А. Заблоцкая, И. Сегал, А. Кемме, С. Германе, Ю. Попелис, Э. Лукевиц, Р. Бергер^а, Х. Шпис^а

СИЛИЛЬНАЯ МОДИФИКАЦИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

7*. СИНТЕЗ, СТРУКТУРА, ФИЗИКО-ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ КРЕМНИЙСОДЕРЖАЩИХ "3+1" ОКСОРЕНИЕВЫХ(V) КОМПЛЕКСОВ

С целью исследования зависимости структура—физико-химические свойства—биологическая активность синтезирована серия кремнийорганических нейтральных оксорениевых(V) комплексов со смешанными лигандами и определена их липофильность. С помощью рентгено-структурного анализа установлена молекулярная структура (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V), (2-триметилсилокси- и 2-оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорения(V). Исследованы нейротропные свойства и острая токсичность синтезированных комплексов *in vivo* и зависимость их от природы монодентатного и тридентатного лигандов. Установлено, что все исследованные соединения обладают ярко выраженным седативным действием (продлевают жизнь мышей в условиях гипоксии, являются антагонистами фенамина, проявляют противо-судорожное действие и предупреждают ретроградную амнезию).

Ключевые слова: комплексы рения(V), триалкилсилиловые эфиры, психотропная активность, рентгеноструктурный анализ.

Ранее, с целью повышения липофильности координационных соединений рения как модельных диагностикумов для опухолевых заболеваний центральной нервной системы (ЦНС), мы синтезировали кремнийсодержащие оксорениевые(V) комплексы со смешанными лигандами, в которых оксорениевый остов ${\rm ReO}^{3+}$ координирован тридентатным 3-тиапентан-1,5-дитиолятом и монодентатным тиолятом, содержащим силилированную гидроксильную функцию с тяжелыми кремнийорганическими заместителями (${\rm SiMe}_2 t$ -Bu, ${\rm SiPh}_3$).

Естественно было ожидать от потенциальных диагностикумов такого рода наличия психотропных свойств, что, вероятно, могло бы служить косвенным критерием отбора этих веществ. Как известно, эффективность психотропных препаратов неразрывно связана с их способностью проходить через гематоэнцефалический барьер, которая обусловлена не только структурными параметрами, но и в значительной степени липофильностью этих соединений. Исследование нейротропных свойств (2-трифенилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (9) показало, что это соединение проявляет антиконвульсивную активность, обладая защитными свойствами по отношению к коразолу [1].

^{*} Сообщение 6 см. [1].

В настоящей работе мы продолжили исследования зависимости структура—физико-химические свойства—биологическая активность комплексов рения. С целью сравнительной характеристики их физико-химических и биологических свойств мы синтезировали серию нейтральных оксорениевых комплексов со смешанными лигандами, где оксорениевый(V) остов ${\rm ReO^{3+}}$ координирован тридентатными 3-тиа-, 3-окса- и 3-(N-метил)азапентан-1,5-дитиолятом, а также окси-/триорганилсилокси-алкилсодержащими монодентатными тиолятами.

7, 8, 11 R = Me; **9, 10** R = Ph; **2, 4, 7, 9** n = 2; **3, 5, 8, 10, 11** n = 3

(2-Оксиэтантиолято)- и (3-оксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (2), (3) были получены заменой атома хлора в [ReO(SSS)Cl] (1) на соответствующий монодентатный лиганд [1].

(2-Оксиэтантиолято)-, (3-оксипропантиолято)(3-оксапентан-1,5-дитиолято)- (4), (5), а также (2-оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений(V) (6) получены одновременным взаимодействием 3-окса- или 3-метилаза-1,5-дитиола и меркаптоалканола с соответствующим оксорениевым предшественником. Силилированные оксорениевые комплексы 7–12 были получены взаимодействием предварительно синтезированных оксиалкилсодержащих комплексов с соответствующими триорганилхлорсиланами. Для синтеза (2-трифенилсилоксиэтансодержащего

Рис. 1. Молекулярная структура соединения 10

3-тиапентанового комплекса **9** был опробован также способ "3+1"-комплексообразования с участием предварительно синтезированного кремнийорганического лиганда бис(трифенилсилил)меркаптоэтанола (**13**). Суммарный выход соединения **9** после всех стадий, как в том, так и в другом случае, был практически одинаковым и составил 77%.

Молекулярная структура (2-трифенилсилоксиэтантиолято)- [1] **9**, (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (**10**) (рис. 1), (2-триметилсилоксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорения(V) (**12**) (рис. 2) и гидроксилсодержащего комплекса **6** (рис. 3) была установлена с помощью PCA.

Рис. 2. Молекулярная структура соединения 12

Puc. 3. Молекулярная структура двух конформеров а и b соединения 6

По данным PCA, атом кремния в соединениях 9, 10, 12 имеет тетраэдрическую конфигурацию, а лиганды координируются вокруг остова ${\rm ReO}^{3+}$, образуя искаженную тетрагональную пирамиду с атомом рения в центре.

При удлинении боковой цепи в трифенилсилоксиалкантиолятных комплексах (ср. **9** и **10**) и при замене атома водорода на триметилсилильную группу в комплексах [3-(N-метил)азапентан-1,5-дитиолято]оксорения (ср. **6** и **12**) не установлено существенных изменений молекулярной геометрии.

Наблюдается увеличение длины связи Re=O в ряду 3-трифенилсилоксипропан- (1.624 Å), 2-трифенилсилоксиэтансодержащих (1.678 Å) тиапентановых соединений **10**, **9** и далее в (2-триметилсилоксиэтантиолято)(3-метилазапентан)овом комплексе **12** (1.693 Å).

В отличие от несилилированного комплекса **6** атомы оксиэтантиолятного заместителя в соединении **12** расположены практически в одной плоскости, о чем свидетельствует значение торсионного угла S_8 – S_9 – C_{10} – O_{11} (175.7°).

Для соединения $\bf 6$ установлено наличие в кристаллографической ячейке двух независимых конформеров $\bf a$ и $\bf b$ (рис. 3). В конформере $\bf 6a$ обнаружено разупорядочение атомов углерода, находящихся в α -положении к атому N_4 тридентатного лиганда, с g-фактором занятости $\bf 63$: 37 ($\bf 6a1$ и $\bf 6a2$ соответственно). Кроме того, в диаграмме упаковки соединения $\bf 6$ присутствуют два независимых тетрамера, расположенных вокруг кристаллографического центра симметрии и связанных водородными связями (рис. 4).

