О. А. Замышляева, А. Г. Шипов, Е. П. Крамарова, Вад. В. Негребецкий, А. Н. Шумский^а, С. Н. Тандура^а, С. Ю. Быликин, Ю. Э. Овчинников⁶, С. А. Погожих⁶, Ю. И. Бауков

СИНТЕЗ И НЕКОТОРЫЕ ХИМИЧЕСКИЕ СВОЙСТВА 2,2-ДИМЕТИЛ-4-R-1-ОКСА-4-АЗА-2-СИЛАБЕНЗОЦИКЛО-ГЕПТАН-5-ОНОВ*

Разработан однореакторный синтез 2,2-диметил-4-R-1-окса-4-аза-2-силабензоциклогептан-5-онов (R = Me, CH₂SiMe₂Cl) из N-метиламида салициловой кислоты и салициламида соответственно путем их обработки смесью гексаметилдисилазана и диметилхлорметилхлорсилана. Изучены гидролиз и другие реакции нуклеофильного замещения полученных семичленных силацикланов. В случае силациклана с R = Me гидролиз приводит к соответствующему дисилоксану, в то время как силациклан с R = CH₂SiMe₂Cl в зависимости от условий дает 2,2,6,6-диметил-4-(2-гидроксибензоил)-2,6-дисиламорфолин или его гидрохлорид. В силациклане с R = CH₂SiMe₂Cl осуществлена замена хлора на фтор. Строение 2,2,6,6-тетраметил-4-(2-гидроксибензоил)-2,6-дисиламорфолина и его гидрохлорида, а также 2,2-диметил-4-R-1-окса-4-аза-2-силабензоциклогептан-5-онов (R = CH₂SiMe₂Cl, CH₂SiMe₂F) подтверждено PCA.

Ключевые слова: 1-окса-4-аза-2-силацикланы, система гексаметилдисилазан – диметилхлорметилхлорсилан, соединения пентакоординированного кремния, внутримолекулярная координация.

Ранее нами была описана общая стратегия синтеза шестичленных 1-окса-4аза-2-силацикланов – 2-сила-5-морфолинонов и 4-ацил-2-силаморфолинов [1–3], 4-ацил-2,6-дисиламорфолинов [1, 4] и 4-ацил-2,6-дисилапиперазинов [5] на основе незамещенных и функционально замещенных амидов карбоновых кислот и диметилхлорметилхлорсилана как циклосилилметилирующего реагента. Образование силацикланов протекает через промежуточные соединения пентакоординированного кремния [1–5], обладающие повышенной реакционной способностью в реакциях нуклеофильного замещения по сравнению с модельными соединениями тетраэдрического Si [6]. Возможности метода не исчерпываются синтезом шестичленных силацикланов и могут быть использованы для получения их семичленных аналогов, привлекающих внимание особенностями своего конформационного строения, химического поведения и биологической активностью. Так, циклосилилметилированием производных салициламида нами получены 2,2-диметил-4-(2-триметилсилоксиэтил)-1-окса-4-аза-2-силабензоциклогептан-5-он, потенциальный корректор адаптационных механизмов [3], и 2,2,4-триметил-1-окса-4-аза-2-силабензоциклогептан-5-он [7].

^{*} Посвящается академику РАН М. Г. Воронкову в связи с его 80-летием.

Отметим также недавно опубликованные данные о синтезе соответствующих семичленных силагетероциклов – бензосилаоксаазагептана и силаспирана при действии Me₂SiCl₂ или SiCl₄ на C,O-дилитиевое производное N-метил-N-фенилколамина [8].

В развитие исследований кремнийсодержащих производных салициламида в настоящей работе описан одностадийный способ N-хлорсилилметилирования и циклизации амида и N-метиламида салициловой кислоты системой гексаметилдисилазан–диметилхлорметилхлорсилан.

Использование в реакциях циклосилилметилирования предложенной нами ранее для N-хлорсилилметилирования амидов и лактамов системы гексаметилдисилазан–диметилхлорметилхлорсилан [9] позволило упростить синтез 2-сила-5-морфолинонов и 2-сила-4-ацилморфолинов путем введения в реакцию непосредственно амидов α-гидроксикарбоновых кислот и N-ацилколамидов [1]. Аналогичным образом при нагревании N-метилсалициламида со смесью гексаметилдисилазана и диметилхлорметилхлорсилана нами в одну стадию и с высоким выходом был получен 2,2,4-триметил-1-окса-4-аза-2-силабензоциклогептан-5-он (1). Отметим, что ранее он был выделен нами при реакции N,O-бис(триметилсилил)-N-метилсалициламида с диметилхлорметилхлорсиланом [7].

В отличие от других силацикланов, содержащих связи O–Si [10], соединение **1** не подвержено олигомеризации при хранении. Так, его образцы, хранившиеся более года при комнатной температуре, не обнаружили спектральных признаков олигомеризации и их молярная масса, определенная криоскопическим методом, практически не отличалась от вычисленной ($M_{\text{найд}} = 222.2$, $M_{\text{выч}} = 221.33$). По отношению к электрофильным реагентам (Me₃SiCl, ацетил- и бензоилхлориды, уксусный ангидрид) при температурах до 120 °C полученное соединение оказалось нереакционноспособным. Однако силациклан **1** легко вступал в реакцию с метилмагнийиодидом, давая N-триметилсилилметил-N-метилсалициламид (**2**).

Гидролиз силациклана 1 при кипячении его раствора в хлороформе с избытком 10% водного раствора карбоната натрия в течение 5 ч не наблюдается. Однако в 10% водном растворе КОН при нагревании соединение 1 легко растворяется. После подкисления полученного раствора был выделен соответствующий дисилоксан 3 в виде белого кристаллического вещества. Последний получен также при кипячении раствора силациклана 1 в смеси ацетонитрил–вода, 1 : 1.

