В. П. Фешин, Г. Б. Сойфера

ОСОБЕННОСТИ ГЕОМЕТРИИ МОЛЕКУЛЫ 1,3-ДИМЕТИЛ-2,2,2,4,4,4-ГЕКСАХЛОР-1,3-ДИАЗА-2,4-ДИФОСФЕТАНА И ЕЕ ЭЛЕКТРОННОГО РАСПРЕДЕЛЕНИЯ ПО ДАННЫМ РАСЧЕТОВ *АВ INITIO**

Результаты неэмпирического расчета молекулы 1,3-диметил-2,2,2,4,4,4-гексахлор-1,3-диаза-2,4-дифосфетана ($\mathrm{Cl_3PNCH_3}$) $_2$ методом RHF 6-31G(d) согласуются с данными рентгеноструктурного анализа этого соединения. Вычисленные частоты ЯКР 35 Cl аксиальных и экваториальных атомов хлора близки экспериментальным. Заселенности орбиталей неподеленных пар электронов и p_{σ} -орбиталей экваториальных атомов Cl существенно ниже, чем аксиальных. Среди МО нет ни одной, соответствующей трехцентровой связи с участием атома Р и аксиальных атомов Cl и N.

Ключевые слова: 1,3-диметил-2,2,2,4,4,4-гексахлор-1,3-диаза-2,4-дифосфетан, неэмпирические расчеты, параметры ЯКР ³⁵Cl, строение молекулы.

Особенности строения фосфоранов и характер распределения в них представляют большой интерес для теоретической химии. Ранее такие соединения были изучены нами методами ЯКР ³⁵Cl (см., например, [1]), рентгеновской эмиссионной спектроскопии [2] и квантовой химии [3]. При этом из фосфоранов квантово-химически нами изучена только молекула PCl₅. Показано, что неподеленные пары электронов ее экваториальных атомов Cl, оси симметрии орбиталей которых перпендикулярны экваториальной плоскости молекулы, участвуют в многоцентровой связи с ее аксиальным фрагментом. Асимметрия электронного распределения экваториальных атомов Cl в PCl₅ обусловлена в основном не этими неподеленными парами электронов, а другими, оси симметрии орбиталей которых лежат в экваториальной плоскости молекулы [3]. Для дальнейшего изучения особенностей геометрии и электронного распределения соединений с пентакоординированным атомом фосфора нами выполнен неэмпирический квантово-химический расчет молекулы 1,3-диметил-2,2,2,4,4,4-гексахлор-1,3-диаза-2,4-дифосфетана (1) с полной оптимизацией ее геометрии ограниченным методом Хартри-Фока (RHF) в валентно-расщепленном базисе 6-31G(d) по программе GAUSSIAN 94W [4]. Выбор этой молекулы для исследования обусловлен особенностями ее строения, а также тем, что в литературе для нее имеются рентгеноструктурные данные [5, 6] и параметры спектра ЯКР ³⁵Cl [7, 8], с которыми можно сопоставить рассчитанные величины.

^{*} Работа посвящена дорогому Михаилу Григорьевичу Воронкову, открывшему мне путь в науку и сопровождающему меня на этом пути. В. П. Фешин.

$$\begin{array}{c|c} & & & & H & & H \\ & & & & & Cl_e & & & Cl_e \\ & & & & & & Cl_e & & & Cl_e \\ H & & & & & & & Cl_e \\ H & & & & & & & Cl_e \\ & & & & & & & & Cl_a \end{array}$$

Результаты оптимизации молекулы 1 методом RHF/6-31G(d) согласуются с данными РСА (табл. 1), что служит подтверждением корректности выполненного расчета. В индивидуальной молекуле, как и в кристалле, четырехчленный цикл (РN)2 плоский. Согласно расчету, двугранные углы PNPN и NPNP в этой молекуле равны 0°. Координационный полиэдр каждого из ее атомов фосфора имеет строение слабо искаженной тригональной бипирамиды. Аксиальные связи P-Cl и P-N длиннее соответствующих экваториальных. Связи атомов азота лежат в плоскости кольца. Сумма углов между этими связями для каждого из них равна 360.0°. В отличие от кристалла в индивидуальной молекуле 1 все экваториальные атомы хлора эквивалентны. Судя по результатам расчета, изолированная молекула 1 имеет симметрию C_{2h} , т. е. ось симметрии второго порядка и плоскость симметрии, в которой находятся атомы Р и N четырехчленного цикла, а также связи P-Cl_a, C-N и одна из связей С-H каждой из групп NCH₃. Отрицательные заряды на экваториальных атомах C1 (-0.133 e) в этой молекуле существенно меньше, чем на аксиальных (-0.312 е).