Рис. 4. Проекция элементарной ячейки соединения 6

Исследование липофильности синтезированных комплексов проводили методом ВЭЖХ. Полученные данные (табл. 1) позволяют адекватно оценить эффекты: введения кремнийорганического заместителя в молекулу; замены центрального атома тридентатного лиганда; изменения длины цепи монодентатного лиганда.

Для несилилированных комплексов значения $\log P < 1$ (0.2201–0.4362), для силилированных — варьируются от 2.4 до 5.4 и зависят от изменения стерического окружения вокруг атома кремния. Максимальное значение ($\log P$ 5.4) соответствует соединению **10**. Значение $\log P$ для (3-триметилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (**8**) в два раза меньше. Как для силилированных, так и для несилилированных комплексов тенденция увеличения $\log P$ в ряду 3-(N-метил)аза-, 3-окса-, 3-тиасогласуется с эффектом электронного влияния атомов серы, кислорода и азота тридентатных лигандов. Для обоих типов комплексов характерно повышение липофильности с удлинением цепи монодентатного лиганда.

Таблица 1 Липофильность оксорениевых комплексов [2]

Соеди-	$P_{ m HPLC}$	$\log P_{ m HPLC}$	Соеди- нение	$P_{ m HPLC}$	$\log P_{ m HPLC}$
2	2.66 ± 0.06	0.4249	10	237360 ± 23000	5.3754
4	2.06 ± 0.12	0.3139	11	760	2.8808
5	2.73 ± 0.04	0.4362	6	1.66 ± 0.02	0.2201
7	577 ± 14	2.7612	12	275 ± 8	2.4393
8	982 ± 48	2.9921			

Нейротропная активность оксорениевых комплексов

	М, % к контролю (100%)*							
	Тест							
Соеди- нение	Гипокси- ческая гипоксия	Гексенало- вый наркоз	Этано- ловый наркоз	Фена- миновая гипер- актив- ность	Коразоловые судороги, клони- ческие/ тони- ческие	Ретро- градная амнезия		
2	113**	97	113	77**	134**/178**	80**		
3	134**	118**	91	80	119**/157**	40		
4	132**	103	60**	72**	135**/216**	60		
5	146**	76**	62**	22**	134**/173**	80**		
6	150**	89	96	2**	120/318**	80**		
7	95	92	73	111	125**/165**	60		
9 [1]	95	148**	84	183**	133**/178**	17		
10	150**	89	60**	48**	138**/213**	20		
12	126**	81**	104	22**	131**/301**	60		

^{*} М – среднеарифметическое значение нейротропной активности оксорениевых комплексов

Нами исследованы нейротропные свойства и острая токсичность синтезированных комплексов (табл. 2). Действие веществ на ЦНС оценивали по показателям тестов гипоксической гипоксии, гексеналового и этанолового наркоза, фенаминовой гиперактивности, коразоловых судорог, электрошока, условного рефлекса пассивного избегания и ретроградной амнезии.

Все исследованные соединения в той или иной степени проявляют антигипоксическое действие, продлевая жизнь мышей в условиях гипоксии на 13-50%. У всех синтезированных соединений ярко выражен фармакологический эффект взаимодействия с фенамином. Почти все они являются антагонистами фенамина. Наиболее активным является соединение 6, которое полностью подавляет действие антидепрессанта. Единственным веществом достоверно усиливающим действие фенамина почти в два раза (83%) является соединение 9. При этом наблюдается стойкая тенденция ослабления антифенаминового действия с изменением гетероатома тридентатного лиганда (при переходе от аза- к окса- и далее к тиа-) в ряду как несилилированных, так и силилированных оксиалкилтиолятных комплексов: 6(98%) >> 4(28%) > 2(23%), 5(78%) >> 3(20%), 12(78%) >> 7(усиливает действие фенамина на 11%), а также при силилировании комплексов с оксиэтантиолятным монодентатным лигандом: 6 (98%) > 12 (78%), 2 (23%) > 7 > 9 (соединения 7 и 9 усиливают действие фенамина на 11 и 83% соответственно).

Для комплексов с оксипропантиолятным монодентатным лигандом **3** и **10** наблюдается обратный эффект — фенаминовая гиперактивность при трифенилсилилировании снижается.

^{**} Различия по отношению к контролю статистически достоверны при $P \le 0.05$.

В отличие от действия исследуемых веществ при максимальном электрошоке, когда никаких защитных свойств не было обнаружено, все синтезированные соединения проявляют противосудорожное действие при коразоловых судорогах. Как и при взаимодействии с фенамином, решающую роль играет гетероатом тридентатного лиганда. Порог коразоловых судорог возрастает при замене атома серы на атом кислорода и далее – азота в ряду как оксиалкилтиолято-, так и триметилсилоксиэтантиолято-содержащих комплексов:

Наиболее сильными антиконвульсивными свойствами обладают (3-метилазапентан-1,5-дитиолято)комплексы **6** и **12**, которые увеличивают порог коразоловых судорог в три раза (тоническая фаза). Введение кремнийорганического заместителя мало влияет на антиконвульсивные свойства комплексов за исключением соединения **10**, противосудорожное действие которого на 20% в клонической и на 60% в тонической фазе выше, чем у несилилированного предшественника.

Действие исследованных веществ на продолжительность гексеналового и этанолового наркоза в дозе 5 мг/кг выражено слабо. Однако введение трифенилсилоксизаместителя в (2-оксиэтантиолято)-3-тиапентановый комплекс 2 увеличивает продолжительность гексеналового наркоза на 48%, а введение в соединение 3 сокращает время этанолового наркоза на 40%. Для 3-оксапентан-1,5-дитиолятных комплексов 4 и 5 характерна антагонизирующая активность по отношению к этанолу.

Почти все исследуемые комплексы предупреждают ретроградную амнезию на 60–80%.

В результате исследований не обнаружена прямая зависимость между нейротропной активностью и липофильностью, скорее играют роль структурные факторы.

