ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 2002. — № 1. — С. 105—116

И. М. Аладжева, О. В. Быховская, Д. И. Лобанов, П. В. Петровский, К. А. Лысенко, Т. А. Мастрюкова

ВНУТРИМОЛЕКУЛЯРНОЕ Р=S- и Р=N-АЛКИЛИРОВАНИЕ. ОБЩИЙ МЕТОД СИНТЕЗА 1,2-ГЕТЕРАФОСФАЦИКЛАНОВ*

Обобщены результаты исследований по синтезу 1,2-тиафосфацикланов реакцией внутримолекулярного P=S-алкилирования ω -галогеналкил замещенных соединений четырехкоординированного фосфора со связью P=S. Метод распространен на азотсодержащие аналоги со связью P=N. Предложен новый общий способ синтеза 1,2-тиа- и 1,2-азафосфацикланов.

Ключевые слова: 1,2-азафосфацикланы, 1,2-тиафосфацикланы, внутримолекулярное алкилирование, кольчато-цепная галогенотропная таутомерия.

Интерес к химии фосфорсодержащих гетероциклических соединений связан с их участием во многих биохимических процессах, с применением в качестве лекарственных препаратов и новых средств защиты растений, с использованием в органическом синтезе, металлокомплексном катализе и других областях. В отличие от хорошо исследованных 1,3,2-дигетерафосфацикланов 1,2-гетерафосфацикланы из-за меньшей доступности изучены мало. Большая часть их была получена в результате многостадийных синтезов, часто в жестких условиях [1–4].

В последние годы мы разработали новый общий подход к синтезу 1,2-гетерафосфацикланов на основе внутримолекулярного алкилирования о-галогеналкилзамещенных соединений четырехкоординированного фосфора со связью Р=Е (E=S, N). Цель настоящей работы – обобщить наши исследования по синтезу и изучению свойств 1,2-тиафосфацикланов [5–10] и дополнить их новыми данными по разработке методов синтеза 1,2-азафосфацикланов.

Впервые метод внутримолекулярного P=E-алкилирования (E=S) был использован для синтеза иодидов 2,2-дифенил-1,2 λ^4 -тиафосфолания и -тиафосфоринания (1), которые были получены при кипячении ω -хлоралкилдифенилфосфинсульфидов 2 с NaI в ацетоне [5] (схема 1). Реакция протекает через промежуточное образование ω -иодалкилзамещенных производных 3, зарегистрированных с помощью спектров ЯМР ³¹Р и ¹Н. ω -Бромалкилзамещенные фосфинсульфиды 4 при непродолжительном нагревании при 100 °C в отсутствие растворителя гладко превращаются в циклические бромиды 5 [6, 8], из которых реакцией обмена аниона получены перхлораты 6 и тетрафторборат 7b [7].

^{*} Дорогой Михаил Григорьевич! Примите наши поздравления с Юбилеем. С глубочайшим признанием Ваших огромных творческих заслуг.

Схема 1

Соли 1,2-тиафосфациклания 1, 5–7 – устойчивые кристаллические соединения, строение которых подтверждено данными ИК, ЯМР ³¹Р и ¹Н спектров (табл. 1), а для иодидов 1а,b, бромидов 5а,b и перхлората 6а также данными рентгеноструктурных исследований. В ИК спектрах циклических солей наблюдается интенсивная полоса поглощения в области 570 см⁻¹, относящаяся к колебаниям фрагмента P–S–CH₂ цикла. Положение сигнала δ_P в спектрах ЯМР ³¹Р зависит от размера цикла: в солях 1,2-тиафосфолания он смещен на 35 м. д. в слабое поле по сравнению с солями 1,2-тиафосфоринания, что согласуется с данными [11].

Согласно данным рентгеноструктурных исследований [5–7], пятичленные фосфорсодержащие циклы в соединениях **1a**, **5a**, **6a** характеризуются конформацией конверта с отклонением одного из атомов углерода от плоскости остальных копланарных атомов в среднем на 0,6Å. Шестичленные фосфорсодержащие циклы в солях 1,2-тиафосфоринания **1b**, **5b** имеют конформацию незначительно искаженного кресла. Во всех

Таблица 1

Соеди- нение	Т.пл., °С (растворитель)	ИК спектр (KBr), v, (P–S–CH ₂), см ⁻¹	Спектр ЯМР ³¹ Р (в CH ₂ Cl ₂), б, м. д.	Выход, %	Лите- ратура
1a	203–204 (CH₃CN–EtOAc)	572	72.2	77	[5]
1b	204–205 (CH2CN–EtOAc)	565	37.6	65	[5]
5a	163-164	572	72.6	77	[6]
5b	161-162	567	38.0	78	[8]
6a	(СПСІ3-ЕЮАС) 152-153.5 (СНСІз-эфир)	570	72.6	81	[7]
6b	182–184 (CH-Ch. advm)	570	37.6	67	[7]
7b	(С112С12—эфир) 186—188 (СН2Сl2—эфир)	572	37.4	Колич.	[7]

Физико-химические и спектральные характеристики соединений 1, 5-7

Раство-	Хлориды		Бромиды		Иодиды		Перхлораты	
ритель	n = 3	n = 4	n = 3	n = 4	n = 3	n=4	n = 3	n = 4
CH ₂ Cl ₂	0	0	38	48	70	85	100	100
CHCl ₃	0	0	65	85	87	92	100	100
CH₃CN	9*	3**	82	82	100	100	_	

Содержание циклической формы (%) в растворах соединений 1, 2, 4–6 (по данным спектров ЯМР ³¹Р) [7]

* Через 6 месяцев.