Особенностью дисилоксана **3** является его склонность к дегидратации при нагревании с превращением в исходный силациклан **1**. Такое превращение в частности происходило при попытке фракционирования дисилоксана **3** в вакууме.

В результате обработки салициламида избытком системы гексаметилдисилазан-диметилхлорметилхлорсилан был получен 2,2-диметил-4-(диметилхлорсилилметил)-1-окса-4-аза-2-силабензоциклогептан-5-он (4), содержащий один тетра-, а второй пентакоординированный атомы кремния (схема 1).

Наличие внутримолекулярной координационной связи O—Si в соединении **4** констатировано по присутствию в ИК спектре полос поглощения при 1600 и 1523 см⁻¹ и соответствующих сигналов в спектрах ЯМР ¹H, ¹³C, ²⁹Si (табл. 1, ср. данные работы [11]), а также на основании рентгеноструктурного исследования.

В отличие от силациклана 1 гидролиз хлорида 4 легко протекает при его обработке в CHCl₃ водным раствором NaHCO₃ и приводит к 2,2,6,6тетраметил-4-(2-гидроксибензоил)-2,6-дисиламорфолину (5), аналогично тому, как это имело место при гидролизе или аммонолизе N,N-бис(диметилхлорсилилметил)амидов [2, 5].

Соеди- нение	δ ¹ Н, м. д.		δ ¹³ C, м. д.				δ ²⁹ Si, м. д.
	CH ₃	CH_2	CH ₃	CH_2	C(0)	Ar	
4	0.39	3.10	-2.46	39.74	170.58	152.62 C(O); 121.29 C(CO)	30.4
	0.68*	3.00*	7.24*	47.70*		121.78; 122.96; 130.72; 134.12	-36.3*
5	0.22	3.20	0.06	41.05	169.97	158.15 C(O); 117.98; 118.32; 118.40; 127.95; 131.83	9.7
6	0.39*	2.95	-2.58	39.97	169.48	152.01 C(O); 124.11 C(CO)	28.6
	0.38* (7.8)**	2.73*	1.63* (22.9)**	43.09* (40.0)**		121.38; 122.84; 130.57; 132.88	-17.0* (237.8)**

Спектры ЯМР ¹Н, ¹³С и ²⁹Si соединений 4-6

* Группа или атом, связанные с пентакоординированным атомом кремния, или сигнал пентакоординированного атома Si.

** КССВ с атомом фтора.

Дисиламорфолин 5 может быть получен и однореакторным способом из салициламида при кипячении его с избытком системы гексаметилдисилазан–диметилхлорметилхлорсилан с последующим гидролизом образующегося хлорида 4 без его выделения из смеси. Однако дисиламорфолин 5 при обработке тионилхлоридом легко претерпевает обратное превращение в хлорид 4.

Сигналы групп SiMe₂ и NCH₂ в спектре ЯМР ¹Н соединения **5** в дейтерохлороформе при -60 °C регистрируются в виде двух пар синглетов с равной интенсивностью (табл. 1). Повышение температуры до комнатной сопровождается их последовательным уширением и коалесценцией в два синглета с усредненным химическим сдвигом. Понижение температуры восстанавливает исходную спектральную картину. Наблюдаемый динамический процесс характерен для заторможенного вращения вокруг амидной связи. Определенный методом динамического ЯМР барьер процесса составил 11.3 (по NCH₂) и 11.6 ккал/моль (по SiMe₂). Отметим, что в случае PhC(O)NMe₂ величина барьера составила 15.3 ккал/моль [12]. Отличие барьера заторможенного вращения почти на 4 ккал/моль, видимо, связано с несколькими причинами, одной из которых, возможно, является изменение кислотности среды в растворах соединения **5**, содержащего фенольную гидроксильную группу.

Гидролиз хлорида **4** влагой воздуха при длительном его хранении в условиях отсутствия внешнего акцептора хлороводорода привел к образованию гидрохлорида 2,2,6,6-тетраметил-4-(2-гидроксибензоил)-2,6-дисиламорфолина (**5**•HCl). По данным рентгеноструктурного исследования кристаллов гидрохлорида, протонированию в молекуле дисиламорфолина **5** подвергается атом кислорода амидной группы (а не атом О дисилоксанового фрагмента), аналогично тому, как это наблюдается в случае аддуктов 4-ацил-2,6-дисиламорфолинов с сильными кислотами [13]. 130 Замещение атома хлора на фтор в соединении **4** с сохранением фрагмента силациклана удалось осуществить путем его последовательной обработки смесью метанола с гексаметилдисилазаном и далее BF₃•Et₂O (см. схему 1). Реакция, вероятно, протекает через промежуточное образование соответствующего силилметоксида, который затем при обработке BF₃•Et₂O превращается в конечный 2,2-диметил-4-(диметилфторсилилметил)-1-окса-4-аза-2-силабензоциклогептан-5-он (**6**).

Наличие пентакоординированного атома кремния во фториде **6** установлено на основании его спектральных характеристик (см. табл. 1) и рентгеноструктурным исследованием.