Хотя введение триметилсилильной группы мало влияет на показатели гипоксии, продолжительность гексеналового и этанолового наркоза и противосудорожное действие, введение трифенилсилильной группы (и увеличение липофильности до 5.37) уже более существенно изменяет свойства исходного гидроксилсодержащего комплекса. Так, соединение 9 максимально из всех синтезированных веществ достоверно пролонгирует действие гексенала (в 1.5 раза), а соединение 10 обладает более высоким антигипоксическим и противосудорожным действием по сравнению с его несилилированным предшественником 3, а также сокращает продолжительность этанолового наркоза.

В отношении фенаминового теста в некоторых случаях, вероятно, можно говорить о тенденции к ослаблению антагонистических свойств к фенамину и проявлению противоположного действия с введением силильной группы (ср. 2, 7 и 9; 6 и 12).

Изучение острой токсичности веществ подтверждает наличие тенденции к уменьшению токсичности при введении триалкилсилильной группы, выявленной ранее.

Таблица 3 Длины связей в структурах ба и бb соединения б

Связь	l, Å	Связь	l, Å	Связь	l, Å
Re _a -O _(12a)	1.699(11)	$N_{(4a)}$ - $C_{(5a2)}$	1.58(4)	$Re_b-S_{(7b)}$	2.292(4)
$Re_a-N_{(4a)}$	2.202(11)	$N_{(4a)}$ - $C_{(13a1)}$	1.66(6)	$Re_b-S_{(8b)}$	2.309(4)
$Re_a-S_{(1a)}$	2.276(4)	$C_{(5a1)}-C_{(6a)}$	1.60(4)	$S_{(1b)}-C_{(2b)}$	1.83(2)
$Re_a-S_{(7a)}$	2.280(4)	$C_{(5a2)}$ – $C_{(6a)}$	1.36(5)	$C_{(2b)}$ – $C_{(3b)}$	1.48(3)
$Re_a-S_{(8a)}$	2.300(4)	$C_{(6a)}-S_{(7a)}$	1.80(2)	$C_{(3b)}-N_{(4b)}$	1.477(18)
$S_{(1a)}-C_{(2a)}$	1.814(18)	$S_{(8a)}-C_{(9a)}$	1.825(14)	$N_{(4b)}$ - $C_{(13b)}$	1.45(2)
$C_{(2a)}-C_{(3a1)}$	1.35(4)	$C_{(9a)}$ – $C_{(10a)}$	1.52(2)	$N_{(4b)}$ - $C_{(5b)}$	1.53(2)
$C_{(2a)}-C_{(3a2)}$	1.53(3)	$C_{(10a)}-O_{(11a)}$	1.430(19)	$C_{(5b)}-C_{(6b)}$	1.38(3)
$C_{(3a1)}-N_{(4a)}$	1.65(4)			$C_{(6b)}-S_{(7b)}$	1.826(16)
$C_{(3a2)}-N_{(4a)}$	1.48(3)	$Re_{b}-O_{(12b)}$	1.685(10)	$S_{(8b)}$ – $C_{(9b)}$	1.865(16)
$N_{(4a)}$ - $C_{(13a2)}$	1.38(4)	$Re_b-N_{(4b)}$	2.205(13)	$C_{(9b)}$ – $C_{(10b)}$	1.49(2)
$N_{(4a)}$ - $C_{(5a1)}$	1.42(4)	$Re_b-S_{(1b)}$	2.289(4)	$C_{(10b)} - O_{(11b)}$	1.37(2)