** Система не достигла состояния равновесия.

исследованных структурах атом фосфора характеризуется незначительно искаженной тетраэдрической конфигурацией с уменьшением эндоциклического угла до 100.3(2)° и 108.1(2)° в 1,2-тиафосфоланиевых и 1,2-тиафосфоринаниевых циклах соответственно. Для солей с галоген-анионами обнаружены неожиданно укороченные межионные контакты P⁺S...Hal⁻. Ранее 1,2-тиафосфацикланы методом рентгеноструктурного анализа не исследовались.

Очень интересным оказалось поведение солей 1,2-тиафосфациклания 1, 5 и ω -галогеналкилфосфинсульфидов 2, 4 в растворах. Найдено, что в растворах устанавливается таутомерное равновесие между циклической и линейной формами, которое относится к новому типу кольчато-цепной анионотропной таутомерии, сравнительно редко встречающейся в органической химии и мало исследованной [12]. Наиболее подробно кольчато-цепная таутомерия солей 1,2-тиафосфациклания была изучена нами на примере бромидов, для которых и линейные 4a,b, и циклические 5а, в изомеры удалось выделить в виде индивидуальных соединений [6, 8]. Для бромида 5а и его линейного изомера 4а равновесие в CH₂Cl₂ при 20 °С устанавливается в течение 1 сут. В случае бромида 5b с шестичленным циклом (или его линейного изомера 4b) для установления равновесия в CH₂Cl₂ при 20 °C требуется около 25 сут. На примере бромида 4а с помощью спектроскопии ЯМР ³¹Р изучена зависимость положения таутомерного равновесия от температуры. При повышении температуры увеличивается содержание линейной формы в равновесной смеси, т. е. превращение циклической формы в линейную, как и в других кольчато-цепных таутомерных системах, - эндотермический процесс. Рассчитаны некоторые термодинамические параметры равновесия [6].

Методом спектроскопии ЯМР ³¹Р в CH₂Cl₂ при 20 °C были проведены кинетические исследования таутомерных превращений $5a \approx 4a$ и $5b \approx 4b$. В качестве исходных соединений использовались как циклические, так и линейные изомеры. Были вычислены константы скорости k_1 и k_2 взаимных превращений изомеров [7].

Изучение влияния различных факторов на положение равновесия в растворах циклических солей и их линейных изомеров показало (табл. 2) [7], что содержание циклической формы в равновесной смеси повышается при переходе от 1,2-тиафосфоланового цикла к 1,2-тиафосфоринановому, от хлоридов к бромидам и далее к иодидам и солям с комплексными анионами. Содержание циклической формы увеличивается также при понижении температуры и увеличении полярности растворителя. С целью синтеза новых типов 1,2-тиафосфацикланов реакция внутримолекулярного P=S-алкилирования была исследована и для других классов ω-галогеналкилзамещенных соединений с группой P=S [10].

Установлено, что эфиры ω -хлоралкилтиофосфоновых и тиофосфиновых кислот (8–11), содержащие у атома фосфора алкоксильный заместитель, при кипячении с избытком NaI в ацетоне или ацетонитриле претерпевают внутримолекулярную тион-тиольную перегруппировку с образованием 2-замещенных 2-оксо-1,2-тиафосфацикланов (так называемых тиолфостонов) 12–15.

8, 12 R = EtO, 9, 13 R = Ph, 10, 14 R = Et, 11, 15 R = Et₂N, Hal = Cl, I, a n = 3, b n = 4

Синтезированные соединения (за исключением кристаллических тиолфостонов **13а,b**) – неперегоняющиеся маслообразные жидкости, которые очищали методом колоночной хроматографии. Строение полученных соединений подтверждено ИК, ЯМР ³¹Р (табл. 3) и ¹Н спектрами, а для соединений **13а,b** – также данными спектров ЯМР ¹³С [10].

Структура 2-фенилзамещенного тиафосфоринана **13b** исследована методом рентгеноструктурного анализа. Найдено, что 1,2-тиафосфоринановый цикл имеет незначительно искаженную конформацию кресла с атомом кислорода группы P=O в аксиальном положении. Длины связей близки соответствующим значениям в ранее исследованных солях 1,2-тиафосфациклания [7].

