И. Г. Абрамов, А. В. Смирнов, М. Б. Абрамова, С. А. Ивановский, М. С. Белышева

СИНТЕЗ N,N'-АЛКИЛИРОВАННЫХ ТЕТРАГИДРОХИНОКСАЛИНОВ РЕАКЦИЕЙ 4-БРОМ-5-НИТРОФТАЛОНИТРИЛА С ВТОРИЧНЫМИ ДИАМИНАМИ

Впервые исследовано взаимодействие 4-бром-5-нитрофталонитрила с алифатическими вторичными диаминами, приводящее к дицианопроизводным тетрагидрохиноксалина, алкилированным по атомам азота, которые могут быть использованы для получения имидов, фталоцианинов, гексазоцикланов и других соединений, содержащих изоиндолиновые фрагменты.

Ключевые слова: бифункциональные нуклеофилы, 4-бром-5-нитрофталонитрил, тетрагидрохиноксалин, нуклеофильное замещение.

Взаимодействие галогеналканов и активированных нитрогалогенбензолов с вторичными алифатическими аминами описано в литературе и широко применяется на практике. В то же время, реакции с вторичными аминами, приводящие к последовательному нуклеофильному замещению атома галогена и нитрогруппы в одном бензольном кольце, практически не известны. Подобные реакции, протекающие в сравнительно мягких условиях и обсуждаемые в данной работе, становятся возможными при использовании сильноактивированных нитроароматических субстратов.

Таковым является 4-бром-5-нитрофталонитрил (БНФН) (1), в котором атом углерода, связанный с атомом брома, активируется *орто*-нитрогруппой. Две цианогруппы усиливают акцепторное влияние нитрогруппы на указанный атом углерода, активируя одновременно и атом углерода, связанный с нитрогруппой. Вследствие этого, в S_N Аг реакциях с различными О-, N-, S-нуклеофилами в первую очередь замещается высокоподвижный атом брома [1–3]. При проведении указанной реакции с бифункциональными нуклеофилами, у которых реакционные центры находятся в *орто*-положении, образуются соответствующие дицианосодержащие дибензо[b,e][1,4]диоксин, 10H-феноксазин и др. [2].

При кипячении в этаноле соединение 1 в присутствии триэтиламина одинаково легко реагирует с первичными ароматическими, алифатическими и вторичными алифатическими аминами с образованием соответствующих ариламинов, например, продукта 2 (схема 1). Триэтиламин является акцептором выделяющегося бромистого водорода. В его отсутствие в реакцию вступает только половина исходного реагента, а вторая остается в виде гидробромида соответствующего амина.

Оставшуюся нитрогруппу можно заместить только реакционноспособными нуклеофилами и в более жестких условиях. Например, при нагревании соединения 2 с 1,3-бензотиазол-2-тиолом в ДМФА в присутствии K_2CO_3

получается 4-(1,3-бензотиазол-2-илтио)-5-морфолинофталонитрил (3). Первичные и вторичные амины в этих условиях не активны из-за сильного дезактивирующего влияния морфолинового фрагмента в соединении 2.

При нагревании в ДМФА фталонитрила 1 с двукратным молярным количеством вторичного алифатического или циклоалифатического амина с целью последовательного замещения атома брома и нитрогруппы в присутствии карбоната калия происходит замещение только атома брома с образованием соединения 2. Других продуктов замещения, например, фталонитрила 4 не зафиксировано.

Продукт дизамещения 4 (с выходом 12%) неожиданно получился при попытке замещения оставшейся нитрогруппы в соединении 2 гидроксигруппой при участии нитрит-иона [4]. Пока нам не удалось объяснить, каким образом в присутствии смеси KNO_2 и K_2CO_3 происходит замещение нитрогруппы на морфолиновый фрагмент, поскольку в отсутствие морфолина при проведении указанной реакции только с одним карбонатом калия получен симметрично замещенный дифенилоксид 5, а в присутствии только нитрита калия выделено смолоподобное соединение, идентифицировать которое не удалось.

Приведенные примеры наглядно иллюстрируют различную подвижность атома брома и нитрогруппы в молекуле 4-бром-5-нитрофталонитрила при действии N-нуклеофилов. В то же время нагревание в ДМФА в присутствии K_2CO_3 эквимолярных количеств БНФН 1 и вторичных алифатических диаминов (алкилированных N,N'-этилендиаминов) **6a**–**d**, приводит к образованию не описанных в литературе 1,4-дибензил-1,2,3,4-тетрагидро-6,7-хиноксалиндикарбонитрилов (**8a**–**d**).