Таблица 4 Валентные углы в структурах 6a и 6b

	ралентные углы	B CIPYKIYPAX OA H OD	
Угол	ω , град.	Угол	ω , град.
$O_{(12a)}$ -Re _a - $N_{(4a)}$	98.0(6)	$C_{(13a1)}-N_{(4a)}-Re_a$	112(3)
$O_{(12a)}$ -Re _a - $S_{(1a)}$	118.2(4)	$N_{(4a)}$ - $C_{(5a1)}$ - $C_{(6a)}$	107(2)
$N_{(4a)}$ -Re _a - $S_{(1a)}$	82.9(3)	$C_{(6a)}-C_{(5a2)}-N_{(4a)}$	111(4)
$O_{(12a)}-Re_a-S_{(7a)}$	115.9(4)	$C_{(5a2)}-C_{(6a)}-C_{(5a1)}$	43(3)
$N_{(4a)}$ -Re _a - $S_{(7a)}$	83.6(4)	$C_{(5a2)}$ – $C_{(6a)}$ – $S_{(7a)}$	121(3)
$S_{(1a)}$ -Re _a - $S_{(7a)}$	125.40(18)	$C_{(5a1)}$ – $C_{(6a)}$ – $S_{(7a)}$	110.9(15)
$O_{(12a)}$ -Re _a - $S_{(8a)}$	103.6(4)	$C_{(6a)}$ – $S_{(7a)}$ – Re_a	101.3(7)
$N_{(4a)}$ -Re _a -S _(8a)	158.4(4)	$C_{(9a)}$ – $S_{(8a)}$ – Re_a	110.4(4)
$S_{(1a)}$ -Re _a - $S_{(8a)}$	88.51(14)	$C_{(10a)}-C_{(9a)}-S_{(8a)}$	110.8(9)
$S_{(7a)}$ -Re _a - $S_{(8a)}$	85.33(15)	$O_{(11a)}-C_{(10a)}-C_{(9a)}$	111.3(13)
$C_{(2a)} - S_{(1a)} - Re_a$	102.6(6)	$O_{(12b)}-Re_b-N_{(4b)}$	103.8(5)
$C_{(3a1)}$ - $C_{(2a)}$ - $C_{(3a2)}$	54(2)	$O_{(12b)}-Re_b-S_{(1b)}$	113.9(4)
$C_{(3a1)}$ - $C_{(2a)}$ - $S_{(1a)}$	115(2)	$N_{(4b)}$ -Re _b -S _(1b)	81.7(3)
$C_{(3a2)}$ - $C_{(2a)}$ - $S_{(1a)}$	108.5(13)	$O_{(12b)}-Re_b-S_{(7b)}$	111.9(4)
$C_{(2a)}-C_{(3a1)}-N_{(4a)}$	108(2)	$N_{(4b)}$ -Re _b -S _(7b)	83.0(3)
$N_{(4a)}$ - $C_{(3a2)}$ - $C_{(2a)}$	108(2)	$S_{(1b)}-Re_b-S_{(7b)}$	133.95(18)
$C_{(13a2)}-N_{(4a)}-C_{(5a1)}$	133(3)	$O_{(12b)}-Re_b-S_{(8b)}$	105.2(4)
$C_{(13a2)}-N_{(4a)}-C_{(3a2)}$	119(3)	$N_{(4b)}$ -Re _b -S _(8b)	150.8(3)
$C_{(5a1)}$ - $N_{(4a)}$ - $C_{(3a2)}$	67.6(19)	$S_{(1b)}-Re_b-S_{(8b)}$	89.68(17)
$C_{(13a2)}-N_{(4a)}-C_{(5a2)}$	100(3)	$S_{(7b)}-Re_b-S_{(8b)}$	83.12(16)
$C_{(5a1)}$ - $N_{(4a)}$ - $C_{(5a2)}$	43(3)	$C_{(2b)}$ – $S_{(1b)}$ – Re_b	102.6(6)
$C_{(3a2)}$ - $N_{(4a)}$ - $C_{(5a2)}$	107(3)	$C_{(3b)}$ – $C_{(2b)}$ – $S_{(1b)}$	107.5(16)
$C_{(13a2)} - N_{(4a)} - C_{(3a1)}$	74(3)	$N_{(4b)}$ - $C_{(3b)}$ - $C_{(2b)}$	110.6(14)
$C_{(5a1)}-N_{(4a)}-C_{(3a1)}$	113(2)	$C_{(13b)}$ - $N_{(4b)}$ - $C_{(3b)}$	111.7(15)
$C_{(3a2)}-N_{(4a)}-C_{(3a1)}$	49.7(19)	$C_{(13b)}-N_{(4b)}-C_{(5b)}$	108.4(16)
$C_{(5a2)}-N_{(4a)}-C_{(3a1)}$	138(3)	$C_{(3b)}-N_{(4b)}-C_{(5b)}$	102.8(13)
$C_{(13a2)}-N_{(4a)}-C_{(13a1)}$	24(4)	$C_{(13b)}-N_{(4b)}-Re_b$	108.0(10)
$C_{(5a1)}$ - $N_{(4a)}$ - $C_{(13a1)}$	113(3)	$C_{(3b)}$ - $N_{(4b)}$ - Re_b	113.9(9)
$C_{(3a2)}$ - $N_{(4a)}$ - $C_{(13a1)}$	131(4)	$C_{(5b)}$ - $N_{(4b)}$ - Re_b	111.9(11)
$C_{(5a2)}$ - $N_{(4a)}$ - $C_{(13a1)}$	76(3)	$C_{(6b)}$ – $C_{(5b)}$ – $N_{(4b)}$	114.6(16)
$C_{(3a1)}-N_{(4a)}-C_{(13a1)}$	95(4)	$C_{(5b)}$ – $C_{(6b)}$ – $S_{(7b)}$	110.1(14)
$C_{(13a2)}-N_{(4a)}-Re_a$	107.4(18)	$C_{(6b)}-S_{(7b)}-Re_b$	100.4 (5)
$C_{(5a1)}$ - $N_{(4a)}$ - Re_a	113.3(18)	$C_{(9b)}-S_{(8b)}-Re_b$	109.4 (6)
$C_{(3a2)}$ - $N_{(4a)}$ - Re_a	110.9(11)	$C_{(10b)}-C_{(9b)}-S_{(8b)}$	111.1 (10)
$C_{(5a2)}$ - $N_{(4a)}$ - Re_a	113(2)	$O_{(11b)}-C_{(10b)}-C_{(9b)}$	111.8 (16)
$C_{(3a1)} - N_{(4a)} - Re_a$	108.3(15)		

Таблица 5 Длины связей в структуре соединения 10

Связь	l, Å	Связь	l, Å	Связь	l, Å
Re-O _{Re}	1.624(12)	$C_{(3)}-S_{(4)}$	1.76(2)	C ₍₁₁₎ -O ₍₁₂₎	1.44(3)
Re-S ₍₇₎	2.279(5)	$S_{(4)}$ – $C_{(5)}$	1.85(2)	O ₍₁₂₎ -Si	1.619(14)
$Re-S_{(1)}$	2.290(6)	$C_{(5)}-C_{(6)}$	1.46(3)	C ₍₁₃₎ -Si	1.85(2)
$Re-S_{(8)}$	2.310(5)	$C_{(6)}-S_{(7)}$	1.817(18)	C ₍₁₉₎ -Si	1.86(2)
$Re-S_{(4)}$	2.382(5)	$S_{(8)}$ – $C_{(9)}$	1.83(2)	Si-C ₍₂₅₎	1.889(19)
$S_{(1)}$ - $C_{(2)}$	1.82(3)	$C_{(9)}$ – $C_{(10)}$	1.52(3)		
$C_{(2)}-C_{(3)}$	1.51(3)	$C_{(10)}$ – $C_{(11)}$	1.48(3)		