Установлено, что на скорость перегруппировки эфиров *Ф*-галогеналкилзамещенных тиокислот фосфора оказывают влияние длина алкиленовой цепи в *Ф*-галогеналкильном радикале (1,2-тиафосфолановые циклы образуются легче), полярность растворителя, температура и природа заместителя R у атома фосфора. Реакция протекает через промежуточное образование продуктов P=S-алкилирования – квазифосфониевых солей 16 (схема 2), дезалкилирование которых в условиях реакции приводит к конечным тиолфостонам 12–15. Нам удалось, заменив нуклеофильный галоген-анион на перхлорат-анион в случае 16а (R = Et), получить кристаллический перхлорат 17а (схема 2, табл. 3) – первый выделенный промежуточный продукт тион-тиольной перегруппировки эфиров тиокислот фосфора, протекающей при действии галоидных алкилов.

Соеди-	Т. пл., °С	ИК спе v,	ктр (КВг), см ⁻¹	Спектр ЯМР ³¹ Р	Выход*, %
нение	(растворитель)	P-S-CH2	P=O	(в CH ₂ Cl ₂),	
			10	δ, м. д.	
12a	Масло**	555	1212, 1232	83.0	90
12b	Масло**	543	1218, 1248	46.8	65
13a	102-103 (гексан)	555	1190	73.4	95
13b	77-78.5 (гексан)	548	1190	39.5	96
14a•0.4NaI	Масло**	555	1190	92.9 уш. с.	82
14b•0.5NaI	Масло**	553	1190	56.5 уш. с.	86
15a	Масло**	535	1200, 1230	76.4	83
17a	93-95 (MeCN-EtOAc)	565		138.8	27

Физико-химические и спектральные характеристики соединений 12-15, 17 [7, 10]

По данным спектра ЯМР ³¹Р реакционной смеси.

** Очищен колоночной хроматографией.

Далее метод внутримолекулярного Р=Е-алкилирования был распространен на ω -галогеналкилзамещенные иминофосфорильные соединения. Известно, что группа Р=N по относительной реакционной способности в реакциях нуклеофильного замещения значительно превосходит группу Р=S. Поэтому можно было ожидать, что алкилирование иминофосфорильных соединений будет протекать в более мягких условиях. С целью синтеза ω -галогеналкилзамещенных иминофосфорильных соединений при взаимодействии ω -хлоралкилдифенилфосфинов **18а,b** с фенилазидом синтезированы иминофосфораны **19а,b**.

Для получения фосфинов **18а, b** были использованы два способа: алкилирование Ph₂PNa(Li) α,ω-бромхлоралканами в толуоле (классический метод) [13–15] и алкилирование Ph₂PH α,ω-бромхлоралканами в условиях межфазного катализа (МФК) в двухфазной системе тв.КОН/СН₃CN в присутствии катализатора – триэтилбензиламмонийхлорида (ТЭБА). Последний способ значительно проще с экспериментальной точки зрения.

21 X = I, **22** $X = ClO_4$, a n = 3, b n = 4

Фосфин 18b получается с невысоким выходом, что объясняется его пиклизацией условиях реакции. приводящей частичной в 1,1-дифенилфосфоланийхлориду; последний гидролизуется в условиях МФК с образованием 1-оксо-1-фенилфосфолана 20 (см. экспериментальную часть).

Взаимодействие фосфинов 18а, b с фенилазидом в эфирном растворе, по данным спектров ЯМР ³¹Р реакционной смеси, протекает с высоким выходом иминофосфоранов 19а, b. Однако выделить кристаллические, легко гидролизующиеся соединения 19а, b удается со значительно более низкими выходами (ср. [16]). В первую очередь, это относится к иминофосфорану 19а, в процессе выделения которого уже частично протекает внутримолекулярное P=N-алкилирование с образованием 1,2,2-трифенил- $1.2\lambda^4$ -азафосфоланийхлорида (**21а**). Состав и строение иминофосфоранов 19а, в подтверждены данными элементного анализа, ИК спектров и спектров ЯМР¹Н, ³¹Р, ¹³С (табл. 4, 5).

В ИК спектрах соединений в области 1300 см⁻¹ присутствует интенсивная полоса поглощения валентных колебаний группы P=N. Химический сдвиг сигнала δ_P в спектрах ЯМР ³¹Р находится в области сигналов иминофосфоранов (около 0 м. д.) [11]. В спектрах ЯМР ¹Н наряду с мультиплетными сигналами протонов групп СН₂ и фенильных протонов наблюдается характерный триплетный сигнал протонов группы (CH₂)CH₂Cl в области 3.0 м. д. с КССВ ~6 Гц.

Дальнейшие исследования показали, что иминофосфораны 19а, b легко вступают в реакцию внутримолекулярного алкилирования с образованием