Характеристики синтезированных соединений

Со- еди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)	Выход, %
		С	, H	N		V, CM		
2	C ₁₂ H ₁₀ N ₄ O ₃	<u>55.79</u> 55.81	3.79 3.90	21.61 21.70	188–190	2220 (-CN), 1350 (NO ₂), 1115 (C-O-C)	8.45 (1H, c); 8.10 (1H, c); 3.75–3.66 (4H, м); 3.32–3.24 (4H, м)	94.1
3	C ₁₉ H ₁₄ N ₄ OS ₂ *	60.13 60.30	3.74 3.73	14.81 14.80	> 300	2230 (-CN), 1115 (C-O-C)	8.30 (1H, c); 8.00 (1H, д. д, J = 8.09, 2.10); 7.92 (1H, д. д, J = 8.00, 1.27); 7.85 (1H, c); 7.55 (т. д, J = 8.00, 7.37, 1.20); 7.40 (т. д, J = 8.09, 7.37, 1.27); 3.62–3.55 (4H, м); 3.27–3.20 (4H, м)	68.4
4	C ₁₆ H ₁₈ N ₄ O ₂	<u>64.22</u> 64.41	6.09 6.08	18.70 18.78	184–186	2235 (-CN), 1120 (C-O-C)	7.45 (2H, c); 3.76–3.66 (8H, м); 3.25–3.16 (8H, м)	28.7
5	C ₂₄ H ₂₀ N ₆ O ₃	65.30 65.45	4.59 4.58	19.17 19.08	275–277	2235 (-CN), 1260 (C-O-C), 1120 (C-O-C)	7.75 (2H, c); 7.70 (2H, c); 3.603.52 (8H, м); 3.263.18 (8H, м)	82,3
8a	C ₂₄ H ₂₀ N ₄	78.85 79.09	<u>5.54</u> 5.53	15.36 15.37	172–174	2230 (-CN)	7.40-7.35 (4H, м); 7.30-7.25 (6H, м); 6.90 (2H, с); 4.65 (4H, с); 3.55 (4H, с)	79.7
8b	C ₂₈ H ₃₀ N ₆	<u>74.43</u> 74.64	6.72 6.71	18.59 18.65	222–224	2230 (-CN)	7.10 (4H, д. д. <i>J</i> = 8.43, 2.11); 6.90 (2H, c); 6.70 (4H, д. д. <i>J</i> = 8.43, 2.30); 4.50 (4H, c); 3.50 (4H, c); 2.90 (12H, c)	86,2
8c	C ₂₄ H ₁₈ Cl ₂ N ₄	66.34 66.52	4.20 4,19	12.99 12.93	198–200	2230 (-CN)	7.30 (4H, д. д, <i>J</i> = 8.40, 2.44); 7.10 (4H, д. д, <i>J</i> = 8.40, 2.11); 6.90 (2H, c); 4.68 (4H, c); 3.60 (4H, c)	د،۔
8đ	C ₂₆ H ₂₄ N ₄	79.33 79.56	6.16 6.16	14.29 14.27	189–191	2230 (-CN)	7.20 (4H, д. д, J = 8.05, 2.21); 6.90 (2H, c); 6.78 (4H, д. д, J = 8.05, 2.11); 4.55 (4H, c); 3.53 (4H, c); 2.25 (6H, c)	78.8

^{*} Найдено: S 16.97%; вычислено: S 16.94%.

$$1 + \frac{Ar}{HN} \underbrace{K_2CO_3}_{Ar} \underbrace{N}_{N} \underbrace{K_2CO_3}_{N} \underbrace{N}_{N} \underbrace$$

Реакция межмолекулярного нуклеофильного замещения атома галогена начинается с атаки одной из аминогрупп нуклеофила **6a—d** атома углерода соединения **1**, расположенного рядом с атомом брома. При этом образующийся интермедиат **7a—d** содержит одновременно нитрогруппу и нуклеофильный центр, достаточно активные для дальнейшего замещения. Второй нуклеофил вступает далее в реакцию внутримолекулярного замещения нитрогруппы, находящейся в той же молекуле, что приводит к замыканию цикла и получению продуктов **8a—d**.

Не удалось получить тетракарбонитрил **9a** при проведении указанной реакции с двукратным молярным избытком БНФН **1**. В этом случае из реакционной смеси с выходом **8**% выделено соединение **8a**.