Бициклические соединения 4 и 6 содержат пентакоординированный

кремния в хелатном пятичленном цикле C(O)NCH₂SiMe₂X. атом Гипервалентный фрагмент X-Si(C)₃-O (X = Cl, F) в этих соединениях хорошо изучен на примере производных лактамов и амидов карбоновых кислот [11]. Особенностью соединений 4, 6 является наличие конденсированного по связи N-C семичленного цикла, который относится к средним циклам и характеризуется повышенной внутренней энергией (напряжением). Однако это дополнение не вносит существенных изменений в установленный характер гипервалентного связывания в данном фрагменте. Параметры спектров ЯМР для соединений 4 и 6 в малополярных растворителях при небольшой концентрации и при комнатной температуре подтверждают наличие внутримолекулярного координационного взаимодействия C=O→Si. Так, в спектрах ЯМР ²⁹Si для каждого соединения наблюдаются по два сигнала. Химические сдвиги в слабом поле, 30.4 (соединение 4) и 28.6 м. д. (соединение 6), характерны для соединений ряда XCH₂SiMe₂OAr и соответствуют тетракоординированному атому кремния. Два других сигнала, -36.3 (соединение 4) и -17.0 м. д. (соединение 6), значительно смещены в сильное поле относительно модельных тетракоординированных соединений ряда XCH₂SiMe₂Y, для которых экранирование атома кремния находится в диапазоне 25±5 м. д., т. е. второй атом кремния в этих соединениях пентакоординирован. Близкие значения для пентакоординированного атома кремния, б_{Si} – 39.0 м. д., наблюдались в бис(N-диметилхлорсилилметил)ацетамиде CH₃C(O)N(CH₂SiMe₂Cl)₂, тогда как для второго (тетракоординированного) атома Si с аналогичным окружением δ_{Si} 26.8 м. д. (CDCl₃, 20 °C) [14].

В соединении **6** пентакоординированный атом Si имеет химический сдвиг δ_{Si} –17.0 м. д., который близок химическим сдвигам гипервалент-ного кремния фторсодержащего бис(N-диметилфторсилилметил)ацетами-да CH₃C(O)N(CH₂SiMe₂F)₂, δ_{Si} –23.5, тогда как в этой же молекуле для тетраэдрического кремния δ_{Si} 29.0 м. д. [14]. При переходе от хлор- (**4**, δ_{Si} –36.3 м. д.) к фторпроизводному (**6**, δ_{Si} = –17.0 м. д.) уменьшение экранирования ²⁹Si на 19.2 м. д. аналогично наблюдаемому для N-(диметилгалогенсилилметил)-N-(1-фенилэтил)ацетамида, δ_{Si} которого равно 18.8 м. д. (в CDCl₃, 20 °C) [15, 16]. Кроме того, меньшая величина прямой КССВ ¹ J_{SiF} = 237.8 Гц соединения **6** относительно значений 270–290 Гц, характерных для тетракоординированных кремнийорганических соединений, также свидетельствует о пентакоординированном состоянии атома кремния.

Рис. 1. Строение молекулы **4** в кристалле. Атомы H не показаны. Пунктиром обозначены короткие контакты Si...Cl соседних молекул

При сравнении спектров ЯМР ¹³С соединений **4** и **6** (см. табл. 1) найдено, что при замене атома Cl на атом F экранирование атомов углерода увеличивается для SiMe₂, SiCH₂ и C=O, соответственно, на $\Delta \delta^{13}$ C = -5.61 (1.63 – 7.24), –4.61 (43.09 – 47.70) и –1.10 (169.48–170.58) м. д. Аналогичное наблюдается для O–Si-хелатных N-(диметилгалогенсилилметил)-N-(1-фенилэтил)ацетамидов – соответственно: –5.44, –4.53 и –1.58 м. д. (CDCl₃, 20 °C) [16].

Спектры ЯМР ¹Н соответствуют предложенным структурам соединений **4–6** (см. табл. 1 и экспериментальную часть).

Рентгеноструктурное исследование галогенидов 4 и 6 показало, что два атома Si в этих соединениях находятся в различных состояниях: пентакоординированном (Si₍₁₎) и тетракоординированном (Si₍₂₎). Аналоги различаются только галогензаместителями при пентакоординированном атоме Si (Cl в 4 и F в 6). Тем не менее, их молекулы (рис. 1, 2) имеют в кристалле несколько различные конформации, а упаковка молекул различна принципиально, хотя пространственные группы структур одинаковы, а параметры элементарных ячеек в определенной степени сходны (табл. 2).

Рис. 2. Строение молекулы **6** в кристалле. Атомы H не показаны. Пунктиром обозначен короткий контакт Si...F с соседней молекулой

Параметры	4	5	5•HCl	6
Брутто-формула	C13H20ClNO2Si2	$C_{13}H_{21}NO_3Si_2$	C13H22ClNO3Si2	C13H20FNO2Si2
<i>Т</i> , К	210	290	100	130
<i>a</i> , Å	12.390(4)	9.394(6)	8.036(4)	10.592(5)
b, Å	10.386(3)	12.843(7)	9.674(4)	14.075(5)
<i>c</i> , Å	12.524(4)	15.142(9)	22.00(1)	11.524(5)
α, град.	90	109.37(4)	90	90
β, град.	95.48(2)	98.89(5)	99.16(1)	114.50(3)
ү, град.	90	105.28(5)	90	90
$V, Å^3$	1604.2(8)	1603(2)	1689(1)	1563(1)
$d_{\rm выч}$, г•см ⁻³	1.300	1.225	1.306	1.264
Пространственная	$P2_1/c$, (4)	$P\overline{1}$, (4)	$P2_1/n$, (4)	$P2_1/c$, (4)
группа, Z				
$2\theta_{max}(^{\circ})$	52	48	58	52
Сканирование	ω/2θ	$\theta/2\theta$	ω/2θ	$\theta/2\theta$
Число измерен-	3247	5081	10338	3051
ных отражений				
Число отражений	3101	4671	3941	2883
в МНК			• • •	
Число параметров в МНК	252	351	269	252
Коэффициент по-	3.85	2.25	3.74	2.35
глощения, см ⁻¹				
$R_1(I > 2\sigma(I))$	0.036	0.080	0.078	0.040
<i>wR</i> ₂ (по всем отражениям)	0.096	0.258	0.121	0.106

Основные параметры рентгенодифракционного эксперимента и кристаллоструктурные данные соединений 4, 5, 5•HCl, 6

Некоторое различие конформаций относится к форме центрального 7-членного гетероцикла, значения торсионных углов фрагмента $C_{(10)}-O_{(2)}-Si_{(2)}-C_{(13)}$ расходятся на 16–26° в молекулах-аналогах. Однако "твист"-форма указанного гетероцикла с приближенной двойной осью, проходящей через атом Si₍₂₎ и середину связи $C_{(4)}-C_{(5)}$, в этих молекулах одинакова. Можно предположить, что рассматриваемые конформационные различия обусловлены высокой гибкостью фрагмента гетероцикла, содержащего атом кислорода.