Таблица 4

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %					Т. пл., ℃	Вы-
нение		C	Η	Hal	N	Р	(растворитель)	ход, %
19a	C ₂₁ H ₂₁ CINP	<u>71.20</u>	<u>6.17</u>	—	<u>3.84</u>		*	15.0
		71.28	5.98		3.96			(86)* ²
19b	C ₂₂ H ₂₃ CINP	<u>71.81</u>	<u>6.35</u>		<u>3.70</u>	<u>8.42</u>	81-83	30.0
		71.84	6.26		3.81	8.44	(гексан)	(87)* 2
21a* ³	C ₂₁ H ₂₁ CINP·H ₂ O	<u>67.63</u>	<u>6.36</u>	—	<u>3.53</u>		* ⁴	85
		67.87	6.23		3.77			(70)*5
21b	C ₂₂ H ₂₃ CINP	<u>72.09</u>	<u>6.23</u>	<u>9.60</u>	<u>3.71</u>	<u>8.30</u>	226-230 (с разл.)	колич.
		71.84	6.26	9.66	3.81	8.44	(CH ₂ Cl ₂ EtOAc)	(96)* ⁵
22a	C ₂₁ H ₂₁ INP	<u>57.00</u>	<u>4.97</u>	<u>29.15</u>		<u>6.86</u>	232–234 (с разл.)	92
		56.64	4.75	28.50		6.96	(CH ₂ Cl ₂ -EtOAc)	
22b	C ₂₂ H ₂₃ INP	<u>57.60</u>	<u>5.18</u>	<u>27.81</u>	_	<u>6.71</u>	191-193 (с разл.)	80
	Ŧ	57.53	5.05	27.63		6.74	(CH ₂ Cl ₂ -EtOAc)	
23b	C ₂₂ H ₂₃ CINO ₄ P	<u>61.20</u>	<u>5.38</u>	<u>8.97</u>	<u>3.24</u>	<u>7.34</u>	213-215 (с разл.)	82
		61.19	5.37	8.21	3.22	7.17	(CH ₂ Cl ₂ -EtOAc)	

Физико-химические характеристики соединений 19, 21-23

* Претерпевает циклизацию при определении т. пл. *² По данным спектров ЯМР ³¹Р реакционной смеси.

*³ Кристаллизуется с молекулой H₂O.

*4 Разлагается при определении т. пл.

*⁵ Выход из фосфина **18.**

Таблица 5

Соеди- нение*	Спектр ЯМР ³¹ Р, б, м. д.	Спектр ЯМР ¹³ С, δ, м. д., КССВ, <i>J</i> (Гц)**	Спектр ЯМР ¹ Н, б, м. д., КССВ, <i>J</i> (Гц)
19a	2.78		1.84–1.94 (2H, м, C <u>H</u> ₂ CH ₂ P), 2.34–2.44 (2H, м, CH ₂ P), 3.08 (2H, т, ${}^{3}J_{\text{HH}} = 6.2$, CH ₂ Cl), 6.87–7.78 (15H, м, H _{аром})
19b	3.77	19.47 (<u>CH</u> ₂ CH ₂ P, μ , ² <i>J</i> _{PC} = 3.2), 27.17 (CH ₂ P, μ , ¹ <i>J</i> _{PC} = 69.5), 33.33 (<u>C</u> H ₂ CH ₂ Cl, μ , ³ <i>J</i> _{PC} = 13.5), 43.97 (CH ₂ Cl, ym.c)	1.41 (2H, μ , π , ${}^{3}J_{HH} = 7.2, CH_{2}CH_{2}CI$), 1.55–1.66 (2H, μ , $CH_{2}CH_{2}P$), 2.06–2.15 (2H, μ , $CH_{2}P$), 2.90 (2H, π , ${}^{3}J_{HH} = 6.8$, $CH_{2}CI$), 6.87–7.82 (15H, μ , H_{apom})
22a	54.6	21.68 (<u>CH</u> ₂ CH ₂ P, c), 28.27 (CH ₂ P, π , ¹ <i>J</i> _{PC} = 63.4), 52.99 (CH ₂ N, π , ² <i>J</i> _{PC} = 16.5)	2.46 (2H, c, H ₂ O), 2.49–2.54 (2H, M, C <u>H</u> ₂ CH ₂ P), 3.68 (2H, д. т, ${}^{3}J_{HH} = 7.2$, ${}^{3}J_{PH} = 7.2$, CH ₂ N), 4.32 (2H, д. т, ${}^{3}J_{HH} = 6.0$, ${}^{2}J_{PH} = 8.4$, CH ₂ P), 6.76–8.00 (15H, M, H _{apon})
22b	42.5	19.44 (<u>CH</u> ₂ CH ₂ P, c), 22.48 (CH ₂ P, π , ¹ <i>J</i> _{PC} = 61.0), 25.04 (<u>C</u> H ₂ CH ₂ N, π , ³ <i>J</i> _{PC} = 5.4), 54.11 (CH ₂ N, π , ² <i>J</i> _{PC} = 1.7)	2.11–2.28 (4H, м, <u>CH₂CH₂CH₂P)</u> , 3.37–3.45 (2H, м, CH ₂ N), 3.78–3.88 (2H, м, CH ₂ P), 6.93–7.85 (15H, м, Н _{аром})
23a	53.9	21.31 (<u>CH</u> ₂ CH ₂ P, c), 28.45 (CH ₂ P, π , ¹ <i>J</i> _{PC} = 64.5), 52.87 (CH ₂ N, π , ² <i>J</i> _{PC} = 16.5)	2.66 (2H, M, <u>CH</u> ₂ CH ₂ P), 3.64 (2H, д. т. ${}^{3}J_{HH} = 7.2$, ${}^{3}J_{PH} = 7.6$, CH ₂ N), 4.38 (2H, д. т. ${}^{3}J_{HH} = 6.4$, ${}^{2}J_{PH} = 8.4$, CH ₂ P), 6.89–8.04 (15H, M, H _{apon})
23b	42.0	19.38 (<u>CH</u> ₂ CH ₂ P, μ , ² <i>J</i> _{PC} = 7.1), 23.06 (CH ₂ P, μ , ¹ <i>J</i> _{PC} = 61.9), 25.07 (<u>C</u> H ₂ CH ₂ N, μ , ³ <i>J</i> _{PC} = 5.3), 54.17 (CH ₂ N, yııı.c)	2.13–2.32 (4H, м, С <u>H</u> ₂ C <u>H</u> ₂ CH ₂ P), 3.23–3.31(2H, м, CH ₂ N), 3.85–3.93 (2H, м, CH ₂ P), 7.04–7.84 (15H, м, Н _{аром})
24	41.7	19.38 (<u>C</u> H ₂ CH ₂ P, π , ² <i>J</i> _{PC} = 7.1), 22.42 (CH ₂ P, π , ¹ <i>J</i> _{PC} = 62.6), 25.09 (<u>C</u> H ₂ CH ₂ N, π , ³ <i>J</i> _{PC} = 4.3), 54.16 (CH ₂ N, yu.c)	2.14–2.28 (4H, M, CH ₂ CH ₂ CH ₂ P), 2.98–3.07 (2H, M, CH ₂ N), 3.91 (2H, $_{A}$. $_{T}$, $^{3}J_{HH} = 5.6$, $^{3}J_{PH} = 8.8$, CH ₂ P), 7.00–7.78 (15H, M, H _{apon})

