 2-(бромметил)-5-метил-1H-имидазо[1,2-a]пиридиния (3c), 2-(бромметил)-6-хлор-1H-имидазо[1,2-a]пиридиния (3e), 2-(бромметил)-1H-имидазо[1,2-a]пиримидиния (3e), 2-(бромметил)-1H-имидазо[1,2-a]пиридиния (3e), 3e-метил-1H-имидазо-1e-1H-имидазо[1,2-1e-1H-имидазо[1,2-1H

Бромид 6-(бромметил)-3-метил-7H-имидазо[2,1-b]тиазолия (3k) получают как описано в примечании на стр. 686.

Общая методика синтеза оснований 4. Раствор 0.01 моль соли 3a—і в 10—20 мл воды нейтрализуют раствором бикарбоната натрия. Выпавший осадок отфильтровывают, промывают водой, отжимают, высушивают на воздухе и получают: 2-(бромметил)имидазо[1,2-a]пиридин (4a), 2-(хлорметил)имидазо[1,2-a]пиридин (4b), 2-(бромметил)-5-метилимидазо[1,2-a]пиридин (4c), 5-метил-2-(хлорметил)имидазо[1,2-a]пиридин (4d), 2-(бромметил)-6-хлоримидазо[1,2-a]пиридин (4e), 4e, 4e,

7H,15H-Дипиридо[2',1':2,3]имидазо[1,5-a:1,5-d]пиразин-5,13-диий дибромид (5a). Раствор 0.01 моль соединения 4a в 5 мл изопропилового спирта кипятят 20 мин. Выпавшие при охлаждении кристаллы промывают изопропиловым спиртом и эфиром.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. E. Tschitschibabin, Ber., 58, 1704 (1925).
- 2. Г. П. Кутров, Ю. М. Воловенко, В. А. Кург, Е. Н. Мачковская, Ф. С. Бабичев, *ДАН УССР. Сер. Б. Геол., хим. и биол. науки*, № 5, 36 (1989).
- 3. Г. П. Кутров, Н. В. Коваленко, Ю. П. Гетманчук, Укр. хим. журн., **57**, 187 (1991).
- 4. E. Abignente, F. Arena, P. De Caprariis, L. Parente, Farmaco. Ed. sci., 30, 815 (1975).
- L. Del Corona, C. Pellegatta, G. Signorelli, V. Buran, G. Massaroli, C. Turba, D. Faini, P. G. Pagella, Farmaco. Ed. sci., 36, 994 (1981).
- C. Sablayrolles, G. H. Cros, J. C. Milhavet, E. Rechenq, J. P. Chapat, M. Boucard, J. J. Serrano, J. H. McNeill, J. Med. Chem., 27, 206 (1984).
- 7. R. J. Sundberg, D. J. Dahlhausen, G. Manikumar, B. Mavunkel, A. Biswas, V. Srinivasan, F. King, Jr., P. Waid, *J. Heterocycl. Chem.*, **25**, 129 (1988).
- P. Vanelle, N. Madadi, J. Maldonado, L. Giraud, J. F. Sabuco, M. P. Crozet, *Heterocycles*, 32, 2083 (1991).
- 9. P.Vanelle, N. Madadi, C. Roubaud, J. Maldonado, M. P. Crozet, *Tetrahedron*, 47, 5173 (1991).
- 10. Y. Rival, G. Grassy, G. Michel, Chem. Pharm. Bull., 40, 1170 (1992).
- 11. A. Tasaka, K. Teranishi, Y. Matsushita, N. Tamura, R. Hayashi, K. Okonogi, K. Itoh, *Chem. Pharm. Bull.*, 42, 85 (1994).
- 12. В. А. Анисимова, О. А. Лукова, ХГС, 369 (1994).
- A. Gueiffier, Y. Blache, J. P. Chapat, A. Elhakmaoui, E. M. Essassi, G. Andrei, R. Snoeck,
 E. De Clercq, O. Chavignon, *Nucleosides and Nucleotides*, 14, 551 (1995).
- 14. C. Roubaud, P. Vanelle, J. Maldonado, M. P. Crozet, Tetrahedron, 51, 9643 (1995).
- 15. E. P. Abignente, P. De Caprariis, R. Patscot, A. Sacchi, J. Heterocycl. Chem., 23, 1031 (1986).
- 16. C. K. Bradsher, R. D. Brandau, J. E. Boliek, T. L. Hough, J. Org. Chem., 34, 2129 (1969).
- 17. E. S. Hand, W. W. Paudler, Tetrahedron, 38, 49 (1982).
- А. М. Демченко, В. А. Чумаков, К. Г. Назаренко, А. Н. Красовский, В. В. Пироженко, М. О. Лозинский, XTC, 644 (1995).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: kmyu@sbet.com Поступило в редакцию 09.09.99 После доработки 05.07.2000