Принципиальные же различия молекулярных упаковок в кристаллах 4 и 6 следует отнести на счет большой разницы длин связей Si–Cl и Si–F (0.65 Å) и разницы ван-дер-ваальсовых радиусов атомов Cl и F (0.4 Å), что приводит к существенному различию формы молекул-аналогов в области гипервалентного фрагмента. Несмотря на различие упаковок, в кристаллах 4 и 6 наблюдается характерное сближение атомов галогена и Si₍₂₎ соседних молекул. Именно, атомы Cl и F располагаются в оппозиции к связи Si₍₂₎–O₍₂₎ на расстояниях 3.86 и 3.31 Å от атома Si, близких к соответствующим суммам ван-дер-ваальсовых радиусов (3.8 Å для Cl и Si, 3.4 Å для F и Si) [17]. При этом кристалл хлорида 4 состоит из центросимметричных "димеров" (см. рис. 1), а в кристалле фторида 6 контактирующие подобным образом

Таблица З

Связь	l, Å		Carry	l, Å	
	4	6	Связь	4	6
Cl ₍₁₎ -Si ₍₁₎	2.308(1)		Si(2)-O(2)	1.671(2)	1.673(2)
$F_{(1)} - Si_{(1)}$		1.672(2)	O(1)-C(4)	1.278(2)	1.259(2)
$Si_{(1)} - O_{(1)}$	1.961(1)	2.158(2)	N(1)-C(4)	1.316(2)	1.332(3)

Основные длины связей (l) в молекулах 4 и 6

Таблица 4

Угол	ω, град.		Угол	ω, град.	
	4	6		4	6
$Cl(F)_{(1)}-Si_{(1)}-C_{(1)}$	94.2(1)	98.5(1)	$C_{(2)}$ -Si ₍₁₎ -O ₍₁₎	90.3(1)	87.6(1)
$Cl(F)_{(1)}-Si_{(1)}-C_{(2)}$	93.7(1)	96.9(1)	$C_{(3)}$ -Si ₍₁₎ -O ₍₁₎	82.9(1)	79.2(1)
$C_{(1)}$ -Si ₍₁₎ -C ₍₂₎	118.5(1)	117.9(1)	$O_{(2)}$ -Si ₍₂₎ -C ₍₁₂₎	106.6(1)	105.0(1)
Cl(F) ₍₁₎ -Si ₍₁₎ -C ₍₃₎	88.0(1)	92.0(1)	$O_{(2)}$ -Si ₍₂₎ -C ₍₁₁₎	110.8(1)	110.2(1)
$C_{(1)}$ - $Si_{(1)}$ - $C_{(3)}$	119.6(1)	120.6(1)	$C_{(12)}$ - $Si_{(2)}$ - $C_{(11)}$	114.6(1)	113.9(1)
C ₍₂₎ -Si ₍₁₎ -C ₍₃₎	121.6(1)	118.5(1)	$O_{(2)}$ -Si ₍₂₎ -C ₍₁₃₎	102.1(1)	102.0(1)
Cl(F) ₍₁₎ -Si ₍₁₎ -O ₍₁₎	170.81(5)	171.2(1)	C(12)-Si(2)-C(13)	113.4(1)	113.4(1)
$C_{(1)} - Si_{(1)} - O_{(1)}$	91.1(1)	86.0(1)	$C_{(11)}$ -Si ₍₂₎ -C ₍₁₃₎	108.6(1)	111.4(1)

Основные валентные углы (ш) в молекулах 4 и 6

молекулы образуют бесконечные цепочки (см. рис. 2). Электростатическое взаимодействие Si...Hal проявляется здесь достаточно ясно (небольшой положительный заряд на атоме Si₍₂₎ обусловлен полярностью связи Si–O). Однако некоторое удлинение связей Si₍₂₎–O₍₂₎ (1.67 Å) в структурах **4** и **6** по сравнению с обычными значениями 1.63–1.64 Å (например, в структурах **5** и **5**-HCl, см. табл. 3 и 5), видимо, обусловлено межмолекулярным координационным взаимодействием Hal \rightarrow Si, хотя и очень слабым. На это взаимодействие указывает и большее раскрытие координационного тетраэдра атома Si₍₂₎ в соединениях **4** и **6** в направлении O₍₂₎–Si₍₂₎...Hal, чем у атомов Si в соединениях **5** и **5**-HCl (телесные углы Si₍₂₎–C₍₁₁₎–C₍₁₂₎–C₍₁₃₎ в первых двух структурах на 10–17° больше).