Спектральные характеристики соединений 19 (в C₆D₆) и 21-23 (в CDCl₃)

^{*} ИК спектр (KBr): v_{P = N} 1346 (19а) и 1340 см⁻¹ (19b).
^{**} Химические сдвиги атомов углерода фенильных колец не приведены.

с высокими выходами солей 1,2,2-трифенил-1,2 λ^4 -азафосфолания 21а и азафосфоринания 21b. Скорость циклизации существенно зависит от длины алкиленовой цепи. Так, в бензоле иминофосфоран 19а полностью превращается в хлорид 21а при нагревании в течение 40 мин при 50 °С, в то время как иминофосфоран 19b при кипячении в бензоле в течение 3 ч циклизуется только на 30%. В более полярном CH₃CN при 80 °C циклизация иминофосфорана 19b завершается в течение 2 ч. С целью повышения выхода хлориды 21а, b получали также непосредственно из фосфинов 18а, b без выделения промежуточных иминофосфоранов 19а, b. Выходы в этом случае составили 70 и 96% в расчете на исходный фосфин. Установлено [7], что, в отличие от иминофосфоранов 19а, b, фосфинсульфиды 2a, b с ω -хлоралкильным заместителем у атома фосфора не вступают в реакцию внутримолекулярного алкилирования даже в жестких условиях.

Синтезированные соединения **21а**, **b** – высокоплавкие кристаллические вещества. Реакцией обмена аниона из хлоридов были получены иодиды **22а,b** и перхлорат **23b** (табл. 4). Строение соединений **21–23** подтверждено данными спектров ЯМР (¹H, ³¹P, ¹³C) (табл. 5). В спектрах ЯМР ³¹Р солей 1,2-азафосфолания **21а**, **22а** наблюдается смещение сигнала δ_P в слабое поле по сравнению с солями 1,2-азафосфоринания **21b**, **22b** ($\Delta\delta$ 12 м. д.).

Строение иодидов **22а**, **b** было исследовано методом рентгеноструктурного анализа (рис. 1, 2).

Основные геометрические параметры, за исключением эндоциклического угла $N_{(1)}P_{(1)}C_{(4)}$, фактически не зависят от размера цикла (табл. 6). 1,2-Азафосфолановый цикл характеризуется конформацией конверта с отклонением атома $C_{(3)}$ от плоскости $C_{(1)}N_{(1)}P_{(1)}C_{(4)}$ на 0.54Å, а 1,2-азафосфоринановый – конформацией незначительно искаженного кресла. Связи при атоме азота в обеих структурах лежат в плоскости (сумма валентных углов при $N_{(1)}$ в среднем 359.6°). Взаимное расположение

Рис. 2. Общий вид и нумерация атомов в катионе иодида 22b

связи $N_{(1)}$ — $P_{(1)}$ и фенильной группы при атоме азота в катионах **22а** и **22b** различается. Так, в **22a** торсионный угол $N_{(1)}$ — $P_{(1)}$ — $C_{(17)}$ — $C_{(22)}$ равен 13°, тогда как в **22b** он составляет 45°, что, по-видимому, и обусловливает различия в длине $N_{(1)}$ — $C_{(11)}$. Анионы иода в обеих структурах участвуют в образовании слабых контактов С—H…I (расстояния H…I в диапазоне 2.9–3.1 Å).