Таблица 6 Валентные углы в структуре соединения 10

Угол	ω , град.	Угол	ω , град.
O_{Re} -Re- $S_{(7)}$	116.7(7)	$S_{(7)}$ – $C_{(6)}$ – $H_{(6B)}$	109.2
O_{Re} -Re- $S_{(1)}$	114.6(7)	$H_{(6A)}$ - $C_{(6)}$ - $H_{(6B)}$	107.9
$S_{(7)}$ -Re- $S_{(1)}$	128.5(2)	$C_{(6)}$ – $S_{(7)}$ –Re	107.0(8)
O_{Re} -Re- $S_{(8)}$	105.7(6)	$C_{(9)}$ – $S_{(8)}$ – Re	110.8(7)
$S_{(7)}$ -Re- $S_{(8)}$	87.52(18)	$C_{(10)}$ – $C_{(9)}$ – $S_{(8)}$	113.7(13)
$S_{(1)}$ -Re- $S_{(8)}$	83.2(2)	$C_{(10)}-C_{(9)}-H_{(9A)}$	108.8
O_{Re} -Re- $S_{(4)}$	98.1(6)	$S_{(8)}-C_{(9)}-H_{(9A)}$	108.8
$S_{(7)}$ -Re- $S_{(4)}$	84.13(18)	$C_{(10)}-C_{(9)}-H_{(9B)}$	108.8
$S_{(1)}$ -Re- $S_{(4)}$	84.6(2)	$S_{(8)}-C_{(9)}-H_{(9B)}$	108.8
$S_{(8)}$ -Re- $S_{(4)}$	156.03(19)	$H_{(9A)}-C_{(9)}-H_{(9B)}$	107.7
$C_{(2)}-S_{(1)}-Re$	105.2(7)	$C_{(11)}$ – $C_{(10)}$ – $C_{(9)}$	117.6(18)
$C_{(3)}-C_{(2)}-S_{(1)}$	113.3(16)	$C_{(11)}$ – $C_{(10)}$ – $H_{(10A)}$	107.9
$C_{(3)}-C_{(2)}-H_{(2A)}$	108.9	$C_{(9)}$ – $C_{(10)}$ – $H_{(10A)}$	107.9
$S_{(1)}-C_{(2)}-H_{(2A)}$	108.9	$C_{(11)}$ – $C_{(10)}$ – $H_{(10B)}$	107.9
$C_{(3)}$ – $C_{(2)}$ – $H_{(2B)}$	108.9	$C_{(9)}-C_{(10)}-H_{(10B)}$	107.9
$S_{(1)}-C_{(2)}-H_{(2B)}$	108.9	$H_{(10A)}-C_{(10)}-H_{(10B)}$	107.2
$H_{(2A)}-C_{(2)}-H_{(2B)}$	107.7	$O_{(12)}$ - $C_{(11)}$ - $C_{(10)}$	112.5(19)
$C_{(2)}-C_{(3)}-S_{(4)}$	109.7(15)	$O_{(12)}-C_{(11)}-H_{(11A)}$	109.1
$C_{(2)}-C_{(3)}-H_{(3A)}$	109.7	$C_{(10)}-C_{(11)}-H_{(11A)}$	109.1
$S_{(4)}-C_{(3)}-H_{(3A)}$	109.7	$O_{(12)}-C_{(11)}-H_{(11B)}$	109.1
$C_{(2)}$ – $C_{(3)}$ – $H_{(3B)}$	109.7	$C_{(10)}-C_{(11)}-H_{(11B)}$	109.1
$S_{(4)}-C_{(3)}-H_{(3B)}$	109.7	$H_{(11A)}-C_{(11)}-H_{(11B)}$	107.8
$H_{(3A)}-C_{(3)}-H_{(3B)}$	108.2	C ₍₁₁₎ -O ₍₁₂₎ -Si	125.6(13)
$C_{(3)}-S_{(4)}-C_{(5)}$	105.3(11)	$C_{(18)}-C_{(13)}-Si$	122.7(19)
$C_{(3)}-S_{(4)}-Re$	108.1(7)	C ₍₁₄₎ -C ₍₁₃₎ -Si	122.0(16)
$C_{(5)}-S_{(4)}-Re$	105.8(8)	C ₍₂₄₎ -C ₍₁₉₎ -Si	126.0(18)
$C_{(6)}-C_{(5)}-S_{(4)}$	107.6(18)	$C_{(21)}$ – $C_{(19)}$ – Si	119.9(17)
$C_{(6)}-C_{(5)}-H_{(5A)}$	110.2	O ₍₁₂₎ -Si-C ₍₁₃₎	111.2(9)
$S_{(4)}-C_{(5)}-H_{(5A)}$	110.2	O ₍₁₂₎ -Si-C ₍₁₉₎	110.8(9)
$C_{(6)}-C_{(5)}-H_{(5B)}$	110.2	C (13)-Si-C(19)	108.7(10)
$S_{(4)}-C_{(5)}-H_{(5B)}$	110.2	O ₍₁₂₎ -Si-C ₍₂₅₎	104.8(8)
$H_{(5A)}-C_{(5)}-H_{(5B)}$	108.5	C (13)-Si-C(25)	110.2(9)
$C_{(5)}-C_{(6)}-S_{(7)}$	112.2(15)	C (19)-Si-C(25)	111.2(9)
$C_{(5)}$ – $C_{(6)}$ – $H_{(6A)}$	109.2	C (30)-C(25)-Si	121.8(16)
$S_{(7)}-C_{(6)}-H_{(6A)}$	109.2	C (26)-C(25)-Si	118.5(17)
$C_{(5)}-C_{(6)}-H_{(6B)}$	109.2		

Длины связей в структуре соединения 12

Связь	l, Å	Связь	l, Å	Связь	l, Å
Re-O ₍₁₇₎	1.693(14)	$C_{(3)}-N_{(4)}$	1.51(3)	$C_{(10)}$ – $O_{(11)}$	1.46(3)
$Re-N_{(4)}$	2.157(19)	$N_{(4)}$ – $C_{(5)}$	1.46(3)	$O_{(11)}$ -Si ₍₁₂₎	1.646(17)
$Re-S_{(1)}$	2.280(6)	$N_{(4)}$ – $C_{(16)}$	1.48(3)	Si ₍₁₂₎ -C ₍₁₅₎	1.83(3)
$Re-S_{(7)}$	2.280(7)	$C_{(5)}$ – $C_{(6)}$	1.42(4)	Si ₍₁₂₎ -C ₍₁₄₎	1.84(3)
$Re-S_{(8)}$	2.302(6)	$C_{(6)}-S_{(7)}$	1.85(3)	Si ₍₁₂₎ -C ₍₁₃₎	1.86(3)
$S_{(1)}-C_{(2)}$	1.81(2)	$S_{(8)}-C_{(9)}$	1.85(2)		
$C_{(2)}-C_{(3)}$	1.58(3)	$C_{(9)}$ – $C_{(10)}$	1.47(3)		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ²⁹Si регистрировали на спектрометре Mercury 200 (200 МГц) фирмы Varian в CDCl₃, внутренний стандарт ГМДС. Контроль за ходом реакции и чистотой соединений проводили на пластинках Polygram R Sil G/UV-254 в системе хлороформметанол, 19:1 (по объему). Разделение веществ проводили с помощью колоночной хроматографии на силикагеле Kieselgel 60 (Merck).

Хлоро(3-тиапентан-1,5-дитиолято)оксорений(V) (1) получен по методике [3].

(2-Оксиэтан- (2), (3-оксипропан- (3), (2-трифенилсилоксиэтан- (9) и (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (10) синтезированы по методике работы [1].