Таблица 5

l, Å *l*, Å Связь Связь 5 5•HCl 5•HCl 5 Si(1)-O(1) 1.630(4) 1.636(3) Si(21)-O(21) 1.639(4) Si(2)-O(1) 1.640(4)1.637(3) O(22)-C(27) 1.240(7) O₍₂₎-C₍₇₎ 1.216(7) 1.292(5) O(23)-C(29) 1.356(7) 1.345(7) 1.362(5) 1.355(7) O₍₃₎–C₍₉₎ $N_{(21)} - C_{(27)}$ 1.340(7) 1.297(5) $N_{(1)}-C_{(7)}$

Основные длины связей (l) в структурах 5 и 5•HCl

Vroz	ω, ι	рад.	VEOL	ω, град.
УТОЛ	5 5•HCl		УТОЛ	5
O ₍₁₎ -Si ₍₁₎ -C ₍₁₎	110.1(3)	108.5(2)	O ₍₂₁₎ -Si ₍₂₁₎ -C ₍₂₂₎	107.9(3)
O(1)-Si(1)-C(2)	108.8(3)	112.2(2)	O(21)-Si(21)-C(21)	111.0(3)
C(1)-Si(1)-C(2)	110.7(4)	111.6(3)	C(22)-Si(21)-C(21)	112.3(4)
O(1)-Si(1)-C(5)	105.0(3)	105.7(2)	O(21)-Si(21)-C(25)	105.6(3)
C ₍₁₎ -Si ₍₁₎ -C ₍₅₎	109.9(4)	108.0(3)	C(22)-Si(21)-C(25)	112.5(3)
C(2)-Si(1)-C(5)	112.3(3)	110.6(2)	C(21)-Si(21)-C(25)	107.4(3)
O ₍₁₎ -Si ₍₂₎ -C ₍₃₎		112.6(2)	O(21)-Si(22)-C(23)	108.2(3)
O(1)-Si(2)-C(4)		108.1(2)	O(21)-Si(22)-C(24)	109.6(3)
O(1)-Si(2)-C(6)	105.4(3)	104.7(2)	C(23)-Si(22)-C(24)	114.0(3)
C(3)-Si(2)-C(6)	110.4(4)	107.7(2)	O(21)-Si(22)-C(26)	104.0(3)
C(4)-Si(2)-C(6)	110.0(3)	111.9(2)	C(23)-Si(22)-C(26)	110.8(3)
Si(1)-O(1)-Si(2)	129.3(3)	130.3(2)	C(24)-Si(22)-C(26)	109.8(3)
			$Si_{(21)} - O_{(21)} - Si_{(22)}$	128.8(3)

Основные валентные углы (оо) в молекулах 5 и 5•HCl

Гипервалентные фрагменты молекул **4** и **6** имеют обычную конфигурацию искаженной тригональной бипирамиды. Выходы атома Si из плоскости экваториальных заместителей в сторону атома галогена (Δ_{Si}) 0.06 и 0.19 Å соответственно. Таким образом, гипервалентная связь O–Si–Hal во фториде **6** более асимметрична, на что указывает и большая длина связи O–Si. Соотношения между длинами компонент гипервалентных связей и параметрами Δ_{Si} в этих структурах хорошо соответствуют зависимостям, установленным ранее [18] для соединений пентакоординированного кремния.

Молекулы дисиламорфолина 5 и его гидрохлорида 5-HCl (рис. 3 и 4) содержат 6-членные дисилоксановые гетероциклы, имеющие фактически одинаковую конформацию "кресла" с плоскостью симметрии, проходящей через атомы О и N. Искажение этой симметрии можно оценить средней разностью абсолютных значений соответственных торсионных углов по обеим сторонам указанной плоскости; она составляет всего 2° и 7° между двумя кристаллографически независимыми молекулами соединения 5 и 6° в гидрохлориде 5-HCl. Соответственные длины связей и валентные углы в гетероциклах рассматриваемых соединений очень близки (см. табл. 5 и 6).

Кристаллографически независимые молекулы в структуре **5** отличаются друг от друга ориентацией плоскости гидроксифенильной группы: молекула А переходит в В при повороте этой плоскости относительно связи $C_{(7)}-C_{(8)}$ на 46°. По-видимому, это конформационное различие обеспечивает наиболее плотную упаковку молекул в кристалле, одновременно позволяя всем группам ОН и C=O участвовать в Н-связях. Пары молекул А и В образуют центросимметричные тетрамерные H-ассоциаты (рис. 3). Параметры водородных связей ($O_{(3)}...O_{(22)}$ 2.77 Å, $H_{(3)}...O_{(22)}$ 1.93 Å, $O_{(3)}$ - $H_{(3)}...O_{(22)}$ 154° и $O_{(23)}...O_{(2a)}$ 2.62 Å, $H_{(23)}...O_{(2a)}$ 1.76 Å, $O_{(23)}$ - $H_{(23)}...O_{(2a)}$ 170°) свидетельствуют об их средней силе.

Рис. 3. Кристаллографически независимая часть центросимметричного тетрамерного Н-ассоциата в структуре 5. Показаны атомы Н групп ОН и водородные связи. Атомы с индексом (а) принадлежат молекулам второй половины тетрамера

Протонирование, хотя и частичное, группы $C_{(7)}=O_{(2)}$ в структуре **5**-НСl удлиняет эту связь на 0.05–0.07 Å по сравнению с соответствующими в структуре **5** (см. табл. 4 и 5), делая ее промежуточной между двойной и одинарной (1.36 Å для $C_{(9)}$ – $O_{(3)}$). Расстояния $Cl_{(1)}$ – $H_{(2)}$ 1.49(3) Å и $O_{(2)}$ – $H_{(2)}$ 1.39(3) Å увеличены по сравнению с обычными в молекуле HCl и группе OH на 0.2 и 0.4 Å соответственно, т. е. данное соединение действительно следует считать аддуктом **5**-HCl. Кроме указанной сильной связи с молекулой **5** группа HCl образует водородную связь $Cl_{(1)}...H_{(3a)}$ – $O_{(3a)}$ с соседней молекулой (см. рис. 3), параметры которой $Cl_{(1)}...O_{(3a)}$ 3.048(3) Å, $Cl_{(1)}...H_{(3a)}$ – $O_{(3a)}$ 170(4)° свидетельствуют о средней силе связи. Эти H-связи объединяют молекулы в кристалле **5**-HCl в вытянутые вдоль оси *b* цепи. Характер межмолекулярных контактов в гидрохлориде **5**-HCl будет обсужден в отдельном сообщении.