В отличие от солей 1,2-тиафосфациклания **1,5** в растворах хлоридов и иодидов 1,2-азафосфациклания **21, 22** в различных растворителях, по данным спектров ЯМР ³¹Р, не обнаружено кольчато-цепной галогенотропной таутомерии. В этом случае из-за более высокой нуклеофильности атома азота группы P=N равновесие полностью смещено в сторону циклического изомера.

Таблица б

0	d, Å		77	ω, град.		
Связь	22a*	22b	угол	22a*	22b	
P ₍₁₎ -N ₍₁₎	1.644(4)	1.641(5)	N(1)-P(1)-C(4)	96.8(2)	105.3(3)	
$P_{(1)} - C_{(4)}$	1.788(5)	1.794(6)	N(1)-P(1)-C(5)	111.3(2)	112.0(2)	
$P_{(1)} - C_{(5)}$	1.787(5)	1.779(5)	$N_{(1)} - P_{(1)} - C_{(11)}$	113.3(2)	109.2(3)	
$P_{(1)}-C_{(11)}$	1.796(4)	1.793(5)	$C_{(4)} - P_{(1)} - C_{(5)}$	110.9(3)	110.7(3)	
$N_{(1)}-C_{(1)}$	1.492(6)	1.494(7)	$C_{(4)} - P_{(1)} - C_{(11)}$	112.5(2)	109.3(3)	
N ₍₁₎ -C ₍₁₇₎	1.421(6)	1.437(7)	$C_{(5)} - P_{(1)} - C_{(11)}$	111.3(2)	110.1(2)	
			$P_{(1)} - N_{(1)} - C_{(17)}$	126.2(3)	127.7(4)	
			$P_{(1)}-N_{(1)}-C_{(1)}$	112.0(3)	113.9(4)	
			C ₍₁₎ -N ₍₁₎ -C ₍₁₇₎	121.4(4)	118.4(4)	

Длины связей и валентные углы в соединениях 22a, b

* Для соединения 22а приведены средние значения для двух независимых молекул.

15

В заключение следует отметить, что метод внутримолекулярного Р=Е-алкилирования может быть использован также для синтеза 1,2-гетерафосфацикланов, содержащих различные функциональные заместители в цикле. Например, метод был успешно применен для синтеза 3-цианозамещенных 1,2-тиафосфацикланов [17, 18].

Таблица 7

	· · · · · · · · · · · · · · · · · · ·	
Параметр	$C_{21}H_{21}INP(23a)$	$C_{22}H_{23}INP(23b)$
M	445.26	459.28
<i>F</i> (000)	1776	460
μ (МоКα), см ⁻¹	17.33	16.83
$d_{\rm calc}$, $\Gamma {\rm Cm}^{-3}$	1.522	1.523
Пространственная группа	$P2_1/c$	P21
Дифрактометр	Siemens P3/PC	Smart 1K CCD
Тип сканирования	θ/2θ	ω с 0.3° шагом по ω и 10 с экспозицией каждого фрейма
, <i>T</i> , K	298	110
<i>a</i> , Å	13.570(2)	8.1818(4)
<i>b</i> , Å	14.285(2)	10.3687(6)
<i>c</i> , Å	20.554(2)	12.1005(7)
β, град.	102.82(1)	102.755(1)
<i>V</i> , Å ³	3885.0(7)	1001.2(1)
Z	8	2
20 _{тах,} град.	50	55
Измеренные отражения	6464	6860
Независимые отражения	$6157 (R_{int} = 0.0232)$	$3576 (R_{int} = 0.0235)$
$WR2$, рассчитанный по F^2 по всем отражениям	0.0856	0.0932
R_1 , рассчитанный по F по отражениям с $I > 2$	0.0378 (4554 отр.)	0.0376 (3335 отр.)
σ(I)		
GOF	0.989	1.020

Основные кристаллографические параметры и характеристики уточнения соединений 22а и 22b

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакции проводили в атмосфере аргона с использованием абсолютных растворителей. ИК спектры сняты на приборе UR-20 (КВг). Спектры ЯМР записаны на приборах Bruker WP-200SY (рабочие частоты 200.13 (¹H) и 81.01 (³¹P) МГц) и Bruker AMX-400 (рабочие частоты 400.13 (¹H), 161.98 (³¹P) и 100.61 (¹³C) МГц); внутренний стандарт ТМС (¹H, ¹³C), внешний стандарт 85% H_3PO_4 (³¹P).

Дифенил(3-хлорпропил)фосфин (18а). К раствору 1.50 г (8.0 ммоль) Ph₂PH, 1.88 г (12 ммоль) 1,3-бромхлорпропана и 0.20 г (0.9 ммоль) ТЭБА в 10 мл CH₃CN добавляют при 20 °С и интенсивном перемешивании 1.12 г (20 ммоль) порошкообразного КОН, реакционную смесь нагревают 1.5 ч при 70 °С, по охлаждении прибавляют 20 мл бензола и 20 мл ледяной воды, бензольный слой отделяют, промывают водой (2 × 10 мл), сушат Na₂SO₄. Бензол удаляют в вакууме, остаток экстрагируют кипящим гексаном, 114 выдерживают 1 сут в холодильнике. Гексановый раствор декантируют с кристаллического осадка, удаляют растворитель и избыток 1,3-бромхлорпропана в вакууме при нагревании и получают фосфин **18a** в виде густого масла. Выход 1.56 г (74%). Спектр ЯМР ³¹Р (гексан): –16.9 м. д. (лит. [13]: δ_P –17.5 м. д.).

