А. Заблоцкая, И. Сегал, А. Кемме, С. Германе, Ю. Попелис, Э. Лукевиц, Р. Бергер^а, Х. Шпис^а

СИЛИЛЬНАЯ МОДИФИКАЦИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ

7*. СИНТЕЗ, СТРУКТУРА, ФИЗИКО-ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ КРЕМНИЙСОДЕРЖАЩИХ "3+1" ОКСОРЕНИЕВЫХ(V) КОМПЛЕКСОВ

С целью исследования зависимости структура-физико-химические свойства-биологическая активность синтезирована серия кремнийорганических нейтральных оксорениевых(V) комплексов со смешанными лигандами и определена их липофильность. С помощью рентгено-структурного анализа установлена молекулярная структура (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V), (2-триметилсилокси- и 2-оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорения(V). Исследованы нейротропные свойства и острая токсичность синтезированных комплексов *in vivo* и зависимость их от природы монодентатного и тридентатного лигандов. Установлено, что все исследованные соединения обладают ярко выраженным седативным действием (продлевают жизнь мышей в условиях гипоксии, являются антагонистами фенамина, проявляют противо-судорожное действие и предупреждают ретроградную амнезию).

Ключевые слова: комплексы рения(V), триалкилсилиловые эфиры, психотропная активность, рентгеноструктурный анализ.

Ранее, с целью повышения липофильности координационных соединений рения как модельных диагностикумов для опухолевых заболеваний центральной нервной системы (ЦНС), мы синтезировали кремнийсодержащие оксорениевые(V) комплексы со смешанными лигандами, в которых оксорениевый остов ReO³⁺ координирован тридентатным 3-тиапентан-1,5-дитиолятом и монодентатным тиолятом, содержащим силилированную гидроксильную функцию с тяжелыми кремнийорганическими заместителями (SiMe₂t-Bu, SiPh₃).

Естественно было ожидать от потенциальных диагностикумов такого рода наличия психотропных свойств, что, вероятно, могло бы служить косвенным критерием отбора этих веществ. Как известно, эффективность психотропных препаратов неразрывно связана с их способностью проходить через гематоэнцефалический барьер, которая обусловлена не только структурными параметрами, но и в значительной степени липофильностью этих соединений. Исследование нейротропных свойств (2-трифенилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (9) показало, что это соединение проявляет антиконвульсивную активность, обладая защитными свойствами по отношению к коразолу [1].

^{*} Сообщение 6 см. [1].

В настоящей работе мы продолжили исследования зависимости структура-физико-химические свойства-биологическая активность комплексов рения. С целью сравнительной характеристики их физико-химических и биологических свойств мы синтезировали серию нейтральных оксорениевых комплексов со смешанными лигандами, где оксорениевый(V) остов ReO³⁺ координирован тридентатными 3-тиа-, 3-окса- и 3-(N-метил)азапентан-1,5-дитиолятом, а также окси-/триорганилсилокси-алкилсодержащими монодентатными тиолятами.

7, 8, 11 R = Me; **9, 10** R = Ph; **2, 4, 7, 9** *n* = 2; **3, 5, 8, 10, 11** *n* = 3

(2-Оксиэтантиолято)- и (3-оксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (2), (3) были получены заменой атома хлора в [ReO(SSS)Cl] (1) на соответствующий монодентатный лиганд [1].

(2-Оксиэтантиолято)-, (3-оксипропантиолято)(3-оксапентан-1,5-дитиолято)- (4), (5), а также (2-оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений(V) (6) получены одновременным взаимодействием 3-окса- или 3-метилаза-1,5-дитиола и меркаптоалканола с соответствующим оксорениевым предшественником. Силилированные оксорениевые комплексы 7–12 были получены взаимодействием предварительно синтезированных оксиалкилсодержащих комплексов с соответствующими триорганилхлорсиланами. Для синтеза (2-трифенилсилоксиэтансодержащего

Рис. 1. Молекулярная структура соединения 10

3-тиапентанового комплекса 9 был опробован также способ "3+1"-комплексообразования с участием предварительно синтезированного кремнийорганического лиганда бис(трифенилсилил)меркаптоэтанола (13). Суммарный выход соединения 9 после всех стадий, как в том, так и в другом случае, был практически одинаковым и составил 77%.

Молекулярная структура (2-трифенилсилоксиэтантиолято)- [1] 9, (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (10) (рис. 1), (2-триметилсилоксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорения(V) (12) (рис. 2) и гидроксилсодержащего комплекса 6 (рис. 3) была установлена с помощью РСА.

Рис. 2. Молекулярная структура соединения 12

Рис. 3. Молекулярная структура двух конформеров **а** и **b** соединения **6**

По данным PCA, атом кремния в соединениях **9**, **10**, **12** имеет тетраэдрическую конфигурацию, а лиганды координируются вокруг остова ReO³⁺, образуя искаженную тетрагональную пирамиду с атомом рения в центре.

При удлинении боковой цепи в трифенилсилоксиалкантиолятных комплексах (ср. 9 и 10) и при замене атома водорода на триметилсилильную группу в комплексах [3-(N-метил)азапентан-1,5-дитиолято]оксорения (ср. 6 и 12) не установлено существенных изменений молекулярной геометрии.

Наблюдается увеличение длины связи Re=O в ряду 3-трифенилсилоксипропан- (1.624 Å), 2-трифенилсилоксиэтансодержащих (1.678 Å) тиапентановых соединений **10**, **9** и далее в (2-триметилсилоксиэтантиолято)(3-метилазапентан)овом комплексе **12** (1.693 Å).

В отличие от несилилированного комплекса 6 атомы оксиэтантиолятного заместителя в соединении 12 расположены практически в одной плоскости, о чем свидетельствует значение торсионного угла $S_8-S_9-C_{10}-O_{11}$ (175.7°).