Рис. 4. Строение гидрохлорида **5**•НСІ в кристалле. Показаны атомы Н групп ОН и НСІ. Н-связи СІ...НО объединяют связанные винтовой осью 0.5–*x*, 0.5+*y*, 0.5–*z* молекулы в вытянутые вдоль оси *b* цепи

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений получены в тонком слое, в растворах и в кюветах из KBr на двухлучевом спектрометре Specord IR-75. Спектры ЯМР ¹H, ¹³C и ²⁹Si растворов исследованных соединений в CDCl₃ получены на спектрометре Varian XL-400 с рабочими частотами 400.0, 100.6 и 79.5 МГц соответственно в импульсном режиме с последующим преобразованием Фурье, ²H-стабилизацией резонансных условий, внутренний стандарт TMC.

2,2,4-Триметил-1-окса-4-аза-2-силабензоциклогептан-5-он (1). А. К смеси 10.9 г (0.072 моль) N-метилсалициламида и 11.6 г (0.072 моль) гексаметилдисилазана в 30 мл *о*-ксилола при перемешивании добавляют 10.2 г (0.072 моль) диметилхлорметилхлорсилана и кипятят 5 ч. Реакционную смесь фильтруют, фильтрат упаривают. Фракционированием остатка получают 13.1 г (82%) соединения **1** с т. кип. 180–182 °C/ 8 мм рт. ст. ИК спектр (CHCl₃), v, см⁻¹: 1624 (NCO). По данным [7]: т. кип. 178–180 °C (7 мм рт. ст.). ИК спектр (CHCl₃), v, см⁻¹; 1624 (NCO).

Б. В перегонную колбу помещают 2.4 г 1,1,2,2-тетраметил-1,2-бис[(N-метил-2-гидроксибензоиламино)метил]-1,2-дисилоксана (3). Фракционированием в вакууме этого соединения получают 2.14 г (92%) соединения 1 с т. кип. 179–183 °С (8 мм рт. ст.). ИК спектр (CHCl₃), v, см⁻¹: 1624 (NCO).

N-Метил-N-триметилсилилметилсалициламид (2). К раствору 3.6 г (0.022 моль) метилмагнийиодида в 50 мл эфира добавляют при перемешивании 4.9 г (0.022 моль) соединения **1** в 30 мл эфира. После разложения реакционной смеси NH₄Cl, отгонки растворителя и перекристаллизации выпавших из эфира кристаллов получают 4.01 г (77 %) соединения **2** с т. пл. 142–143 °C (эфир). Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 0.05 (9H, с, SiMe₃); 2.99 (2H, с, NCH₂Si); 3.35 (3H, с, NMe); 6.40–7.33 (4H, м, C₆H₄); 9.28 (H, с, OH). Найдено, %: C 60.65; H 7.90; N 5.97; Si 11.79. C₁₂H₁₉NO₂Si. Вычислено, %: C 60.72; H 8.07; N 5.90; Si 11.83.

2,2-Диметил-4-(диметилхлорсилилметил)-1-окса-4-аза-2-силабензоциклогептан-5-он (**4**). А. Смесь 6.8 г (0.05 моль) салициламида, 19.3 г (0.12 моль) гексаметилдисилазана и 35.5 г (0.25 моль) диметилхлорметилхлорсилана в 50 мл абсолютного *о*-ксилола кипятят при перемешивании 10 ч. Горячую реакционную смесь фильтруют, летучие соединения удаляют, а остаток закристаллизовывают добавлением 20 мл *о*-ксилола. Получают 17.7 г (76%) хлорида **4** с т. пл. 118–121 °С (*о*-ксилол). ИК спектр (CHCl₃), v, см⁻¹: 1600 и 1523 (NCO), 1580 (Ar). Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 0.39 (6H, с, OSiMe₂); 0.68 (6H, с, SiMe₂Cl); 3.00 (2H, с, CH₂SiCl); 3.10 (2H, с, NCH₂SiO); 7.12, 7.44, 6.95, 7.49 (4H, т, д. т, д, д. д. С₆H₄). Найдено, %: С 49.70; Н 6.31; Si 17.77. С₁₃H₂₀CINO₂Si₂. Вычислено, %: С 49.72; Н 6.42; Si 17.89.

Кристаллы для проведения рентгеноструктурного исследования готовят перекристаллизацией соединения **4** из *n*-ксилола.

Б. В смесь 3.0 г (0.01 моль) соединения **5** и 10 мл *о*-ксилола при перемешивании добавляют по каплям 1.2 г (0.01 моль) тионилхлорида. Через 24 ч выпавший осадок отфильтровывают и получают 3.0 г (95%) соединения **4** с т. пл. 121–124 °С (*п*-ксилол). ИК спектр (CHCl₃), v, см⁻¹: 1600 и 1525 (NCO), 1580 (Ar).

Гидролиз 2,2,4-триметил-1-окса-4-аза-2-силабензоциклогептан-5-она (1). А. Кипятят раствор 5 г (0.023 моль) силациклана 1 в 10 мл хлороформа с 5 мл водного раствора NaHCO₃ в течение 5 ч, отделяют органический слой, удаляют хлороформ и фракционируют остаток в вакууме. Выделяют 4.8 г (96%) исходного соединения 1, с т. кип. 180–182 °C (8 мм рт. ст.).

Б. Растворяют 2.5 г (0.011 моль) силациклана **1** в 15 мл 10% раствора КОН при слабом нагревании, полученный раствор подкисляют 0.01 моль/л серной кислотой до рН 6, выпавший через сутки кристаллический осадок отфильтровывают. Получают 1.8 г (72%) 1,1,2,2-тетраметил-1,2-бис[(N-метил-2-гидроксибензоиламино)метил]-1,2-дисилоксана (**3**), т. пл. 108–109 °С. ИК спектр (CHCl₃), v, см⁻¹: 1597 (NCO). Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 0.04 (6H, c, 2SiMe₂); 3.15 (2H, c, NCH₂Si); 3.31 (6H, c, 2NMe); 6.42–7.34 (4H, м, C₆H₄); 9.16 (2H, c, 2OH). Найдено,%: С 58.30; Н 7.43. С₂₂H₃₂N₂O₅Si₂. Вычислено, %: С 57.36; Н 7.00.