(2-Оксиэтантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (4). К охлажденной до 0 °С суспензии 175.8 мг (0.3 ммоль) (тетрабутиламмоний)тетрахлороксорената(V) в 10 мл хлороформа добавляют по каплям при перемешивании раствор 31.8 мг (0.3 ммоль) 3-оксапентан-1,5-дитиола и 31.2 мг (1.33 ммоль) 2-меркаптоэтанола в 4 мл хлороформа. При добавлении раствора постепенно развивается темно-вишневое окрашивание. Смесь перемешивают в течение 30 мин, доводя температуру до комнатной. Растворитель упаривают в вакууме, остаток растворяют в смеси хлороформ-метанол (соотношение 19:1 по объему) и очищают последний с помощью колоночной хроматографии, используя в качестве элюента ту же смесь растворителей. Соединение 4 после упаривания растворителей выделяют в виде светло-розового порошка с выходом 45.8 мг (37%). Т. пл. 95–97 °С. R_f 0.26. Спектр ЯМР 1 Н, δ , м. д.: 1.93 (2H, ш. с, SCH₂); 3.37, 3.52, 3.71, 4.69 (2H, м; 2H, м; 2H, м; 2H, т, SCH₂CH₂OCH₂CH₂S); 4.09 (2H, ш. с, OCH₂). Найдено, %: С 17.52; Н 3.10; S 23.10. C_6 H₁₃O₃ReS₃. Вычислено, %: С 17.35; Н 3.13; S 23.13.

(3-Оксипропантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (5). К раствору 293 мг (0.5 ммоль) (тетрабутиламмоний)тетрахлороксорената(V) в 10 мл этанола при 0 °С добавляют по каплям 5 мл раствора 3-оксапентан-1,5-дитиола (53 мкл, 0.5 ммоль) и 3-меркаптопропанола (50.6 мг, 47.4 мкл, 0.55 ммоль) в хлороформе.

Таблица 8 Валентные углы в структуре соединения 12

Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.	Угол	ω, град.
O ₍₁₇₎ -Re-N ₍₄₎	95.8(7)	$C_{(3)}$ – $C_{(2)}$ – $S_{(1)}$	107.7(14)	C ₍₉₎ -S ₍₈₎ -Re	112.6(9)
$O_{(17)}$ -Re- $S_{(1)}$	116.3(6)	$N_{(4)}$ - $C_{(3)}$ - $C_{(2)}$	107(2)	$C_{(10)}$ – $C_{(9)}$ – $S_{(8)}$	109.8(18)
$N_{(4)}$ -Re- $S_{(1)}$	83.5(5)	$C_{(5)}-N_{(4)}-C_{(16)}$	108(2)	$O_{(11)}$ - $C_{(10)}$ - $C_{(9)}$	112(2)
$O_{(17)}$ -Re- $S_{(7)}$	118.9(6)	$C_{(5)}$ - $N_{(4)}$ - $C_{(3)}$	106.4(19)	$C_{(10)}$ - $O_{(11)}$ - $Si_{(12)}$	126.4(15)
$N_{(4)}$ -Re- $S_{(7)}$	82.8(5)	$C_{(16)}-N_{(4)}-C_{(3)}$	105.3(19)	$O_{(11)}$ -Si ₍₁₂₎ - $C_{(15)}$	111.7(13)
$S_{(1)}$ -Re- $S_{(7)}$	124.1(3)	$C_{(5)}-N_{(4)}-Re$	114.4(15)	$O_{(11)}$ - $Si_{(12)}$ - $C_{(14)}$	104.9(12)
$O_{(17)}$ -Re- $S_{(8)}$	106.5(6)	C ₍₁₆₎ -N ₍₄₎ -Re	110.3(16)	$C_{(15)}$ - $Si_{(12)}$ - $C_{(14)}$	110.2(16)
$N_{(4)}$ -Re- $S_{(8)}$	157.5(5)	$C_{(3)}-N_{(4)}-Re$	111.5(14)	$O_{(11)}$ - $Si_{(12)}$ - $C_{(13)}$	110.0(12)
$S_{(1)}$ -Re- $S_{(8)}$	89.2(2)	$C_{(6)}-C_{(5)}-N_{(4)}$	112(2)	$C_{(15)}$ -Si ₍₁₂₎ - $C_{(13)}$	109.3(15)
$S_{(7)}$ -Re- $S_{(8)}$	83.7(3)	$C_{(5)}-C_{(6)}-S_{(7)}$	113(2)	$C_{(14)}$ -Si ₍₁₂₎ - $C_{(13)}$	110.7(13)
$C_{(2)}$ - $S_{(1)}$ - Re	103.5(6)	$C_{(6)}-S_{(7)}-Re$	101.4(10)		

Смесь перемешивают в течение 30 мин при комнатной температуре, затем упаривают растворитель, остаток растворяют в хлороформе и продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ–метанол, 19:1. После удаления растворителей получают соединение 5 в виде вишневого масла с выходом 68.7 мг (32%). R_f 0.27. Спектр ЯМР 1 H, δ , м. д.: 2.16 (2H, м, C–CH₂–C); 3.31–3.85 (10H, м, SCH₂CH₂OCH₂CH₂S, SCH₂, OCH₂); 4.66 (2H, ш. c, SCH₂CH₂OCH₂CH₂S). Найдено, %: C 20.01; H 3.50; S 22.24. $C_7H_{15}O_3ReS_3$. Вычислено, %: C 19.68; H 3.50; S 22.38.