Для соединения **6** установлено наличие в кристаллографической ячейке двух независимых конформеров **a** и **b** (рис. 3). В конформере **6a** обнаружено разупорядочение атомов углерода, находящихся в α -положении к атому N₄ тридентатного лиганда, с *g*-фактором занятости 63 : 37 (**6a**1 и **6a**2 соответственно). Кроме того, в диаграмме упаковки соединения **6** присутствуют два независимых тетрамера, расположенных вокруг кристаллографического центра симметрии и связанных водородными связями (рис. 4).

Рис. 4. Проекция элементарной ячейки соединения 6

Исследование липофильности синтезированных комплексов проводили методом ВЭЖХ. Полученные данные (табл. 1) позволяют адекватно оценить эффекты: введения кремнийорганического заместителя в молекулу; замены центрального атома тридентатного лиганда; изменения длины цепи монодентатного лиганда.

Для несилилированных комплексов значения log P < 1 (0.2201–0.4362), для силилированных – варьируются от 2.4 до 5.4 и зависят от изменения стерического окружения вокруг атома кремния. Максимальное значение (log P 5.4) соответствует соединению **10**. Значение log P для (3-триметилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорения(V) (**8**) в два раза меньше. Как для силилированных, так и для несилилированных комплексов тенденция увеличения log P в ряду 3-(N-метил)аза-, 3-окса-, 3-тиасогласуется с эффектом электронного влияния атомов серы, кислорода и азота тридентатных лигандов. Для обоих типов комплексов характерно повышение липофильности с удлинением цепи монодентатного лиганда.

Таблица 1

Соеди- нение	P_{HPLC}	$\log P_{ m HPLC}$	Соеди- нение	$P_{ m HPLC}$	$\log P_{\rm HPLC}$
2	2.66 ± 0.06	0.4249	10	237360 ± 23000	5.3754
4	2.06 ± 0.12	0.3139	11	760	2.8808
5	2.73 ± 0.04	0.4362	6	1.66 ± 0.02	0.2201
7	577 ± 14	2.7612	12	275 ± 8	2.4393
8	982 ± 48	2.9921			

Липофильность оксорениевых комплексов [2]

	<i>М</i> , % к контролю (100%)*								
	Тест								
Соеди- нение	Гипокси- ческая гипоксия	Гексенало- вый наркоз	Этано- ловый наркоз	Фена- миновая гипер- актив- ность	Коразоловые судороги, клони- ческие/ тони- ческие	Ретро- градная амнезия			
2	113**	97	113	77**	134**/178**	80**			
3	134**	118**	91	80	119**/157**	40			
4	132**	103	60**	72**	135**/216**	60			
5	146**	76**	62**	22**	134**/173**	80**			
6	150**	89	96	2**	120/318**	80**			
7	95	92	73	111	125**/165**	60			
9 [1]	95	148**	84	183**	133**/178**	17			
10	150**	89	60**	48**	138**/213**	20			
12	126**	81**	104	22**	131**/301**	60			

Нейротропная активность оксорениевых комплексов

* *М* – среднеарифметическое значение нейротропной активности оксорениевых комплексов.

** Различия по отношению к контролю статистически достоверны при *P*≤0.05.

Нами исследованы нейротропные свойства и острая токсичность синтезированных комплексов (табл. 2). Действие веществ на ЦНС оценивали по показателям тестов гипоксической гипоксии, гексеналового и этанолового наркоза, фенаминовой гиперактивности, коразоловых судорог, электрошока, условного рефлекса пассивного избегания и ретроградной амнезии.

Все исследованные соединения в той или иной степени проявляют антигипоксическое действие, продлевая жизнь мышей в условиях гипоксии на 13-50%. У всех синтезированных соединений ярко выражен фармакологический эффект взаимодействия с фенамином. Почти все они являются антагонистами фенамина. Наиболее активным является соединение 6, которое полностью подавляет действие антидепрессанта. Единственным веществом достоверно усиливающим действие фенамина почти в два раза (83%) является соединение 9. При этом наблюдается стойкая тенденция ослабления антифенаминового действия с изменением гетероатома тридентатного лиганда (при переходе от аза- к окса- и далее к тиа-) в ряду как несилилированных, так и силилированных оксиалкилтиолятных комплексов: 6 (98%) >> 4 (28%) > 2 (23%), 5 (78%) >> 3 (20%), 12 (78%) >> 7 (усиливает действие фенамина на 11%), а также при силилировании комплексов с оксиэтантиолятным монодентатным лигандом: 6 (98%) > 12(78%), **2** (23%) > **7** > **9** (соединения **7** и **9** усиливают действие фенамина на 11 и 83% соответственно).

Для комплексов с оксипропантиолятным монодентатным лигандом 3 и 10 наблюдается обратный эффект – фенаминовая гиперактивность при трифенилсилилировании снижается.

В отличие от действия исследуемых веществ при максимальном электрошоке, когда никаких защитных свойств не было обнаружено, все синтезированные соединения проявляют противосудорожное действие при коразоловых судорогах. Как и при взаимодействии с фенамином, решающую роль играет гетероатом тридентатного лиганда. Порог коразоловых судорог возрастает при замене атома серы на атом кислорода и далее – азота в ряду как оксиалкилтиолято-, так и триметилсилоксиэтантиолятосодержащих комплексов:

> **2** (134/178) << **4** (135/216) << **6** (120/318); **3** (119/157) < **5** (134/173); **7** (125/165) << **12** (131/301).

Наиболее сильными антиконвульсивными свойствами обладают (3-метилазапентан-1,5-дитиолято)комплексы 6 и 12, которые увеличивают порог коразоловых судорог в три раза (тоническая фаза). Введение кремнийорганического заместителя мало влияет на антиконвульсивные свойства комплексов за исключением соединения 10, противосудорожное действие которого на 20% в клонической и на 60% в тонической фазе выше, чем у несилилированного предшественника.

Действие исследованных веществ на продолжительность гексеналового и этанолового наркоза в дозе 5 мг/кг выражено слабо. Однако введение трифенилсилоксизаместителя в (2-оксиэтантиолято)-3-тиапентановый комплекс 2 увеличивает продолжительность гексеналового наркоза на 48%, а введение в соединение 3 сокращает время этанолового наркоза на 40%. Для 3-оксапентан-1,5-дитиолятных комплексов 4 и 5 характерна антагонизирующая активность по отношению к этанолу.