В. К раствору 2.5 г (0.011 моль) силациклана 1 в 8 мл ацетонитрила добавляют 3 мл (0.16 моль) воды. Реакционную смесь при интенсивном перемешивании кипятят 5 ч, раствор охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из

смеси ацетонитрил-вода, 1 : 1. Получают 2.0 г (77%) 1,1,2,2-тетраметил-1,2-бис[(N-метил-2-гидроксибензоиламино)метил]-1,2-дисилоксана (**3**) с т. пл. 106–108 °C. ИК спектр (CHCl₃), v, см⁻¹: 1597 (NCO).

2,2,6,6-Тетраметил-4-(2-гидроксибензоил)-2,6-дисиламорфолин (5). А. Раствор 21 г (0.067 моль) соединения **4** в 100 мл CHCl₃ перемешивают 2 ч с водным раствором гидрокарбоната натрия (5.6 г NaHCO₃ в 50 мл H₂O). Органический слой отделяют, водный экстрагируют 50 мл CHCl₃, из объединенных органических слоев удаляют растворитель, а остаток кристаллизуют из 40 мл толуола. Выпавшие кристаллы отделяют, получают 17.8 г (90 %) соединения **5** с т. пл. 150–152 °C (толуол). ИК спектр (CHCl₃), v, см⁻¹: 1637 (NCO), 1600, 1590 (Ar). Спектр ЯМР ¹Н (CDCl₃), δ , м. д., *J* (Гц): 0.22 (6H, с, 2SiMe₂); 3.20 (4H, с, 2CH₂); 6.99 (1H, д. ³_{JHH} = 8.3); 6.83 (1H, т. ³_{JHH} = 8.3); 7.27 (1H, т. ³_{JHH} = 8.3); 7.31 (1H, т. ³_{JHH} = 8.3) (Ar); 9.38 (1H, с, OH). Найдено, %: С 52.79; Н 7.14. С₁₃H₂₁NO₃Si₂. Вычислено, %: C 52.84; Н 7.16.

Кристаллы соединения 5 для рентгеноструктурного исследования получают из толуола.

Б. В смесь 6.85 г (0.05 моль) салициламида, 20.1 г (0.125 моль) гексаметилдисилазана и 50 мл толуола добавляют при перемешивании 35.5 г (0.25 моль) диметилхлорметилхлорсилана. Полученную смесь кипятят 8 ч; фильтруют, раствор упаривают. Остаток растворяют в 50 мл CHCl₃ и перемешивают с водным раствором гидрокарбоната натрия (4.2 г NaHCO₃ в 30 мл H₂O) 2 ч. Органический слой отделяют, водный слой экстрагируют 30 мл CHCl₃. Из объединенных органических слоев удаляют растворитель, остаток закристаллизовывают в 30 мл толуола и получают 10.9 г (74 %) соединения **5** с т. пл. 150–152 °C (толуол). ИК спектр (CHCl₃), ν , см⁻¹: 1637 (NCO), 1600, 1590 (Ar).

Гидрохлорид 2,2,6,6-тетраметил-4-(2-гидроксибензоил)-2,6-дисиламорфолина (5•HCl). Образец хлорида **4** хранят в условиях, не исключавших доступ атмосферной влаги в течение полугода. Его т. пл. изменяется от 118–121 °С (*n*-ксилол) до 146–150 °С. Получают соединение (5•HCl) с т. пл. 146–150 °С. ИК спектр (Specord M82, CaF₂, вазелин), v, см⁻¹: 1735, 1640 (NCO), 1606, 1573 (Ar). Найдено, %: С 47.02; Н 6.68; N 4.22. С₁₃H₂₂ClNO₃Si₂. Вычислено, %: С 47.04; Н 6.68; N 4.22.

Кристаллы соединения **5**•HCl для рентгеноструктурного исследования получают из бензола.

2,2-Диметил-4-(диметилфторсилилметил)-1-окса-4-аза-2-силабензоциклогептан-5он (6). В смесь 1.5 г (4.8 ммоль) хлорида **4** и 10 мл бензола при перемешивании и охлаждении добавляют смесь из 1.55 г (9.6 ммоль) гексаметилдисилазана, 0.31 г (9.6 ммоль) метилового спирта и 10 мл бензола; через 24 ч осадок (NH₄Cl) отфильтровывают, реакционную смесь упаривают, остаток растворяют в 10 мл бензола и по каплям при охлаждении добавляют 0.23 г (1.6 ммоль) BF₃•Et₂O; через 24 ч реакционную смесь упаривают, остаток растворяют в 10 мл бензола и по каплям при охлаждении добавляют 0.23 г (1.6 ммоль) BF₃•Et₂O; через 24 ч реакционную смесь упаривают, добавляют 10 мл диэтилового эфира, выпавший осадок 0.25 г удаляют. Эфир удаляют, остаток закристаллизовывают добавлением 10 мл гептана и получают 0.75 г (52%) соединения **6** с т. пл. 102–105 °C (эфир). ИК спектр (CHCl₃), v, см⁻¹: 1620, 1578 (NCO), 1600 (Ar). Спектр ЯМР ¹H (CDCl₃), δ , м. д., *J* (Гц): 0.38 (6H, с, SiMe₂); 0.39 (6H, с, SiMe₂); 2.73 (2H, с, CH₂); 2.95 (2H, с CH₂); 6.93 (1H, д. ³*J*_{HH} = 8.3); 7.39 (1H, т. ³*J*_{HH} = 8.3); 7.10 (1H, т. ³*J*_{HH} = 8.3) и 7.51 (1H, д. ³*J*_{HH} = 8.3) (Ar). Найдено, %: C 51.98; H 6.94; N 4.21. C₁₃H₂₀FNO₂Si₂. Вычислено, %: C 52.49; H 6.78; N 4.71.