Нами оценены частоты ЯКР 35 Cl и параметры асимметрии градиента электрического поля (ГЭП) в месте расположения ядра атома Cl в молекуле **1** по методике, предложенной ранее с использованием заселенностей 3*p*-составляющих валентных *p*-орбиталей атомов Cl (табл. 2) (см., например, [9, 10]). Для аксиальных атомов Cl вычисленная частота ЯКР 35 Cl составляет 26.199 МГц, а параметр асимметрии ГЭП на ядрах 35 Cl -2.5%,

Таблица 1 Длины связей (d, \mathring{A}) и валентные углы $(\alpha, \text{град.})$ в молекуле 1, оптимизированные методом RHF/6-31G(d), а также данные PCA [5, 6]

						1	
Связь	RHF	PCA [5]	PCA [6]	Угол	RHF	PCA [5]	PCA [6]
P-Cl _a	2.144	2.152	2.133	NPN	79.6	81.7	80.5
P-Cl _e	2.044	2.022	2.029	PNP	100.4	98.3	99.5
		2.018	2.023	Cl _a PN _e	94.3	93.8	94.5
P-N _a	1.776	1.776	1.769	Cl_ePN_e	124.3	124.6	124.6
$P-N_e$	1.634	1.629	1.635			125.2	125.0
N-C	1.461	1.476	1.475	Cl _e PN _a	92.6	93.0	92.9
С–Н	1.079	_	_			91.0	92.3
				CN _e P	132.2	134.6	134.6
				CN _a P	127.4	127.0	125.9
				Cl _a PCl _e	90.9	90.3	90.2
						90.4	90.7
				Cl _e PCl _e	111.0	109.8	110.0

Заселенности ($\sum Np$) валентных p-орбиталей и их 3p- и 4p-составляющие аксиального (Cl_a) и экваториального (Cl_e) атомов Cl в молекуле 1, рассчитанные методом RHF/6-31G(d)

Вклад		Cla		Cle			
	p_x , e	p_y , e	p_z , e	p_x , e	p_y , e	p_z , e	
3 <i>p</i>	1.293	1.288	1.009	1.285	1.330	0.978	
4p	0.668	0.679	0.394	0.616	0.626	0.321	
ΣNp	1.961	1.967	1.403	1.901	1.956	1.299	

для экваториальных атомов — $30.875~\text{M}\Gamma\text{ц}$ и 20.7%. Вычисленные частоты ЯКР близки измеренным в кристаллическом соединении **1** при 77 К: 25.828,~30.015~и 30.360 МГц [7, 8]. К сожалению, параметры асимметрии ГЭП на ядрах ³⁵Cl этого соединения не определены. Однако эти величины измерены для других соединений с пентакоординированным атомом фосфора. Например, для (C_6H_5)₂PCl₃ параметр асимметрии для экваториального атома Cl равен $28.5\pm2.0\%$, а для аксиальных — $2.5\pm1.5\%$ [1]. И для других хлорсодержащих соединений с пентакоординированным атомом фосфора параметры асимметрии аксиальных атомов Cl близки нулю, а для экваториальных — имеют большую величину.