Почти все исследуемые комплексы предупреждают ретроградную амнезию на 60-80%.

В результате исследований не обнаружена прямая зависимость между нейротропной активностью и липофильностью, скорее играют роль структурные факторы.

Хотя введение триметилсилильной группы мало влияет на показатели гипоксии, продолжительность гексеналового и этанолового наркоза и противосудорожное действие, введение трифенилсилильной группы (и увеличение липофильности до 5.37) уже более существенно изменяет свойства исходного гидроксилсодержащего комплекса. Так, соединение **9** максимально из всех синтезированных веществ достоверно пролонгирует действие гексенала (в 1.5 раза), а соединение **10** обладает более высоким антигипоксическим и противосудорожным действием по сравнению с его несилилированным предшественником **3**, а также сокращает продолжительность этанолового наркоза.

В отношении фенаминового теста в некоторых случаях, вероятно, можно говорить о тенденции к ослаблению антагонистических свойств к фенамину и проявлению противоположного действия с введением силильной группы (ср. 2, 7 и 9; 6 и 12).

Изучение острой токсичности веществ подтверждает наличие тенденции к уменьшению токсичности при введении триалкилсилильной группы, выявленной ранее.

Таблица З

	длины сы	лэси в структ	ypax oa noo	сосдинсния о	
Связь	l, Å	Связь	l, Å	Связь	<i>l</i> , Å
Rea-O(12a)	1.699(11)	N(4a)-C(5a2)	1.58(4)	Reb-S(7b)	2.292(4)
Rea-N(4a)	2.202(11)	N(4a)-C(13a1)	1.66(6)	Reb-S(8b)	2.309(4)
Rea-S(1a)	2.276(4)	C(5a1)-C(6a)	1.60(4)	S(1b)-C(2b)	1.83(2)
Rea-S(7a)	2.280(4)	C(5a2)-C(6a)	1.36(5)	C(2b)-C(3b)	1.48(3)
Rea-S(8a)	2.300(4)	C(6a)-S(7a)	1.80(2)	C(3b)-N(4b)	1.477(18)
S(1a)-C(2a)	1.814(18)	S(8a)-C(9a)	1.825(14)	N(4b)-C(13b)	1.45(2)
C(2a)-C(3a1)	1.35(4)	$C_{(9a)} - C_{(10a)}$	1.52(2)	N(4b)-C(5b)	1.53(2)
C(2a)-C(3a2)	1.53(3)	$C_{(10a)} - O_{(11a)}$	1.430(19)	C(5b)-C(6b)	1.38(3)
C(3a1)-N(4a)	1.65(4)			C(6b)-S(7b)	1.826(16)
C(3a2)-N(4a)	1.48(3)	Reb-O(12b)	1.685(10)	S(8b)-C(9b)	1.865(16)
N(4a)-C(13a2)	1.38(4)	Reb-N(4b)	2.205(13)	C(9b)-C(10b)	1.49(2)
N _(4a) -C _(5a1)	1.42(4)	$Re_b-S_{(1b)}$	2.289(4)	C(10b)-O(11b)	1.37(2)

Длины связей в структурах ба и бb соединения б

Таблица 4

Валентные углы в структурах 6а и 6b						
Угол	<i>w</i> , град.	Угол	<i>ю</i> , град.			
O _(12a) -Re _a -N _(4a)	98.0(6)	C _(13a1) -N _(4a) -Re _a	112(3)			
$O_{(12a)} - Re_a - S_{(1a)}$	118.2(4)	N _(4a) -C _(5a1) -C _(6a)	107(2)			
N _(4a) -Re _a -S _(1a)	82.9(3)	C(6a)-C(5a2)-N(4a)	111(4)			
O(12a)-Rea-S(7a)	115.9(4)	C(5a2)-C(6a)-C(5a1)	43(3)			
N(4a)-Rea-S(7a)	83.6(4)	C(5a2)-C(6a)-S(7a)	121(3)			
S(1a)-Rea-S(7a)	125.40(18)	C(5a1)-C(6a)-S(7a)	110.9(15)			
O(12a)-Rea-S(8a)	103.6(4)	C(6a)-S(7a)-Rea	101.3(7)			
N(4a)-Rea-S(8a)	158.4(4)	C(9a)-S(8a)-Rea	110.4(4)			
S(1a)-Rea-S(8a)	88.51(14)	C(10a)-C(9a)-S(8a)	110.8(9)			
S(7a)-Rea-S(8a)	85.33(15)	$O_{(11a)} - C_{(10a)} - C_{(9a)}$	111.3(13)			
C(2a) -S(1a)-Rea	102.6(6)	O(12b)-Reb-N(4b)	103.8(5)			
C(3a1)-C(2a)-C(3a2)	54(2)	O(12b)-Reb-S(1b)	113.9(4)			
C(3a1)-C(2a)-S(1a)	115(2)	N(4b)-Reb-S(1b)	81.7(3)			
$C_{(3a2)} - C_{(2a)} - S_{(1a)}$	108.5(13)	O(12b)-Reb-S(7b)	111.9(4)			
C(2a)-C(3a1)-N(4a)	108(2)	N(4b)-Reb-S(7b)	83.0(3)			
N _(4a) -C _(3a2) -C _(2a)	108(2)	S(1b)-Reb-S(7b)	133.95(18)			
C(13a2)-N(4a)-C(5a1)	133(3)	O(12b)-Reb-S(8b)	105.2(4)			
C(13a2)-N(4a)-C(3a2)	119(3)	N _(4b) -Re _b -S _(8b)	150.8(3)			
C(5a1)-N(4a)-C(3a2)	67.6(19)	S(1b)-Reb-S(8b)	89.68(17)			
C(13a2)-N(4a)-C(5a2)	100(3)	$S_{(7b)} - Re_b - S_{(8b)}$	83.12(16)			
C(5a1)-N(4a)-C(5a2)	43(3)	C _(2b) -S _(1b) -Reb	102.6(6)			
C(3a2)-N(4a)-C(5a2)	107(3)	C _(3b) -C _(2b) -S _(1b)	107.5(16)			
C(13a2)-N(4a)-C(3a1)	74(3)	N(4b)-C(3b)-C(2b)	110.6(14)			
C(5a1)-N(4a)-C(3a1)	113(2)	C(13b)-N(4b)-C(3b)	111.7(15)			
C(3a2)-N(4a)-C(3a1)	49.7(19)	C(13b)-N(4b)-C(5b)	108.4(16)			
C(5a2)-N(4a)-C(3a1)	138(3)	C(3b)-N(4b)-C(5b)	102.8(13)			
C _(13a2) -N _(4a) -C _(13a1)	24(4)	C(13b)-N(4b)-Reb	108.0(10)			
C(5a1)-N(4a)-C(13a1)	113(3)	C(3b)-N(4b)-Reb	113.9(9)			
C(3a2)-N(4a)-C(13a1)	131(4)	C(5b)-N(4b)-Reb	111.9(11)			
C(5a2)-N(4a)-C(13a1)	76(3)	C _(6b) -C _(5b) -N _(4b)	114.6(16)			
C(3a1)-N(4a)-C(13a1)	95(4)	C _(5b) -C _(6b) -S _(7b)	110.1(14)			
C(13a2)-N(4a)-Rea	107.4(18)	C _(6b) -S _(7b) -Re _b	100.4 (5)			
C(5a1)-N(4a)-Rea	113.3(18)	C _(9b) -S _(8b) -Re _b	109.4 (6)			
C(3a2)-N(4a)-Rea	110.9(11)	$C_{(10b)} - C_{(9b)} - S_{(8b)}$	111.1 (10)			
C(5a2)-N(4a)-Rea	113(2)	O(11b)-C(10b)-C(9b)	111.8 (16)			
$C_{(3a1)} - N_{(4a)} - Re_a$	108.3(15)					