Использование в рассматриваемой реакции вместо фталонитрила 1 менее активированного 4,5-дихлорфталонитрила привело к образованию смеси смолообразных веществ, идентифицировать которые также не удалось. Основность исходного диамина должна быть достаточно высока, так как проведение указанной реакции с нуклеофилами 6, содержащими обензильного заместителя фенильный, фурановый или пиридиновый цикл, привело к отрицательному результату.

Синтезированные дицианопроизводные тетрагидрохиноксалина, алкилированные по атому азота, были подвергнуты дальнейшей функционализации по известным методикам и использованы для синтеза фталоцианинов, гексазоцикланов и других соединений, содержащих имидные, изоиндолиновые и тетразольные фрагменты. Синтезированные нитрильные производные 2–5 и 8а–d — кристаллические вещества, строение которых подтверждено спектральными характеристиками, (см. табл.).

Так, в ИК спектрах этих соединений имеются характеристичные полосы поглощения валентных колебаний связи С \equiv N в области 2230, простого эфира — 1260, тиоэфира — 650 см $^{-1}$ и отсутствуют характеристичные полосы поглощения группы NO₂ (1560, 1340 см $^{-1}$) и NH (3130–3300 см $^{-1}$) [5]. В спектрах ЯМР 1 Н присутствуют сигналы ароматических и алифатических протонов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н 5% растворов образцов в ДМСО- d_{6} с внутренним стандартом ТМС записаны на приборе Bruker AM-300. ИК спектры записывали на приборе IR-75 (ЧССР) (суспензия в вазелиновом масле).

- 4-Бром-5-нитрофталонитрил (1) получен по методике, описанной в работе [1].
- **4-Морфолино-5-нитрофталонитрил** (2). В колбу, снабженную обратным холодильником, помещают 2.52 г (0.01 моль) БНФН 1, 0.87 г (0.01 моль) морфолина, 1.01 г (0.01 моль) триэтиламина и 50 мл пропанола-2. Реакционную смесь кипятят в течение 2 ч, охлаждают и отфильтровывают выпавший осадок оранжевого цвета. Выход 2.43 г.
- **4-(1,3-Бензотиазол-2-илтио)-5-морфолинофталонитрил** (3). К 30 мл ДМФА при перемешивании последовательно добавляют 2.58 г (0.01 моль) соединения **2**, 1.38 г (0.01 моль) безводного K_2CO_3 и 1.67 г (0.01 моль) 2-меркаптобензотиазола. Полученную смесь интенсивно перемешивают при 130–140 °С в течение 2 ч. После охлаждения до комнатной температуры реакционную массу выливают в 100 мл воды, отфильтровывают образовавшийся осадок, промывают 50 мл воды и кристаллизуют из ДМФА. Получают 2.59 г желтого кристаллического порошка соединения **3**.
- 1,4-Дибензил-1,2,3,4-тетрагидро-6,7-хиноксалиндикарбонитрил (8а). К 30 мл ДМФА при перемешивании последовательно добавляют 2.41 г (0.01 моль) N,N'-дибензил-1,2-этандиамина, 2.8 г (0.02 моль) безводного K_2CO_3 и 2.52 г (0.01 моль) соединения 1. Полученную смесь интенсивно перемешивают при 90–100 °С в течение 2 ч. После охлаждения до комнатной температуры реакционную массу выливают в 100 мл воды, отфильтровывают образовавшийся осадок, промывают 50 мл воды и кристаллизуют из ДМФА. Получают 2.87 светло-коричневого кристаллического порошка соединения 8а.

Аналогично получают тетрагидрохиноксалины 8b-d.

СПИСОК ЛИТЕРАТУРЫ

- I. G. Abramov, M. V. Dorogov, S. A. Ivanovskii, A. V. Smirnov, M. B. Abramova, *Mendeleev Commun.*, 78 (2000).
- 2. И. Г. Абрамов, А. В. Смирнов, М. Б. Абрамова, С. А. Ивановский, В. В. Плахтинский, *XTC*, 1219 (2000).
- 3. И. Г. Абрамов, В. В. Плахтинский, М. Б. Абрамова, А. В. Смирнов, *Изв. вузов. Сер. хим. и хим. технол.*, 120 (2000).
- 4. В. В. Плахтинский, В. А. Устинов, Г. С. Миронов, *Изв. вузов. Сер. хим. и хим. технол.*, 4 (1985).
- А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 541.

Ярославский государственный технический университет, Ярославль 150023, Россия e-mail: abramov.orgchem@staff.ystu.yar.ru

Поступило в редакцию 21.02.2001