Дифенил(4-хлорбутил)фосфин (18b) получают аналогично 18a из 2.0 г (11 ммоль) Ph₂PH, 3.77 г (22 ммоль) 1,4-бромхлорбутана, 1.50 г (26 ммоль) КОН и 0.24 г (1.1 ммоль) ТЭБА в 15 мл CH₃CN. Смесь нагревают 1.5 ч при 55–60 °C, затем обрабатывают, как в предыдущем опыте, при температуре не выше 40 °C. Получают 1.30 г (43%) соединения 18b в виде густого масла. Спектр ЯМР ³¹P (гексан): -16.4 м. д. (лит. [14]: δ_P -17.1 м.д. (CHCl₃)).

Дифенил(3-хлорпропил)фенилиминофосфоран (19а). К раствору 1.56 г (5.9 ммоль) соединения 18а в 10 мл эфира добавляют по каплям 0.78 г (6.5 ммоль) PhN₃ в 9 мл эфира, наблюдают выделение N₂ и разогревание реакционной смеси до 26 °C, перемешивают 1 ч при 20 °C и 1 ч при кипячении. Затем эфир удаляют, остаток выдерживают в вакууме (1 мм рт. ст.) при температуре не выше 40 °C, остаток экстрагируют горячим гексаном. Выпавший из гексанового раствора кристаллический осадок отфильтровывают и получают 0.31 г (15%) иминофосфорана 19а (табл. 4, 5).

Дифенил(4-хлорбутил)фенилиминофосфоран (19b) получают аналогично соединению 19а из 1.3 г (4.7 ммоль) фосфина 18b и 0.8 г (6.7 ммоль) PhN₃ в эфире. Выход 0.5 г (30%) 19b (табл. 4, 5).

1,2,2-Трифенил-1,2λ⁴**-азафосфоланийхлорид (21а).** А. Синтез из иминофосфорана **19а**. Раствор 0.12 г (0.34 ммоль) соединения **19а** в 2 мл бензола нагревают при 50 °C в течение 40 мин, выпавший осадок отфильтровывают, промывают бензолом, выделяют 0.10 г (85%) хлорида **21**а (табл. 4, 5).

Б. Синтез из фосфина **18а**. К раствору 1.41 г (5.4 ммоль) соединения **18а** в 10 мл бензола добавляют по каплям при перемешивании 0.76 г (6.4 ммоль) PhN₃ в 5 мл бензола, реакционную смесь выдерживают 1 ч при 20 °C, затем 40 мин при 50 °C, далее обрабатывают как в способе А. Выход 1.34 г (70%).

1,2,2-Трифенил-1,2\lambda^4-азафосфоринанийхлорид (21b). А. Синтез из иминофосфорана **19b**. Раствор 0.30 г (0.82 ммоль) соединения **19b** в 8 мл CH₃CN нагревают при кипении 2 ч, растворитель удаляют в вакууме, к остатку добавляют 10 мл бензола, кипятят 10 мин, выпавший осадок отфильтровывают, промывают бензолом; получают 0.30 г хлорида **21b** (выход колич.) (табл. 4, 5).

Б. Синтез из фосфина 18b. К раствору 1.41 г (5.4 ммоль) соединения 18b в 5 мл эфира при 20 °С добавляют 0.50 г (4.0 ммоль) PhN₃ в 5 мл эфира, реакционную смесь кипятят 1 ч, затем добавляют 10 мл CH₃CN и кипятят 2.5 ч. Далее обрабатывают как в способе А. Выход 0.95 г (96%).

1,2,2-Трифенил-1,2 λ^4 -азафосфоланийиодид (22а). К раствору 0.20 г (0.56 ммоль) хлорида 21а в 2 мл CH₃CN добавляют при 20 °C раствор 0.13 г (0.87 ммоль) NaI в 2 мл CH₃CN; через 1 сут осадок NaCl отфильтровывают, удаляют растворитель в вакууме, остаток растворяют при нагревании в CHCl₃, отфильтровывают избыток NaI, после удаления растворителя кристаллизуют из CH₂Cl₂-EtOAc. Выход 0.26 г (92%) (табл. 4, 5).

1,2,2-Трифенил-1,2λ⁴-азафосфоринанийиодид (22b) получают аналогично соединению **22a** из 0.12 г (0.33 ммоль) хлорида **21b** и 0.15 г (1.0 ммоль) NaI в 7 мл CH₃CN. Выход 0.12 г (80%) (табл. 4, 5).

1,2,2-Трифенил-1,2\lambda^4-азафосфоринанийперхлорат (23b) получают аналогично соединению **23a** из 0.20 г (0.54 ммоль) хлорида **21b** и 0.20 г (1.63 ммоль) NaClO₄ в 15 мл CH₃CN. Выход 0.19 г (82%) (табл. 4, 5).