Удовлетворительное соответствие между экспериментальными и вычисленными параметрами ЯКР ³⁵Cl указывает на корректность рассчитанного электронного распределения в молекуле 1. Значительно большая длина аксиальных связей P-Cl по сравнению с экваториальными, а также больший отрицательный заряд на аксиальных атомах Cl, чем на экваториальных, согласуются со значительно более низкой частотой ЯКР ³⁵Cl аксиальных атомов Cl по сравнению с экваториальными. Такое соотношение частот ЯКР аксиальных и экваториальных атомов С1 в молекуле 1 обусловлено более низкой полусуммой заселенностей 3*p*-составляющих валентных p_x - и p_y -орбиталей аксиальных атомов Cl (1.290 e) и более высокой заселенностью 3p-составляющей p_z -орбитали по сравнению с соответствующими величинами для экваториальных атомов. В то же время суммарные заселенности p_x -, p_y - и p_z -орбиталей (N3p+N4p)аксиальных атомов Cl существенно выше, чем соответствующих орбиталей экваториальных атомов (табл. 2). Заселенности 3*p*-составляющих валентных p_y - и p_y -орбиталей аксиальных атомов Cl близки между собой, как и суммарные заселенности этих орбиталей (табл. 2). Заселенность 3p-составляющей валентной p_x -орбитали экваториального атома CI близка к ним, тогда как для p_v -орбитали – значительно выше. Это, в основном, и обусловливает большое значение параметра асимметрии ГЭП на ядрах экваториальных атомов С1.

Для оценки параметров ЯКР 35 Сl квантово-химический расчет молекулы **1** выполнен дважды: в одном случае в начало системы координат был помещен аксиальный атом хлора, в другом — экваториальный. В обоих случаях ось Z совпадала с направлением соответствующей связи Cl–P.

В системе координат с началом на ядре экваториального атома Cl ось Y перпендикулярна плоскости, в которой находятся экваториальные связи атома фосфора. Полная заселенность p_y -орбиталей экваториальных атомов Cl существенно ниже 2 е. Электронодефицитны также p_y -орбитали атомов фосфора, участвующие в образовании аксиальных связей P–Cl и P–N (0.711 е). Полная заселенность p_x -орбиталей экваториальных атомов Cl еще ниже, чем их p_y -орбиталей. Заселенности этих орбиталей меньше, чем соответствующих орбиталей аксиальных атомов Cl (табл. 2). Все эти орбитали содержатся в ряде MO, т. е. участвуют в образовании различных многоцентровых связей. Среди них нет MO, соответствующей только трехцентровой связи с участием атома фосфора и атомов Cl и N в аксиальных положениях тригональной бипирамиды.

СПИСОК ЛИТЕРАТУРЫ

- В. П. Фешин, Г. В. Долгушин, М. Г. Воронков, Б. В. Тимохин, В. К. Дмитриев, В. И. Дмитриев, В. Н. Венгельникова, Ю. Е. Сапожников, Я. Б. Ясман, ДАН, 261, 436 (1981).
- 2. В. П. Фешин, В. П. Елин, Б. В. Тимохин, В. К. Дмитриев, Г. В. Долгушин, А. В. Калабина, М. Г. Воронков, *ДАН*, **290**, 1423 (1986).
- 3. В. П. Фешин, М. Ю. Коньшин, ЖОХ, 66, 948 (1996).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, GAUSSIAN 94, Revision E.3, Gaussian, Inc., Pittsburgh PA, 1995.
- 5. H. Hess, D. Forst, Z. anorg. allgem. Chem., 342, 240 (1966).
- 6. L. G. Hoard, R. A. Jacobson, J. Chem. Soc., Ser. A., 1203 (1966).
- 7. R. Keat, A. L. Porte, D. A. Tong, R. A. Schaw, J. Chem. Soc., Dalton Trans., 1648 (1972).
- 8. А. Д. Гордеев, Е. С. Козлов, Г. Б. Сойфер, *Журн. структур. химии*, **14**, 934 (1973).
- 9. В. П. Фешин, Электронные эффекты в органических и элементоорганических молекулах, Уральское отделение РАН, Екатеринбург, 1997, 377.
- 10. V. P. Feshin, E. V. Feshina, Z. Naturforsch., 55a, 555 (2000).

Институт технической химии Уральского отделения РАН, Пермь 614600, Россия e-mail: cheminst@mpm.ru Поступило в редакцию 25.05.2001

^аПермский государственный университет, Пермь 614600, Россия e-mail: info@psu.ru