- (2-Оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений (V) (6). Смесь 72.3 мг (0.3 ммоль) оксалата 3-(N-метилаза)-1,5-дитиола и 25.7 мг (23 мкл, 0.33 ммоль) меркаптоэтанола в 3 мл метанола добавляют при перемешивании к суспензии 250 мг (0.3 ммоль) *транс*-монооксотрихлоро-бис(трифенилфосфин)рения(V) в 30 мл метанола. Реакционную смесь подщелачивают с помощью 0.1 М раствора метилата натрия в метаноле и затем кипятят 3 ч. Желтая суспензия при этом превращается в темно-зеленый раствор. После охлаждения до комнатной температуры к реакционной смеси добавляют 25 мл хлористого метилена и подкисляют ее до рН 4 разбавленной соляной кислотой. Органическую фазу отделяют, а водную реэкстрагируют хлороформом. Органические экстракты объединяют и сушат над Na_2SO_4 . Затем удаляют растворитель и выделяют продукт реакции с помощью колоночной хроматографии в системе хлороформ-метанол, 19:1, в качестве мобильной фазы. При медленном упаривании растворителей соединение 6 кристаллизуется в виде темно-зеленых кристаллов с выходом 101.4 мг (79%), Т. пл. 127–129 °С. Re 0.24. Cπέκτρ ЯМР ¹H, δ, м. д.: 2.66 (2H, м, SCH₂); 3.17, 3.56 (4H, м; 2H, м, SCH₂CH₂NMeCH₂CH₂S); 3.37 (3H, с, CH₃N); 4.00 (4H, м, OCH₂, SCH₂CH₂NMeCH₂CH₂S). Найдено, %: С 19.82; Н 3.78; S 22.44; N 3.17. C₇H₁₆NO₂ReS₃. Вычислено, %: С 19.63; H 3.74; S 22.43; N 3.27.
- (2-Триметилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (7). К 60.0 мг (0.139 ммоль) комплекса 2 в 4 мл хлороформа добавляют 50 мкл (0.360 ммоль) триэтиламина и далее при охлаждении 17.2 мг (20 мкл, 0.158 ммоль) триметилхлорсилана. Реакционную смесь перемешивают при комнатной температуре 1 ч. Ход реакции контролируют методом ТСХ. После удаления растворителя продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ—метанол, 19:1. Фракции с R_f 0.67 объединяют, упаривают и лиофилизуют. Соединение 7 получают в виде светло-бежевого порошка с выходом 42.0 мг (64%). Т. пл. 101–102 °C. Спектр ЯМР 1 H, δ , м. д.: 0.15 (9H, c, SiMe₃); 1.96, 3.12, 4.30 (2H, м; 2H, т. д; 2H, д. д, SCH₂CH₂NMeCH₂CH₂S); 3.93 (4H, м, SCH₂, SCH₂CH₂NMeCH₂CH₂S); 4.06 (2H, т, OCH₂). Найдено, %: C 21.47; H 4.20; S 25.65. C₉H₂₁O₂ReS₄Si. Вычислено, %: C 21.47; H 4.18; S 25.45.
- (3-Триметилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (8) получают из 66.5 мг (0.149 ммоль) комплекса **2**, 25.8 мг (30 мкл, 0.238 ммоль) триметил-хлорсилана и 30.2 мг (42 мкл, 0.298 ммоль) триэтиламина по описанной для синтеза соединения 7 методике с выходом 63.2 мг (82%). Т. пл. 48–49 °С. R_f 0.69. Спектр ЯМР 1 Н, δ , м. д.: 0.12 (9H, c, SiMe₃); 1.96, 3.10, 4.28 (2H, м; 2H, м; 2H, д. д, SCH₂CH₂SCH₂CH₂S); 2.12 (2H, м, C–CH₂–C); 3.74–3.99 (6H, м, SCH₂CH₂SCH₂CH₂S, SCH₂, OCH₂). Найдено, %: C 23.28; H 4.42; S 24.61. $C_{10}H_{23}O_2ReS_4Si$. Вычислено, %: C 23.21; H 4.45; S 24.76.
- (2-Трифенилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (9) [1]. К кипящему раствору 40 мг (0.1023 ммоль) комплекса 1 в 5 мл ацетонитрила добавляют 122.0 мг (0.2054 ммоль) 1,2-бис(трифенилсилил)меркаптоэтанола (13) и 10 мг (14.3 мкл, 0.1027 ммоль) триэтиламина. Реакционную смесь кипятят 20 мин. После охлаждения упаривают растворитель, остаток растворяют в хлороформе. Продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ-метанол, 19:1. Выход 64.4 мг (91%).
- (3-Трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (10) [1]. Спектр ЯМР 29 Si, δ , м. д.: -75.46.
- (3-Триметилсилоксипропантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (11) получают из 92.5 мг (0.216 ммоль) комплекса **5**, 35.15 мг (41 мкл, 0.324 ммоль) триметилхлорсилана и 43.63 мг (60 мкл, 0.432 ммоль) триэтиламина по описанной для соединения **7** методике. Продукт реакции выделяют в виде темно-вишневого масла. R_f 0.78. Спектр ЯМР 1 Н, δ , м. д.: 0.11 (9H, c, SiMe₃); 2.18 (2H, м, C–CH₂–C); 3.30–3.81 (10H, м, SCH₂CH₂OCH₂CH₂S, SCH₂, OCH₂); 4.64 (2H, ш. c, SCH₂CH₂OCH₂CH₂S). Найдено, %: C 23.81; H 4.51; S 19.18. C_{10} H₂₃O₃ReS₃Si. Вычислено, %: C 23.95; H 4.59; S 19.16.
- (2-Триметилсилоксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений(V) (12) получают из 80 мг (0.187 ммоль) комплекса 6, 60.8 мг (71 мкл, 0.561 ммоль)

триметилхлорсилана и 75.6 мг (104 мкл, 0.748 ммоль) триэтиламина аналогично соединению **7.** Продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ—метанол, 19:1. После кристаллизации из эфира получают соединение **12** в виде темно-зеленых кристаллов с выходом 77.6 мг (83%). Т. пл. 112–113 °C. R_f 0.72. Спектр ЯМР ¹H, δ , м. д.: 0.14 (9H, c, SiMe₃); 2.63 (2H, т, SCH₂); 3.14, 3.55 (4H, м; 2H, т, SCH₂CH₂NMeCH₂CH₂S); 3.35 (3H, c, NCH₃); 3.89 (4H, ш. c, SCH₂CH₂NMeCH₂CH₂S). Спектр ЯМР ²⁹Si, δ , м. д.: +18.45. Найдено, %: С 24.12; H 4.77; S 19.32; N 2.79. $C_{10}H_{24}NO_2ReS_3$ Si. Вычислено, %: С 24.00; H 4.80; S 19.20; N 2.80.

1,2-Бис(трифенилсилил)меркаптоэтанол (13). К смеси 0.125 г (0.18 мл, 2.5 ммоль) 2-меркаптоэтанола, 0.505 г (0.7 мл, 5 ммоль) триэтиламина и 10 мл эфира добавляют по каплям при охлаждении 3 мл раствора 1.47 г (5 ммоль) трифенилхлорсилана в эфире. Реакционную смесь перемешивают при комнатной температуре 2 ч. Образовавшийся осадок соли аммония отфильтровывают, фильтрат упаривают досуха, остаток экстрагируют гексаном, а экстракт упаривают. После удаления гексана выход соединения **13** 1.25 г (85%). Т. пл. 58 °C. Спектр ЯМР ¹H, δ , м. д.: 2.85 (2H, т, SCH₂); 4.11 (2H, т, OCH₂); 7.56–7.89 (30H, м, Ar). Спектр ЯМР ¹³С, δ , м. д.: 26.9 (SCH₂); 65.5 (OCH₂); 127.7, 127.8, 130.0, 133.7, 134.9, 135.2 (Ar). Найдено, %: С 77.00; H 5.76; S 5.41. C₃₈H₃₄OSSi₂. Вычислено, %: С 76.77; H 5.72; S 5.39.