1-Оксо-1-фенилфосфолан (20). Водный раствор, полученный при синтезе фосфина 18b (см. выше), упаривают досуха в вакууме, остаток экстрагируют бензолом, после удаления бензола получают 0.4 г воскообразного продукта 20. ИК спектр (CHCl₃): $v_{P=0}$ 1175 см⁻¹ (лит.[19]: $v_{P=0}$ 1180 см⁻¹). Спектр ЯМР ³¹Р (CDCl₃): δ_P 60.8 м. д. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 1.77–2.15 (8H, м,(CH₂CH₂)₂P); 7.35–7.68 (5H, м, C₆H₅) (лит. [20]: спектр ЯМР ¹H, δ , м. д.: 1.95, (8H, м), 7.71 (5H, м).

Рентгеноструктурные исследования. Основные кристаллографические данные и характеристики уточнения соединений 22а и 22b приведены в табл. 7. Учет поглощения проводили на основе азимутального сканирования (22а) и эмпирически по эквивалентам (22b). Структуры расшифрованы прямым методом и уточнены в анизотропно-изотропном полноматричном приближении по F^2 . Атомы водорода выявлены в разностных синтезах электронной плотности и включены в окончательное уточнение в изотропном

приближении. Абсолютную конфигурацию структуры **22b** определяли на основе параметра Флака (0.02(3)). Все расчеты проведены по комплексу программ SHELXTL PLUS. Ver. 5.0 на персональном компьютере.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты 99-03-33014a, 00-15-97386).

СПИСОК ЛИТЕРАТУРЫ

- 1. D. G. Hewitt, G. L. Newland, Austral. J. Chem., 30, 579 (1977).
- 2. T. Sakai, T. Kodama, T. Fujimoto, K. Ohta, I. Yamamoto, J. Org. Chem., 59, 7144 (1994).
- 3. A. Chaudhry, M. J. P. Harger, Ph. Shaff, A. Thomson, Chem. Commun., 83 (1995).
- 4. H. Y. Kleiner, Lieb. Ann., H.2, 324 (1980).
- M. Aladzheva, O. V. Bykhovskaya, D. I. Lobanov, K. A. Lyssenko, M. Yu. Antipin, T. A. Mastryukova, M. I. Kabachnik, *Mendeleev Commun.*, 48 (1996).
- D. I. Lobanov, I. M. Aladzheva, O. V. Bykhovskaya, P. V. Petrovskii, K. A. Lyssenko, M. Yu. Antipin, T. A. Mastryukova, M. I. Kabachnik, *Phosphorus, Sulfur and Silicon*, 128, 165 (1997).
- И. М. Аладжева, О. В. Быховская, Д. И. Лобанов, П. В. Петровский, К. А. Лысенко, М. Ю. Антипин, Т. А. Мастрюкова, М. И. Кабачник, *ЖОХ*, 68, 1421 (1998).
- И. М. Аладжева, И. В. Леонтьева, Д. И. Лобанов, О. В. Быховская, П. В. Петровский, К. А. Лысенко, Т. А. Мастрюкова, М. И. Кабачник, *ЖОХ*, 68, 1417 (1998).
- T. A. Mastryukova, I. M. Aladzheva, D. I. Lobanov, O. V. Bykhovskaya, P. V. Petrovskii, K. A. Lyssenko, M. I. Kabachnik, *Phosphorus, Sulfur and Silicon*, 144–146, 569 (1999).
- О. В. Быховская, И. М. Аладжева, Д. И. Лобанов, П. В. Петровский, К. А. Лысенко, Т. А. Мастрюкова, *ЖОХ*, 71, 393 (2001).
- 11. V. Mark, C. H. Dungan, M. M. Crutchfield, J. R. Van Wazer, *Topics in Phosphorus Chemistry*, John Wiley & Sons, N. Y., 1967, **5**, Ch. 4.
- 12. R. E. Valters, W. Flitsch, Ring-Chain Tautomerism, Plenum Press, N. Y., 1985, 271.
- 13. S. O. Grim, R. C. Barth, J. Organomet. Chem., 94, 327 (1975).
- 14. E. Lindner, G. Funk, S. Hoehne, Chem. Ber., 114, 2465 (1981).
- E. Renoud, R. B. Russell, S. Fortier, S. J. Broun, M. C. Baird, J. Organomet. Chem., 419, 403 (1991).
- 16. C. G. Stuckwisch, J. Org. Chem., 41, 1173 (1976).
- L. Odinets, N. M. Vinogradova, O. I. Artyushin, P. V. Petrovskii, K. A. Lyssenko, M. Yu. Antipin, T. A. Mastryukova, *Mendeleev Commun.*, 158 (1999).
- L. Odinets, N. M. Vinogradova, K. A. Lyssenko, P. V. Petrovskii, T. A. Mastryukova, *Heteroatom Chem.*, 11, 163 (2000).
- 19. J. H. Davies, J. D. Downer, P. Kirby, J. Chem. Soc., C, 245 (1966)
- 20. R. B. Wetzel, G. L. Kenyon, J. Org. Chem., 39, 1531 (1974).

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail: fos@ineos.ac.ru Поступило в редакцию 08.06.2001