Таблица 5

				п	
Связь	<i>l</i> , Å	Связь	<i>l</i> , Å	Связь	<i>l</i> , Å
Re–O _{Re}	1.624(12)	C(3)-S(4)	1.76(2)	C(11)-O(12)	1.44(3)
Re–S ₍₇₎	2.279(5)	S ₍₄₎ -C ₍₅₎	1.85(2)	O(12)-Si	1.619(14)
$Re-S_{(1)}$	2.290(6)	C(5)-C(6)	1.46(3)	C(13)-Si	1.85(2)
Re-S(8)	2.310(5)	C(6)-S(7)	1.817(18)	C(19)-Si	1.86(2)
Re-S ₍₄₎	2.382(5)	S ₍₈₎ -C ₍₉₎	1.83(2)	Si-C(25)	1.889(19)
S(1)-C(2)	1.82(3)	$C_{(9)} - C_{(10)}$	1.52(3)		
C(2)-C(3)	1.51(3)	$C_{(10)}-C_{(11)}$	1.48(3)		

Длины связей в структуре соединения 10

Таблица б

Валентные	углы	в	структуре	соединения	10

Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.
O _{Re} -Re-S ₍₇₎	116.7(7)	S(7)-C(6)-H(6B)	109.2
$O_{Re}-Re-S_{(1)}$	114.6(7)	H _(6A) -C ₍₆₎ -H _(6B)	107.9
$S_{(7)}$ -Re- $S_{(1)}$	128.5(2)	$C_{(6)} - S_{(7)} - Re$	107.0(8)
O _{Re} -Re-S ₍₈₎	105.7(6)	$C_{(9)}-S_{(8)}-Re$	110.8(7)
$S_{(7)}$ -Re- $S_{(8)}$	87.52(18)	$C_{(10)}-C_{(9)}-S_{(8)}$	113.7(13)
S(1)-Re-S(8)	83.2(2)	C(10)-C(9)-H(9A)	108.8
O _{Re} -Re-S ₍₄₎	98.1(6)	S(8)-C(9)-H(9A)	108.8
S(7)-Re-S(4)	84.13(18)	C(10)-C(9)-H(9B)	108.8
S(1)-Re-S(4)	84.6(2)	S(8)-C(9)-H(9B)	108.8
S(8)-Re-S(4)	156.03(19)	H _(9A) -C ₍₉₎ -H _(9B)	107.7
C(2)-S(1)-Re	105.2(7)	$C_{(11)} - C_{(10)} - C_{(9)}$	117.6(18)
$C_{(3)} - C_{(2)} - S_{(1)}$	113.3(16)	C(11)-C(10)-H(10A)	107.9
$C_{(3)}$ - $C_{(2)}$ - $H_{(2A)}$	108.9	$C_{(9)}$ - $C_{(10)}$ - $H_{(10A)}$	107.9
$S_{(1)} - C_{(2)} - H_{(2A)}$	108.9	C(11)-C(10)-H(10B)	107.9
$C_{(3)}$ - $C_{(2)}$ - $H_{(2B)}$	108.9	$C_{(9)}-C_{(10)}-H_{(10B)}$	107.9
$S_{(1)} - C_{(2)} - H_{(2B)}$	108.9	$H_{(10A)}$ - $C_{(10)}$ - $H_{(10B)}$	107.2
$H_{(2A)} - C_{(2)} - H_{(2B)}$	107.7	$O_{(12)}-C_{(11)}-C_{(10)}$	112.5(19)
$C_{(2)} - C_{(3)} - S_{(4)}$	109.7(15)	$O_{(12)}-C_{(11)}-H_{(11A)}$	109.1
$C_{(2)}-C_{(3)}-H_{(3A)}$	109.7	$C_{(10)}-C_{(11)}-H_{(11A)}$	109.1
$S_{(4)} - C_{(3)} - H_{(3A)}$	109.7	$O_{(12)}-C_{(11)}-H_{(11B)}$	109.1
$C_{(2)} - C_{(3)} - H_{(3B)}$	109.7	$C_{(10)}-C_{(11)}-H_{(11B)}$	109.1
$S_{(4)}$ - $C_{(3)}$ - $H_{(3B)}$	109.7	$H_{(11A)}$ - $C_{(11)}$ - $H_{(11B)}$	107.8
$H_{(3A)}-C_{(3)}-H_{(3B)}$	108.2	C(11)-O(12)-Si	125.6(13)
$C_{(3)} = S_{(4)} = C_{(5)}$	105.3(11)	C(18)-C(13)-Si	122.7(19)
C(3)-S(4)-Re	108.1(7)	C(14)-C(13)-Si	122.0(16)
C(5)-S(4)-Re	105.8(8)	C(24)-C(19)-Si	126.0(18)
$C_{(6)} - C_{(5)} - S_{(4)}$	107.6(18)	C(21)-C(19)-Si	119.9(17)
$C_{(6)}$ - $C_{(5)}$ - $H_{(5A)}$	110.2	O ₍₁₂₎ -Si-C ₍₁₃₎	111.2(9)
$S_{(4)}$ - $C_{(5)}$ - $H_{(5A)}$	110.2	O(12)-Si-C(19)	110.8(9)
$C_{(6)} - C_{(5)} - H_{(5B)}$	110.2	C (13)-Si-C(19)	108.7(10)
$S_{(4)} - C_{(5)} - H_{(5B)}$	110.2	O(12)-Si-C(25)	104.8(8)
$H_{(5A)}$ - $C_{(5)}$ - $H_{(5B)}$	108.5	C (13)-Si-C(25)	110.2(9)
$C_{(5)} - C_{(6)} - S_{(7)}$	112.2(15)	C (19)-Si-C(25)	111.2(9)
$C_{(5)} - C_{(6)} - H_{(6A)}$	109.2	C (30)-C(25)-Si	121.8(16)
$S_{(7)}-C_{(6)}-H_{(6A)}$	109.2	C (26)-C(25)-Si	118.5(17)
$C_{(5)}$ - $C_{(6)}$ - $H_{(6B)}$	109.2		