Рентгеноструктурное исследование монокристаллов соединений **6**, **10** и **12** проводили при 25 °C на автоматическом 4-кружном дифрактометре Syntex P2 $_1$ (Мо K_α излучение, графитовый монохроматор, 2 θ_{max} = 50 °C), ω /2 θ -сканирование (**6** и **12**) и ω / ω -сканирование (**10**). Основные кристаллографические характеристики кристаллов исследованных соединений даны в табл. 9.

Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном приближении с учетом координат атомов водорода, рассчитанных из геометрических соображений. Расчеты проведены по программам [4, 5]. Пространственное расположение атомов с их обозначениями представлено на рисунках 1–3. Межатомные расстояния и валентные углы приведены в таблицах 3–8. Координаты атомов с кристаллографическими характеристиками соединений **6, 10** и **12** депонированы в Кембриджском банке структурных данных (CSD) под номерами 150661–150663 соответственно.

Таблица 9 Кристаллографические данные соединений 6, 10 и 12

	Соединение 6	Соединение 10	Соединение 12
Брутто-формула	$C_{14}H_{32}N_2O_4Re_2S_6$	C ₂₅ H ₂₉ O ₂ ReS ₄ Si	C ₁₀ H ₂₄ NO ₂ ReS ₃ Si
Молекулярная масса	857.18	704.01	500.77
Сингония	Триклинная	Моноклинная	Моноклинная
Пространственная группа	P-1	P 2 ₁ /n	P 2 ₁ /c
Параметры решетки			
a, Å	10.119(2)	7.597(2)	10.544(2)
b, Å	11.109(3)	39.554(8)	10.553(3)
c, Å	11.995(2)	9.453(2)	18.186(4)
α, град.	105.49(2)	90	90
β, град.	93.93(2)	107.66(3)	120.33(2)
ү, град.	103.00(3)	90	90
Объем ячейки, V , $Å^3$	1254.2(5)	2706.7(11)	1746.6(7)
Количество молекул в ячейке, Z	2	4	4
Плотность, d , г/см ³	2.270	1.728	1.904
Количество рефлексов с $I > 2\sigma(I)$	3658	3346	2146
Количество уточненных параметров	281	298	163
Фактор расходимости, R	0.0530	0.0753	0.0744

БИОЛОГИЧЕСКАЯ ЧАСТЬ

Нейротропную активность изучали на мышах линии BALB/с и JCR с массой 18–23 г в осенний сезон. Температуру в лабораторном помещении и виварии при проведении опытов поддерживали 21±2 °С. Исследуемые вещества растворяли в ДМСО и вводили внутрибрюшинно за 1 ч до постановки соответствующего теста. Контрольным животным инъецировали в брюшную полость такой же объем ДМСО. Сравнительную оценку действия исследуемого вещества в дозе 5 мг/кг на показатели гипоксии, гексеналового и этанолового наркоза, фенаминовой гиперактивности, коразоловых судорог, обучения и теста Порсолта проводили на группах животных из 6 особей.

Действие веществ на ЦНС оценивали по тестам:

- противосудорожной активности, исследованной по тесту максимального электрошока (переменный ток силой 50 мА и частотой 50 имп/с при длительности раздражения 0.2 с) и тесту коразоловых судорог, вызванных внутривенным титрованием 1% раствором коразола со скоростью 0.01 мл/с;
- 2) влияния на продолжительность гексеналового наркоза (0.4% раствор гексенала внутривенно в дозе 70 мг/кг); влияния на продолжительность этанолового наркоза (4г/кг внутрибрюшинно);
- влияния на продолжительность жизни животных в условиях гипоксической гипоксии, вызванной помещением (поодиночке) мышей в герметичную камеру емкостью 220 см³ без поглощения углекислого газа;
- 4) изменения степени фенаминовой гиперактивности (0.4% раствор фенамина подкожно в дозе 10 мг/кг);
- 5) влияния на процессы обучения и ретроградной амнезии, вызванной электрошоком.

Определяли также острую токсичность при внутрибрюшинном введении и устанавливали средние летальные дозы (LD_{50} , мг/кг).

Экспериментальные данные обрабатывали статистически, определяя средние эффективные (ED_{50}) и средние летальные (LD_{50}) дозы по экспресс-методу [6]; для оценки средней продолжительности наркотического действия гексенала и этанола, фенаминовой гиперактивности, гипоксии, защитных свойств при коразоловых судорогах вычисляли среднеарифметические значения и их стандартную ошибку $(M\pm m)$ по сравнению с соответствующими контрольными данными. Для оценки значимости различия между средними величинами использовали критерии «t» по Стьюденту. Различия считали достоверными при уровне вероятности $P \le 0,05$.

Авторы выражают благодарность Латвийскому Фонду Тайхо и International Buro BMBF (Germany) за поддержку исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Х. Шпис, Т. Фитц, А. Заблоцкая, С. Беляков, Э. Лукевиц, ХГС, 116 (1999).
- A. Zablotskaya, I. Segal, A. Kemme, E. Lukevics, R. Berger, H. Spies, *Ann. Rep. FZR*, 270, 156 (1999).
- 3. Th. Fietz, H. Spies, H.-J. Pietzsch, P. Leibnitz, Inorg. chim. acta., 231, 233 (1995).
- G. M. Sheldrick, SHELX97. Program for the Solution of Crystal Structures, Univ. Göttingen, Germany.
- 5. G. M. Sheldrick, *SHELXL97*. Program for the Refinement of Crystal Structures, Univ. Göttingen, Germany.
- В. В. Прозоровский, М. П. Прозоровская, В. М. Демченко, Фармакол. и токсикол., 497 (1987).

Латвийский институт органического синтеза, Поступило в редакцию 18.10.2000 Pura LV-1006 e-mail: aez@osi.lv

^a Forschungszentrum Rossendorf, Postfach 51 01 19, D-01314 Dresden, Germany

555