Кристаллы соединения 6 для рентгеноструктурного анализа получают из эфира.

Рентгеноструктурное исследование. Кристаллоструктурные параметры и основные характеристики рентгенодифракционных экспериментов для соединений 4, 5, 5•HCl и 6 представлены в табл. 2. Эксперименты проведены на дифрактометрах Syntex $P2_1$ (4 и 6), Siemens P3/PC (5) и SMART CCD (5•HCl) (λ Мо K_{α} -излучение, графитовый монохроматор). Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов. Атомы H структур 4, 5•HCl и 6 выявлены разностным синтезом и уточнены изотропно. В структуре 5 атомы H помещены в рассчитанные положения и уточнены по модели "наездника" с фиксироваными тепловыми параметрами U, равными $1.2U_c$ для групп CH₂ и $1.5U_c$ для метильных групп (U_c – эквивалентный тепловой параметр соответствующего атома углерода). Для полученного от кристалла 6 массива отражений проведен профильный анализ по программе PROFIT [19]. Все расчеты проведены на IBM PC по программам SHELXTL PLUS (версия 5.0) [20]. Координаты атомов в структурах депонированы в Кембриджском банке структурных данных, основные длины связей и валентные углы приведены в табл. 3–6.

Авторы благодарны Российскому фонду фундаментальных исследований (проекты № 98-03-32999 и 97-03-33783), а также ГК РФ по ВО (МНТП "Общая и техническая химия" П.Т.402.95, проект № 01.0204ф) за финансовую поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. И. Бауков, А. Г. Шипов, Е. П. Крамарова, Е. А. Мамаева, О. А. Замышляева, Н. А. Анисимова, Вад. В. Негребецкий, *ЖОрХ*, **32**, 1259 (1996).
- 2. Е. А. Мамаева, О. В. Агафонова, Вад. В. Негребецкий, А. Г. Шипов, Ю. И. Бауков, А. С. Лосев, *Хим.-фарм. журн.*, № 6, 26 (1994).
- A. V. Kurochka, O. A. Afanasova, A. S. Losev, E. A. Mamaeva, S. Yu. Bylikin, Vad. V. Negrebetsky, E. P. Kramarova, A. G. Shipov, Yu. I. Baukov, *Metal-Based Drugs*, 5, 25 (1998).
- 4. Е. П. Крамарова, Вад. В. Негребецкий, А. Г. Шипов, Ю. И. Бауков, ЖОХ, 64, 1222 (1994).
- 5. О. А. Замышляева, А. Г. Шипов, Е. П. Крамарова, Вад. В. Негребецкий, Ю. Э. Овчинников, С. А. Погожих, Ю. И. Бауков, *XIC*, 1077 (1999).
- 6. C. Chuit, R. J. P. Corriu, C. Reye, J. C. Yuong, Chem. Rev., 93, 1371 (1993).
- А. Г. Шипов, Е. П. Крамарова, С. Ю. Быликин, Е. А. Мамаева, Г. С. Зайцева, В. Н. Сергеев, Ю. И. Бауков, *ЖОХ*, 63, 1195 (1993).
- 8. I. D. Kostas, C. G. Screttas, C. P. Raptopoulou, A. Terzis, Tetrah. Lett., 38, 8761 (1997).
- 9. А. Г. Шипов, Е. П. Крамарова, Ю. И. Бауков, *ЖОХ*, **64**, 1220 (1994).
- В. М. Дьяков, Г. И. Орлов, Средние азотсодержащие силацикланы, НИИТЭХИМ, Москва, 1985, 11.
- 11. М. Г. Воронков, В. А. Пестунович, Ю. И. Бауков, Металлоорган. химия, 4, 1210 (1991).
- 12. Дж. Эмсли, Дж. Финей, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения, Мир, Москва, **1**, 1968.
- A. G. Shipov, E. P. Kramarova, E. A. Mamaeva, O. A. Zamyshlyaeva, Vad. V. Negrebetsky, Yu. E. Ovchinnikov, S. A. Pogozhikh, A. R. Bassindale, P. G. Taylor, Yu. I. Baukov, *J. Organometal. Chem.*, in press.
- 14. Вад. В. Негребецкий, Ю. И. Бауков, Изв. АН, Сер. хим., 1912 (1997).
- 15. Вад. В. Негребецкий, Е. П. Крамарова, А. Г. Шипов, Ю. И. Бауков, *ЖОХ*, **67**, 1304 (1997).
- Vad. V. Negrebetsky, A. G. Shipov, E. P. Kramarova, V. V. Negrebetsky, Yu. I. Baukov, J. Organomet. Chem., 530, 1 (1997).
- 17. A. Bondi, J. Phys. Chem., 68, 441 (1964).
- Ю. Э. Овчинников, А. А. Мачарашвили, Ю. Т. Стручков, А. Г. Шипов, Ю. И. Бауков, Журн. структур. химии, 35, 100 (1994).
- 19. В. Е. Стрельцов, В. Е. Заводник, Кристаллография, **34**, 1369 (1989). [Sov. Phys. Crystallogr., 1989 (Engl. Transl.)].
- G. M. Sheldrick, SHELXTL PC Version 5.0. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1994.

Российский государственный медицинский университет, Москва 117869 e-mail: baukov.rgmu@mtu-net.ru Поступило в редакцию 04.11.2000

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: stas@ioc.ac.ru

⁶Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813 e-mail: ovchinn@mailru.com