Таблица 7

Связь	<i>l</i> , Å	Связь	l, Å	Связь	<i>l</i> , Å
Re-O(17)	1.693(14)	C(3)-N(4)	1.51(3)	C(10)-O(11)	1.46(3)
Re-N ₍₄₎	2.157(19)	N(4)-C(5)	1.46(3)	O(11)-Si(12)	1.646(17)
$Re-S_{(1)}$	2.280(6)	N(4)-C(16)	1.48(3)	Si(12)-C(15)	1.83(3)
Re-S(7)	2.280(7)	C(5)-C(6)	1.42(4)	Si(12)-C(14)	1.84(3)
Re-S(8)	2.302(6)	C ₍₆₎ -S ₍₇₎	1.85(3)	Si(12)-C(13)	1.86(3)
S(1)-C(2)	1.81(2)	S(8)-C(9)	1.85(2)		
C(2)-C(3)	1.58(3)	C(9)-C(10)	1.47(3)		
$Re-S_{(1)} \\ Re-S_{(7)} \\ Re-S_{(8)} \\ S_{(1)}-C_{(2)} \\ C_{(2)}-C_{(3)} \\$	2.280(6) 2.280(7) 2.302(6) 1.81(2) 1.58(3)	$\begin{array}{c} N_{(4)} {-} C_{(16)} \\ C_{(5)} {-} C_{(6)} \\ C_{(6)} {-} S_{(7)} \\ S_{(8)} {-} C_{(9)} \\ C_{(9)} {-} C_{(10)} \end{array}$	1.48(3) 1.42(4) 1.85(3) 1.85(2) 1.47(3)	$\begin{array}{c} Si_{(12)} {-} C_{(15)} \\ Si_{(12)} {-} C_{(14)} \\ Si_{(12)} {-} C_{(13)} \end{array}$	1.83(3) 1.84(3) 1.86(3)

Длины связей в структуре соединения 12

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ²⁹Si регистрировали на спектрометре Mercury 200 (200 МГц) фирмы Varian в CDCl₃, внутренний стандарт ГМДС. Контроль за ходом реакции и чистотой соединений проводили на пластинках Polygram R Sil G/UV-254 в системе хлороформметанол, 19:1 (по объему). Разделение веществ проводили с помощью колоночной хроматографии на силикагеле Kieselgel 60 (Merck).

Хлоро(3-тиапентан-1,5-дитиолято)оксорений(V) (1) получен по методике [3].

(2-Оксиэтан- (2), (3-оксипропан- (3), (2-трифенилсилоксиэтан- (9) и (3-трифенилсилоксипропантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (10) синтезированы по методике работы [1].

(2-Оксиэтантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (4). К охлажденной до 0 °С суспензии 175.8 мг (0.3 ммоль) (тетрабутиламмоний)тетрахлороксорената(V) в 10 мл хлороформа добавляют по каплям при перемешивании раствор 31.8 мг (0.3 ммоль) 3-оксапентан-1,5-дитиола и 31.2 мг (1.33 ммоль) 2-меркаптоэтанола в 4 мл хлороформа. При добавлении раствора постепенно развивается темно-вишневое окрашивание. Смесь перемешивают в течение 30 мин, доводя температуру до комнатной. Растворитель упаривают в вакууме, остаток растворяют в смеси хлороформ–метанол (соотношение 19:1 по объему) и очищают последний с помощью колоночной хроматографии, используя в качестве элюента ту же смесь растворителей. Соединение 4 после упаривания растворителей выделяют в виде светло-розового порошка с выходом 45.8 мг (37%). Т. пл. 95–97 °С. R_f 0.26. Спектр ЯМР ¹H, δ , м. д.: 1.93 (2H, ш. с, SCH₂); 3.37, 3.52, 3.71, 4.69 (2H, м; 2H, м; 2H, м; 2H, т, SCH₂CH₂OCH₂CH₂S); 4.09 (2H, ш. с, OCH₂). Найдено, %: С 17.52; H 3.10; S 23.10. С₆H₁₃O₃ReS₃. Вычислено, %: С 17.35; H 3.13; S 23.13.

(3-Оксипропантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (5). К раствору 293 мг (0.5 ммоль) (тетрабутиламмоний)тетрахлороксорената(V) в 10 мл этанола при 0 °С добавляют по каплям 5 мл раствора 3-оксапентан-1,5-дитиола (53 мкл, 0.5 ммоль) и 3-меркаптопропанола (50.6 мг, 47.4 мкл, 0.55 ммоль) в хлороформе.

Таблица 8

Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.
O(17)-Re-N(4)	95.8(7)	$C_{(3)}-C_{(2)}-S_{(1)}$	107.7(14)	C(9)-S(8)-Re	112.6(9)
O(17)-Re-S(1)	116.3(6)	$N_{(4)}$ - $C_{(3)}$ - $C_{(2)}$	107(2)	$C_{(10)} - C_{(9)} - S_{(8)}$	109.8(18)
N ₍₄₎ -Re-S ₍₁₎	83.5(5)	$C_{(5)}-N_{(4)}-C_{(16)}$	108(2)	$O_{(11)} - C_{(10)} - C_{(9)}$	112(2)
O(17)-Re-S(7)	118.9(6)	$C_{(5)} - N_{(4)} - C_{(3)}$	106.4(19)	$C_{(10)} - O_{(11)} - Si_{(12)}$	126.4(15)
N(4)-Re-S(7)	82.8(5)	$C_{(16)} - N_{(4)} - C_{(3)}$	105.3(19)	$O_{(11)}$ - $Si_{(12)}$ - $C_{(15)}$	111.7(13)
S(1)-Re-S(7)	124.1(3)	C(5)-N(4)-Re	114.4(15)	$O_{(11)}$ - $Si_{(12)}$ - $C_{(14)}$	104.9(12)
O(17)-Re-S(8)	106.5(6)	C(16)-N(4)-Re	110.3(16)	$C_{(15)}$ - $Si_{(12)}$ - $C_{(14)}$	110.2(16)
N(4)-Re-S(8)	157.5(5)	C(3)-N(4)-Re	111.5(14)	$O_{(11)}$ -Si ₍₁₂₎ -C ₍₁₃₎	110.0(12)
S(1)-Re-S(8)	89.2(2)	$C_{(6)} - C_{(5)} - N_{(4)}$	112(2)	$C_{(15)}$ - $Si_{(12)}$ - $C_{(13)}$	109.3(15)
S(7)-Re-S(8)	83.7(3)	$C_{(5)}-C_{(6)}-S_{(7)}$	113(2)	$C_{(14)}$ -Si ₍₁₂₎ -C ₍₁₃₎	110.7(13)
C(2)-S(1)-Re	103.5(6)	C ₍₆₎ -S ₍₇₎ -Re	101.4(10)		

Валентные углы в структуре соединения 12

Смесь перемешивают в течение 30 мин при комнатной температуре, затем упаривают растворитель, остаток растворяют в хлороформе и продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ-метанол, 19:1. После удаления растворителей получают соединение **5** в виде вишневого масла с выходом 68.7 мг (32%). R_f 0.27. Спектр ЯМР ¹H, δ , м. д.: 2.16 (2H, м, C–CH₂–C); 3.31–3.85 (10H, м, SCH₂CH₂OCH₂CH₂S, SCH₂, OCH₂); 4.66 (2H, ш. с, SCH₂CH₂OCH₂CH₂S). Найдено, %: C 20.01; H 3.50; S 22.24. C₇H₁₅O₃ReS₃. Вычислено, %: C 19.68; H 3.50; S 22.38.

(2-Оксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений (V) (6). Смесь 72.3 мг (0.3 ммоль) оксалата 3-(N-метилаза)-1,5-дитиола и 25.7 мг (23 мкл, 0.33 ммоль) меркаптоэтанола в 3 мл метанола добавляют при перемешивании к суспензии 250 мг (0.3 ммоль) *транс*-монооксотрихлоро-бис(трифенилфосфин)рения(V) в 30 мл метанола. Реакционную смесь подщелачивают с помощью 0.1 М раствора метилата натрия в метаноле и затем кипятят 3 ч. Желтая суспензия при этом превращается в темно-зеленый раствор. После охлаждения до комнатной температуры к реакционной смеси добавляют 25 мл хлористого метилена и подкисляют ее до рН 4 разбавленной соляной кислотой. Органическую фазу отделяют, а водную реэкстрагируют хлороформом. Органические экстракты объединяют и сушат над Na₂SO₄. Затем удаляют растворитель и выделяют продукт реакции с помощью колоночной хроматографии в системе хлороформ-метанол, 19:1, в качестве мобильной фазы. При медленном упаривании растворителей соединение 6 кристаллизуется в виде темно-зеленых кристаллов с выходом 101.4 мг (79%). Т. пл. 127–129 °С. Re 0.24. CREKTP SIMP 1H, & M. J.: 2.66 (2H, M, SCH2); 3.17, 3.56 (4H, M; 2H, M, SCH2CH2NMeCH2CH2S); 3.37 (3H, c, CH₃N); 4.00 (4H, M, OCH₂, SCH₂CH₂NMeCH₂CH₂S). Haйдено, %: C 19.82; H 3.78; S 22.44; N 3.17. C₇H₁₆NO₂ReS₃. Вычислено, %: С 19.63; Н 3.74; S 22.43; N 3.27.

(2-Триметилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (7). К 60.0 мг (0.139 ммоль) комплекса 2 в 4 мл хлороформа добавляют 50 мкл (0.360 ммоль) триэтиламина и далее при охлаждении 17.2 мг (20 мкл, 0.158 ммоль) триметилхлорсилана. Реакционную смесь перемешивают при комнатной температуре 1 ч. Ход реакции контролируют методом ТСХ. После удаления растворителя продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ-метанол, 19:1. Фракции с R_f 0.67 объединяют, упаривают и лиофилизуют. Соединение 7 получают в виде светло-бежевого порошка с выходом 42.0 мг (64%). Т. пл. 101–102 °С. Спектр ЯМР ¹Н, δ , м. д.: 0.15 (9H, с, SiMe₃); 1.96, 3.12, 4.30 (2H, м; 2H, т. д; 2H, д. д. SCH₂CH₂NMeCH₂CH₂S); 3.93 (4H, м, SCH₂, SCH₂CH₂NMeCH₂CH₂S); 4.06 (2H, т, OCH₂). Найдено, %: С 21.47; H 4.20; S 25.65. С₉H₂₁O₂ReS₄Si. Вычислено, %: С 21.47; H 4.18; S 25.45.

(**3-Триметилсилоксипропантиолято**)(**3-тиапентан-1,5-дитиолято**)оксорений(**V**) (**8**) получают из 66.5 мг (0.149 ммоль) комплекса **2**, 25.8 мг (30 мкл, 0.238 ммоль) триметилхлорсилана и 30.2 мг (42 мкл, 0.298 ммоль) триэтиламина по описанной для синтеза соединения **7** методике с выходом 63.2 мг (82%). Т. пл. 48–49 °С. *R*_f 0.69. Спектр ЯМР ¹H, δ, м. д.: 0.12 (9H, c, SiMe₃); 1.96, 3.10, 4.28 (2H, м; 2H, м; 2H, д. д, SCH₂CH₂SCH₂CH₂S); 2.12 (2H, м, C–CH₂–C); 3.74–3.99 (6H, м, SCH₂CH₂SCH₂CH₂S, SCH₂, OCH₂). Найдено, %: С 23.28; H 4.42; S 24.61. C₁₀H₂₃O₂ReS₄Si. Вычислено, %: С 23.21; H 4.45; S 24.76.

(2-Трифенилсилоксиэтантиолято)(3-тиапентан-1,5-дитиолято)оксорений(V) (9) [1]. К кипящему раствору 40 мг (0.1023 ммоль) комплекса 1 в 5 мл ацетонитрила добавляют 122.0 мг (0.2054 ммоль) 1,2-бис(трифенилсилил)меркаптоэтанола (13) и 10 мг (14.3 мкл, 0.1027 ммоль) триэтиламина. Реакционную смесь кипятят 20 мин. После охлаждения упаривают растворитель, остаток растворяют в хлороформе. Продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ-метанол, 19:1. Выход 64.4 мг (91%).

(**3-Трифенилсилоксипропантиолято**)(**3-тиапентан-1,5-дитиолято**)оксорений(**V**) (10) [1]. Спектр ЯМР ²⁹Si, б, м. д.: –75.46.

(3-Триметилсилоксипропантиолято)(3-оксапентан-1,5-дитиолято)оксорений(V) (11) получают из 92.5 мг (0.216 ммоль) комплекса 5, 35.15 мг (41 мкл, 0.324 ммоль) триметилхлорсилана и 43.63 мг (60 мкл, 0.432 ммоль) триэтиламина по описанной для соединения 7 методике. Продукт реакции выделяют в виде темно-вишневого масла. R_f 0.78. Спектр ЯМР ¹H, δ , м. д.: 0.11 (9H, c, SiMe₃); 2.18 (2H, м, C–CH₂–C); 3.30–3.81 (10H, м, SCH₂CH₂OCH₂CH₂S, SCH₂, OCH₂); 4.64 (2H, ш. c, SCH₂CH₂OCH₂CH₂S). Найдено, %: C 23.81; H 4.51; S 19.18. C₁₀H₂₃O₃ReS₃Si. Вычислено, %: C 23.95; H 4.59; S 19.16.

(2-Триметилсилоксиэтантиолято)[3-(N-метил)азапентан-1,5-дитиолято]оксорений(V) (12) получают из 80 мг (0.187 ммоль) комплекса 6, 60.8 мг (71 мкл, 0.561 ммоль) триметилхлорсилана и 75.6 мг (104 мкл, 0.748 ммоль) триэтиламина аналогично соединению 7. Продукт реакции выделяют с помощью колоночной хроматографии. Элюент хлороформ-метанол, 19:1. После кристаллизации из эфира получают соединение 12 в виде темно-зеленых кристаллов с выходом 77.6 мг (83%). Т. пл. 112–113 °C. R_f 0.72. Спектр ЯМР ¹H, δ , м. д.: 0.14 (9H, c, SiMe₃); 2.63 (2H, т, SCH₂); 3.14, 3.55 (4H, м; 2H, т, SCH₂CH₂NMeCH₂CH₂S); 3.35 (3H, c, NCH₃); 3.89 (4H, ш. c, SCH₂CH₂NMeCH₂CH₂S). Спектр ЯМР ²⁹Si, δ , м. д.: +18.45. Найдено, %: C 24.12; H 4.77; S 19.32; N 2.79. C₁₀H₂₄NO₂ReS₃Si. Вычислено, %: C 24.00; H 4.80; S 19.20; N 2.80.

1,2-Бис(трифенилсилил)меркаптоэтанол (13). К смеси 0.125 г (0.18 мл, 2.5 ммоль) 2-меркаптоэтанола, 0.505 г (0.7 мл, 5 ммоль) триэтиламина и 10 мл эфира добавляют по каплям при охлаждении 3 мл раствора 1.47 г (5 ммоль) трифенилхлорсилана в эфире. Реакционную смесь перемешивают при комнатной температуре 2 ч. Образовавшийся осадок соли аммония отфильтровывают, фильтрат упаривают досуха, остаток экстрагируют гексаном, а экстракт упаривают. После удаления гексана выход соединения **13** 1.25 г (85%). Т. пл. 58 °C. Спектр ЯМР ¹H, δ , м. д.: 2.85 (2H, т, SCH₂); 4.11 (2H, т, OCH₂); 7.56–7.89 (30H, м, Ar). Спектр ЯМР ¹³С, δ , м. д.: 26.9 (SCH₂); 65.5 (OCH₂); 127.7, 127.8, 130.0, 133.7, 134.9, 135.2 (Ar). Найдено, %: С 77.00; H 5.76; S 5.41. С₃₈H₃₄OSSi₂. Вычислено, %: С 76.77; H 5.72; S 5.39.

Рентгеноструктурное исследование монокристаллов соединений 6, 10 и 12 проводили при 25 °С на автоматическом 4-кружном дифрактометре Syntex P2₁ (Мо K_{α} излучение, графитовый монохроматор, 2 θ_{max} = 50 °С), ω /2 θ -сканирование (6 и 12) и ω / ω -сканирование (10). Основные кристаллографические характеристики кристаллов исследованных соединений даны в табл. 9.

Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном приближении с учетом координат атомов водорода, рассчитанных из геометрических соображений. Расчеты проведены по программам [4, 5]. Пространственное расположение атомов с их обозначениями представлено на рисунках 1–3. Межатомные расстояния и валентные углы приведены в таблицах 3–8. Координаты атомов с кристаллографическими характеристиками соединений **6**, **10** и **12** депонированы в Кембриджском банке структурных данных (CSD) под номерами 150661–150663 соответственно.

	Соединение 6	Соединение 10	Соединение 12
Брутто-формула	$C_{14}H_{32}N_2O_4Re_2S_6$	C ₂₅ H ₂₉ O ₂ ReS ₄ Si	C10H24NO2ReS3Si
Молекулярная масса	857.18	704.01	500.77
Сингония	Триклинная	Моноклинная	Моноклинная
Пространственная группа	P-1	P 2 ₁ /n	$P 2_1/c$
Параметры решетки			
<i>a</i> , Å	10.119(2)	7.597(2)	10.544(2)
<i>b</i> , Å	11.109(3)	39.554(8)	10.553(3)
<i>c</i> , Å	11.995(2)	9.453(2)	18.186(4)
α, град.	105.49(2)	90	90
β, град.	93.93(2)	107.66(3)	120.33(2)
ү, град.	103.00(3)	90	90
Объем ячейки, V, Å ³	1254.2(5)	2706.7(11)	1746.6(7)
Количество молекул в ячейке, Z	2	4	4
Плотность, <i>d</i> , г/см ³	2.270	1.728	1.904
Количество рефлексов с <i>I</i> >2σ(<i>I</i>)	3658	3346	2146
Количество уточненных параметров	281	298	163
Фактор расходимости, R	0.0530	0.0753	0.0744

Кристаллографические данные соединений 6, 10 и 12

Таблица 9

БИОЛОГИЧЕСКАЯ ЧАСТЬ

Нейротропную активность изучали на мышах линии BALB/с и JCR с массой 18–23 г в осенний сезон. Температуру в лабораторном помещении и виварии при проведении опытов поддерживали 21±2 °C. Исследуемые вещества растворяли в ДМСО и вводили внутрибрюшинно за 1 ч до постановки соответствующего теста. Контрольным животным инъецировали в брюшную полость такой же объем ДМСО. Сравнительную оценку действия исследуемого вещества в дозе 5 мг/кг на показатели гипоксии, гексеналового и этанолового наркоза, фенаминовой гиперактивности, коразоловых судорог, обучения и теста Порсолта проводили на группах животных из 6 особей.

Действие веществ на ЦНС оценивали по тестам:

- противосудорожной активности, исследованной по тесту максимального электрошока (переменный ток силой 50 мА и частотой 50 имп/с при длительности раздражения 0.2 с) и тесту коразоловых судорог, вызванных внутривенным титрованием 1% раствором коразола со скоростью 0.01 мл/с;
- влияния на продолжительность гексеналового наркоза (0.4% раствор гексенала внутривенно в дозе 70 мг/кг); влияния на продолжительность этанолового наркоза (4г/кг внутрибрюшинно);
- влияния на продолжительность жизни животных в условиях гипоксической гипоксии, вызванной помещением (поодиночке) мышей в герметичную камеру емкостью 220 см³ без поглощения углекислого газа;
- изменения степени фенаминовой гиперактивности (0.4% раствор фенамина подкожно в дозе 10 мг/кг);
- 5) влияния на процессы обучения и ретроградной амнезии, вызванной электрошоком. Определяли также острую токсичность при внутрибрюшинном введении и устанавли-

вали средние летальные дозы (LD_{50} , мг/кг).

Экспериментальные данные обрабатывали статистически, определяя средние эффективные (ED_{50}) и средние летальные (LD_{50}) дозы по экспресс-методу [6]; для оценки средней продолжительности наркотического действия гексенала и этанола, фенаминовой гиперактивности, гипоксии, защитных свойств при коразоловых судорогах вычисляли среднеарифметические значения и их стандартную ошибку $(M\pm m)$ по сравнению с соответствующими контрольными данными. Для оценки значимости различия между средними величинами использовали критерии «t» по Стьюденту. Различия считали достоверными при уровне вероятности $P \leq 0,05$.

Авторы выражают благодарность Латвийскому Фонду Тайхо и International Buro BMBF (Germany) за поддержку исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Х. Шпис, Т. Фитц, А. Заблоцкая, С. Беляков, Э. Лукевиц, ХГС, 116 (1999).
- 2. A. Zablotskaya, I. Segal, A. Kemme, E. Lukevics, R. Berger, H. Spies, *Ann. Rep. FZR*, **270**, 156 (1999).
- 3. Th. Fietz, H. Spies, H.-J. Pietzsch, P. Leibnitz, *Inorg. chim. acta.*, 231, 233 (1995).
- 4. G. M. Sheldrick, *SHELX97*. Program for the Solution of Crystal Structures, Univ. Göttingen, Germany.
- 5. G. M. Sheldrick, *SHELXL97*. Program for the Refinement of Crystal Structures, Univ. Göttingen, Germany.
- 6. В. В. Прозоровский, М. П. Прозоровская, В. М. Демченко, *Фармакол. и токсикол.*, 497 (1987).

Латвийский институт органического синтеза, Рига LV-1006 e-mail: aez@osi.lv Поступило в редакцию 18.10.2000

^a Forschungszentrum Rossendorf, Postfach 51 01 19, D-01314 Dresden, Germany